Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume
Abstract
:1. Introduction
1.1. Sediment Plumes
1.2. Sediment Plume Dynamics and Drivers
1.3. Remote Sensing of Sediment Plumes
2. Materials and Methods
2.1. Major River Murray Flood Event
2.2. Ocean Colour Imagery
2.3. Data Processing
2.3.1. Kd490 Estimates
2.3.2. In Situ Turbidity Data
2.4. The Magnitude of the Sediment Plume and the Kd490 Anomaly
2.5. Temporal and Spatial Distributions of the Sediment Plume
2.5.1. Visualisations of Kd490 Estimates
2.5.2. The Horizontal Spreading of the Surface Sediment Plume
2.6. Correlation of Kd490 to In Situ Turbidity Data
3. Results
3.1. The Magnitude of the Sediment Plume and the Kd490 Anomaly
3.2. The Temporal and Spatial Distributions of the Sediment Plume
3.2.1. Visualisations of Kd490 Estimates
3.2.2. The Horizontal Spreading of the Surface Sediment Plume
3.3. Correlation of Kd490 to In Situ Turbidity Data
4. Discussion
4.1. The Magnitude of the Sediment Plume and the Kd490 Anomaly
4.2. The Temporal and Spatial Distributions of the Sediment Plume
4.2.1. Visualisations of Kd490 Estimates
4.2.2. The Horizontal Spreading of the Surface Sediment Plume
4.3. Correlation of Kd490 to In Situ Turbidity Data
4.4. Informing Management Strategies
5. Conclusions
- The River Murray flood event of 2022–2023 led to a significant increase in riverine discharge from November 2022 to February 2023, peaking on 29 January with a daily flow rate of 1305 m3/s. Interestingly, the historically significant sediment plume within the coastal region reached its maximum spatial extent of 13,681 km2 during the 8-day period beginning on the 11 December 2022, over a month before the peak discharge occurred.
- Utilising the diffuse attenuation coefficient at 490 nm (Kd490) product alongside MODIS Aqua Ocean Color Level 3 satellite imagery, the temporal and spatial dynamics of the surface sediment plume were successfully mapped. The imagery shows a typical pooling of the plume in the northern corner of Long Bay and Encounter Bay and the westward persistence of the plume through Backstairs Passage into Gulf St Vincent, with periods of brief eastward migration.
- The assessment of the relationship between Kd490 8-day data composites and two instantaneous in situ sampling periods of turbidity found strong positive linear correlations. Given the temporal and spatial mismatch of the two datasets along with the novelty of the product’s application within South Australian waters, this correlation is exceptional.
- This study highlights the significant role of riverine discharge in driving the surface sediment plume’s spatial extent and intensities, particularly within the plume’s inner core.
- The correlation observed between the Kd490 estimates and in situ turbidity data supports the utilisation of the Kd490 product in the future for sediment plume quantification within South Australian waters.
- These findings have important implications for environmental management. By revealing when and where plumes are likely to form and evolve, this study provides a foundation for targeted monitoring, timely management interventions, and informed planning to reduce the discussed ecological and socio-economic risks associated with extreme river discharge events.
6. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Kudela, R.M.; Horner-Devine, A.R.; Banas, N.S.; Hickey, B.M.; Peterson, T.D.; McCabe, R.M.; Lessard, E.J.; Frame, E.; Bruland, K.W.; Jay, D.A. Multiple trophic levels fueled by recirculation in the Columbia River plume. Geophys. Res. Lett. 2010, 37, L18607. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Zhang, H.; Lemckert, C. Sediment transport in a shallow coastal region following severe flood events. Environ. Fluid Mech. 2017, 17, 1233–1253. [Google Scholar] [CrossRef]
- Horner-Devine, A.R.; Hetland, R.D.; MacDonald, D.G. Mixing and transport in coastal river plumes. Annu. Rev. Fluid Mech. 2015, 47, 569–594. [Google Scholar] [CrossRef]
- Aurin, D.; Mannino, A.; Franz, B. Spatially resolving ocean color and sediment dispersion in river plumes, coastal systems, and continental shelf waters. Remote Sens. Environ. 2013, 137, 212–225. [Google Scholar] [CrossRef]
- Loisel, H.; Mangin, A.; Vantrepotte, V.; Dessailly, D.; Dinh, D.N.; Garnesson, P.; Ouillon, S.; Lefebvre, J.-P.; Mériaux, X.; Phan, T.M. Variability of suspended particulate matter concentration in coastal waters under the Mekong’s influence from ocean color (MERIS) remote sensing over the last decade. Remote Sens. Environ. 2014, 150, 218–230. [Google Scholar] [CrossRef]
- Aufdenkampe, A.K.; Mayorga, E.; Raymond, P.A.; Melack, J.M.; Doney, S.C.; Alin, S.R.; Aalto, R.E.; Yoo, K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 2011, 9, 53–60. [Google Scholar] [CrossRef]
- Auricht, H.; Mosley, L.; Lewis, M.; Clarke, K. Mapping the long-term influence of river discharge on coastal ocean chlorophyll-a. Remote Sens. Ecol. Conserv. 2022, 8, 629–643. [Google Scholar] [CrossRef]
- Bilotta, G.S.; Brazier, R.E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 2008, 42, 2849–2861. [Google Scholar] [CrossRef]
- Hamidi, S.A.; Hosseiny, H.; Ekhtari, N.; Khazaei, B. Using MODIS remote sensing data for mapping the spatio-temporal variability of water quality and river turbid plume. J. Coast. Conserv. 2017, 21, 939–950. [Google Scholar] [CrossRef]
- Fabricius, K.; Logan, M.; Weeks, S.; Lewis, S.; Brodie, J. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuar. Coast. Shelf Sci. 2016, 173, A1–A15. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Norris, B.K.; Rosenberger, K.J. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems. Coral Reefs 2015, 34, 967–975. [Google Scholar] [CrossRef]
- Wolanski, E.; Spagnol, S. Environmental degradation by mud in tropical estuaries. Reg. Environ. Chang. 2000, 1, 152–162. [Google Scholar] [CrossRef]
- McLaughlin, C.; Smith, C.; Buddemeier, R.; Bartley, J.; Maxwell, B. Rivers, runoff, and reefs. Glob. Planet. Chang. 2003, 39, 191–199. [Google Scholar] [CrossRef]
- Bainbridge, Z.T.; Wolanski, E.; Álvarez-Romero, J.G.; Lewis, S.E.; Brodie, J.E. Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia. Mar. Pollut. Bull. 2012, 65, 236–248. [Google Scholar] [CrossRef]
- Petus, C.; Marieu, V.; Novoa, S.; Chust, G.; Bruneau, N.; Froidefond, J.-M. Monitoring spatio-temporal variability of the Adour River turbid plume (Bay of Biscay, France) with MODIS 250-m imagery. Cont. Shelf Res. 2014, 74, 35–49. [Google Scholar] [CrossRef]
- Villas Bôas, A.B.; Ardhuin, F.; Ayet, A.; Bourassa, M.A.; Brandt, P.; Chapron, B.; Cornuelle, B.D.; Farrar, J.T.; Fewings, M.R.; Fox-Kemper, B. Integrated observations of global surface winds, currents, and waves: Requirements and challenges for the next decade. Front. Mar. Sci. 2019, 6, 425. [Google Scholar] [CrossRef]
- Berdeal, I.G.; Hickey, B.; Kawase, M. Influence of Wind Stress and Ambient Flow on a High Discharge River Plume. J. Geophys. Res. Ocean. 2002, 107, 13-1–13-24. [Google Scholar]
- Chant, R.J.; Wilkin, J.; Zhang, W.; Choi, B.-J.; Hunter, E.; Castelao, R.; Glenn, S.; Jurisa, J.; Schofield, O.; Houghton, R. Dispersal of the Hudson River plume in the New York Bight: Synthesis of observational and numerical studies during LaTTE. Oceanography 2008, 21, 148–161. [Google Scholar] [CrossRef]
- Gong, W.; Wang, J.; Zhang, G.; Zhu, L. Effect of axial winds and waves on sediment dynamics in an idealized convergent partially mixed estuary. Mar. Geol. 2023, 458, 107015. [Google Scholar] [CrossRef]
- Lisboa, P.V.; Fernandes, E.H.; Sottolichio, A.; Huybrecht, N.; Bendô, R. Coastal plumes contribution to the suspended sediment transport in the Southwest Atlantic inner continental shelf. J. Mar. Syst. 2022, 236, 103796. [Google Scholar] [CrossRef]
- Sun, C. Riverine influence on ocean color in the equatorial South China Sea. Cont. Shelf Res. 2017, 143, 151–158. [Google Scholar] [CrossRef]
- Valente, A.S.; da Silva, J.C. On the observability of the fortnightly cycle of the Tagus estuary turbid plume using MODIS ocean colour images. J. Mar. Syst. 2009, 75, 131–137. [Google Scholar] [CrossRef]
- Verschelling, E.; van der Deijl, E.; van der Perk, M.; Sloff, K.; Middelkoop, H. Effects of discharge, wind, and tide on sedimentation in a recently restored tidal freshwater wetland. Hydrol. Process. 2017, 31, 2827–2841. [Google Scholar] [CrossRef]
- Roth, M.K.; MacMahan, J.; Reniers, A.; Özgökmen, T.M.; Woodall, K.; Haus, B. Observations of inner shelf cross-shore surface material transport adjacent to a coastal inlet in the northern Gulf of Mexico. Cont. Shelf Res. 2017, 137, 142–153. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.H.; Ritchie, E.A.; Qiao, L.; Li, G.; Cheng, Z. Using 250-M surface reflectance MODIS Aqua/Terra product to estimate turbidity in a macro-tidal harbour: Darwin Harbour, Australia. Remote Sens. 2018, 10, 997. [Google Scholar] [CrossRef]
- Hickey, B.; Geier, S.; Kachel, N.; MacFadyen, A. A bi-directional river plume: The Columbia in summer. Cont. Shelf Res. 2005, 25, 1631–1656. [Google Scholar] [CrossRef]
- Fong, D.A.; Geyer, W.R. The alongshore transport of freshwater in a surface-trapped river plume. J. Phys. Oceanogr. 2002, 32, 957–972. [Google Scholar] [CrossRef]
- Bid, S.; Siddique, G. Identification of seasonal variation of water turbidity using NDTI method in Panchet Hill Dam, India. Model. Earth Syst. Environ. 2019, 5, 1179–1200. [Google Scholar] [CrossRef]
- Fischer, A.M.; Pang, D.; Kidd, I.M.; Moreno-Madriñán, M.J. Spatio-temporal variability in a turbid and dynamic tidal estuarine environment (Tasmania, Australia): An assessment of MODIS band 1 reflectance. ISPRS Int. J. Geo-Inf. 2017, 6, 320. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Moreno-Madrinan, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Muller-Karger, F.E. Using the surface reflectance MODIS Terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens. 2010, 2, 2713–2728. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller–Karger, F.E. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- Gohin, F. Annual cycles of chlorophyll-a, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Sci. 2011, 7, 705–732. [Google Scholar] [CrossRef]
- Mueller, J.L. SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm. SeaWiFS Postlaunch Calibration Valid. Anal. Part 2000, 3, 24–27. [Google Scholar]
- Diffuse Attenuation Coefficient for Downwelling Irradiance at 490 nm (Kd). Available online: https://oceancolor.gsfc.nasa.gov/resources/atbd/kd/#sec_2 (accessed on 16 May 2024).
- Lei, S.; Xu, J.; Li, Y.; Lyu, H.; Liu, G.; Zheng, Z.; Xu, Y.; Du, C.; Zeng, S.; Wang, H. Temporal and spatial distribution of Kd (490) and its response to precipitation and wind in lake Hongze based on MODIS data. Ecol. Indic. 2020, 108, 105684. [Google Scholar] [CrossRef]
- Wang, M.; Son, S.; Harding, L.W., Jr. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Zhang, T.; Fell, F. An empirical algorithm for determining the diffuse attenuation coefficient Kd in clear and turbid waters from spectral remote sensing reflectance. Limnol. Oceanogr. Methods 2007, 5, 457–462. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, D.; Yang, L.; Zhou, Y.; Gao, H.; Bian, X.; Li, Y. Remote sensing algorithms of seawater transparency: A review. In Proceedings of the 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS), Zhoushan, China, 22–24 April 2022; pp. 744–749. [Google Scholar]
- Turbidity: Units of Measurement. Available online: https://or.water.usgs.gov/grapher/fnu.html (accessed on 16 May 2024).
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Devlin, M.J.; Petus, C.; Da Silva, E.; Tracey, D.; Wolff, N.H.; Waterhouse, J.; Brodie, J. Water quality and river plume monitoring in the Great Barrier Reef: An overview of methods based on ocean colour satellite data. Remote Sens. 2015, 7, 12909–12941. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Lee, Z.; Wang, D.; Chen, S.; Lai, W. A revision of NASA SeaDAS atmospheric correction algorithm over turbid waters with artificial Neural Networks estimated remote-sensing reflectance in the near-infrared. ISPRS J. Photogramm. Remote Sens. 2022, 194, 235–249. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Zhu, X.; Zhou, Y.; Le, C.; Mao, Z.; Bai, J.; Bi, D.; Chen, P.; Chen, W. Optimum wavelength of spaceborne oceanic lidar in penetration depth. J. Quant. Spectrosc. Radiat. Transf. 2020, 256, 107310. [Google Scholar] [CrossRef]
- Choo, J.; Cherukuru, N.; Lehmann, E.; Paget, M.; Mujahid, A.; Martin, P.; Müller, M. Spatial and temporal dynamics of suspended sediment concentrations in coastal waters of the South China Sea, off Sarawak, Borneo: Ocean colour remote sensing observations and analysis. Biogeosciences 2022, 19, 5837–5857. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Petus, C.; da Silva, E.T.; Devlin, M.; Wenger, A.S.; Álvarez-Romero, J.G. Using MODIS data for mapping of water types within river plumes in the Great Barrier Reef, Australia: Towards the production of river plume risk maps for reef and seagrass ecosystems. J. Environ. Manag. 2014, 137, 163–177. [Google Scholar] [CrossRef]
- 2022/2023 Flood Recovery Works. Available online: https://www.berribarmera.sa.gov.au/council-services/emergency/20222023-flood-recovery-works#:~:text=2022%2F2023%20River%20Murray%20Flood&text=This%20flood%20event%20was%20the,homes%2C%20shacks%20businesses%20and%20infrastructure (accessed on 16 May 2024).
- 2022-23 River Murray Flood Event. Available online: https://www.environment.sa.gov.au/topics/river-murray-floods/2022-23-river-murray-flood-event (accessed on 14 November 2023).
- River Murray Inundation Mapping. Available online: https://www.waterconnect.sa.gov.au/Systems/RMIM/SitePages/Home.aspx#:~:text=Historically%20this%20has%20occurred%20just,River%20Murray%20flood%20on%20record (accessed on 16 May 2024).
- SA River Murray Flow Report: Report #50. Available online: https://www.waterconnect.sa.gov.au/Content/Flow%20Reports/RM-Flow-Report-2022%2012%2023_FINAL.pdf (accessed on 16 May 2024).
- Murray-Darling Basin location. Available online: https://www.mdba.gov.au/basin/basin-location (accessed on 16 May 2024).
- River Murray Estimated Travel Times during Flood Events. Available online: https://cdn.environment.sa.gov.au/environment/images/River-Murray-Estimated-Travel-Times.pdf (accessed on 16 May 2024).
- River Murray Flows. Available online: https://www.environment.sa.gov.au/topics/river-murray-flows. (accessed on 16 May 2024).
- Data Set: Discharge. Master—Daily Calculation—ML/day@A4261001. Available online: https://water.data.sa.gov.au/Data/DataSet/Summary/Location/A4261001/DataSet/Discharge/Master--Daily%20Calculation--ML%2Fday/Interval/Latest (accessed on 3 October 2024).
- Leblanc, M.; Tweed, S.; Van Dijk, A.; Timbal, B. A review of historic and future hydrological changes in the Murray-Darling Basin. Glob. Planet. Chang. 2012, 80, 226–246. [Google Scholar] [CrossRef]
- Dead Marine Life Washes onto South Coast Beaches Near Mouth of Flooding River Murray. Available online: https://www.abc.net.au/news/2023-01-06/carnage-of-dead-marine-life-on-beaches-near-murray-mouth/101831330 (accessed on 7 July 2023).
- Geoscience Australia Sentinel-2A MSI Analysis Ready Data Collection 3—DEA Surface Reflectance (Sentinel-2A MSI), Scene ID: S2A_MSIL2A_20230101T004702. Geoscience Australia, Canberra. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/146552 (accessed on 16 May 2024).
- Ocean Color SMI: Standard Mapped Image MODIS Aqua Data. Available online: https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI (accessed on 10 February 2024).
- NASA Earth Data Level 3 & 4 Browser. Available online: https://oceancolor.gsfc.nasa.gov/l3/ (accessed on 10 February 2024).
- Turbidity (Kd490), Maximum Monthly Climatological Mean (1998–2018), American Samoa. Available online: https://catalog.data.gov/dataset/turbidity-kd490-average-annual-frequency-of-anomalies-1998-2018-american-samoa (accessed on 16 April 2025).
- Nukapothula, S.; Chen, C.; Yunus, A.P. Seasonal sediment plumes in the Krishna-Godavari basin using satellite observations. Deep Sea Res. Part I Oceanogr. Res. Pap. 2022, 188, 103850. [Google Scholar] [CrossRef]
- Using the NASA Earth Data Level 3 Browser Interface. Available online: https://oceancolor.gsfc.nasa.gov/l3/help/ (accessed on 10 February 2024).
- AusSeabed Marine Data Portal. Available online: https://portal.ga.gov.au/persona/marine (accessed on 27 February 2024).
- Australian Bathymetry and Topography 250m 2023 (NEW). Available online: https://portal.ga.gov.au/metadata/elevation-and-depth/bathymetry-compilations/australian-bathymetry-and-topography-250m-2023-new-/13fd7f3c-7d54-4719-8aea-c69d00055742 (accessed on 10 February 2024).
- Environmental, Economic and Social Values of the Encounter Marine Park, Department of Environment and Natural Resources, South Australia. Available online: https://cdn.environment.sa.gov.au/marineparks/docs/mp15.pdf (accessed on 16 May 2024).
- Grzechnik, M.P. Three-dimensional tide and surge modelling and layered particle tracking techniques applied to Southern Australian coastal seas. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2000. [Google Scholar]
- “In-Situ Field Measurements for Adelaide Coastal Waters Study—Final Technical Report” ACWS Technical Report No. 7 Prepared for the Adelaide Coastal Waters Study Steering Committee. School of Chemistry, Physics and Earth Sciences, Flinders University of SA. Adelaide. Available online: https://www.epa.sa.gov.au/files/477441_acws7.pdf (accessed on 16 May 2024).
- Karimaee Tabarestani, M.; Zarrati, A. Sediment transport during flood event: A review. Int. J. Environ. Sci. Technol. 2015, 12, 775–788. [Google Scholar] [CrossRef]
- Xing, J.; Davies, A.M. The effect of wind direction and mixing upon the spreading of a buoyant plume in a non-tidal regime. Cont. Shelf Res. 1999, 19, 1437–1483. [Google Scholar] [CrossRef]
- Wright, L.D. Sediment transport and deposition at river mouths: A synthesis. Geol. Soc. Am. Bull. 1977, 88, 857–868. [Google Scholar] [CrossRef]
- Kostaschuk, R.A.; Stephan, B.A.; Luternauer, J.L. Suspended sediment concentration in a bouyant plume: Fraser River, Canada. Geo-Mar. Lett. 1993, 13, 165–171. [Google Scholar] [CrossRef]
- Warrick, J.A.; Mertes, L.A.; Washburn, L.; Siegel, D.A. A conceptual model for river water and sediment dispersal in the Santa Barbara Channel, California. Cont. Shelf Res. 2004, 24, 2029–2043. [Google Scholar] [CrossRef]
- Pak, H.; Zaneveld, J.; Spinrad, R. Vertical distribution of suspended particulate matter in the Zaire river, estuary and plume. Neth. J. Sea Res. 1984, 17, 412–425. [Google Scholar] [CrossRef]
- Rao, Y.R.; Schwab, D.J. Transport and mixing between the coastal and offshore waters in the Great Lakes: A review. J. Great Lakes Res. 2007, 33, 202–218. [Google Scholar] [CrossRef]
- Hill, P.S.; Milligan, T.G.; Geyer, W.R. Controls on effective settling velocity of suspended sediment in the Eel River flood plume. Cont. Shelf Res. 2000, 20, 2095–2111. [Google Scholar] [CrossRef]
- Mertes, L.A.; Smith, M.O.; Adams, J.B. Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images. Remote Sens. Environ. 1993, 43, 281–301. [Google Scholar] [CrossRef]
Data Subset | In Situ Turbidity Range (NTU) | Kd490 Range (m−1) |
---|---|---|
During high riverine discharge | 0.47–9.04 | 0.18–0.91 |
During high riverine discharge 2 m | 1.46–9.04 | 0.42–0.91 |
During high riverine discharge 3 m | 0.47–8.70 | 0.18–0.91 |
Post-flood event | 1.28–3.55 | 0.13–0.23 |
Post-flood event 2 m | 1.63–3.55 | 0.15–0.18 |
Post-flood event 3 m | 1.28–2.96 | 0.13–0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbett, E.; Rifai, S.W.; Miot da Silva, G.; Hesp, P.A. Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume. Remote Sens. 2025, 17, 1711. https://doi.org/10.3390/rs17101711
Corbett E, Rifai SW, Miot da Silva G, Hesp PA. Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume. Remote Sensing. 2025; 17(10):1711. https://doi.org/10.3390/rs17101711
Chicago/Turabian StyleCorbett, Evan, Sami W. Rifai, Graziela Miot da Silva, and Patrick A. Hesp. 2025. "Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume" Remote Sensing 17, no. 10: 1711. https://doi.org/10.3390/rs17101711
APA StyleCorbett, E., Rifai, S. W., Miot da Silva, G., & Hesp, P. A. (2025). Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume. Remote Sensing, 17(10), 1711. https://doi.org/10.3390/rs17101711