Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assay Validation
2.1.1. Protocol for Automated FGF21 ELISA Assay
2.1.2. Intra-Assay Precision
2.1.3. Inter-Assay Precision
2.1.4. Lower Limits of Quantification (LLOQ)
2.1.5. Dilution Linearity
2.1.6. Spike Recovery Tests
2.1.7. Interference Assessment
2.1.8. Comparison of FGF21 Concentrations Among Different Blood Collection Tubes
2.1.9. Sample Stability Evaluation
- (1)
- Freeze-thaw stability (Supplementary Figure S1A): Plasma samples were subjected to multiple freeze-thaw cycles (1, 2, 3, 5, and 7 cycles) while being stored at −80 °C between cycles. A reference aliquot remained at −80 °C without undergoing thawing. Each cycle consisted of thawing at room temperature for 2 h, followed by at least 12 h of storage at −80 °C before the next cycle.
- (2)
- Room temperature and refrigerated stability (Supplementary Figure S1B): Plasma samples were kept at room temperature or 4 °C for varying time intervals (1 h, 2 h, 4 h, 24 h, 3 days, and 7 days).
- (3)
- Long-term storage stability (Supplementary Figure S1C): One aliquot was stored at −80 °C as a reference, while others were maintained at −20 °C for one month.After the designated storage and freeze-thaw processes, all the samples were stored at −80 °C for further analysis.
2.2. Clinical Validation
2.2.1. Study Population
2.2.2. Abdominal US Examination
2.2.3. Clinical and Laboratory Data
2.3. Statistical Analysis
3. Results
3.1. Assay Validation
3.1.1. Intra- and Inter-Assay Precision
3.1.2. Lower Limits of Quantification (LLOQ)
3.1.3. Dilution Linearity
3.1.4. Spike Recovery Tests
3.1.5. Interferences
3.1.6. Correlation and Comparison of FGF21 Levels Between Tube Types
3.1.7. Sample Stability
3.2. Clinical Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AUC | area under the curve |
AST | aspartate aminotransferase |
ATI | attenuation imaging |
BMI | body mass index |
CV | coefficient of variation |
EDTA | ethylenediaminetetraacetic acid |
ELISA | enzyme-linked immunosorbent assay |
FGF21 | fibroblast growth factor 21 |
FIB-4 | fibrosis-4 |
LLOQ | lower limit of quantification |
MASLD | metabolic dysfunction-associated steatotic liver disease |
NAFLD | non-alcoholic fatty liver disease |
RF | rheumatoid factor |
ROC | receiver operating characteristic |
SD | standard deviation |
SLD | steatotic liver disease |
SWE | shear-wave elastography |
TCL | total change limit |
US | ultrasonography |
References
- Israelsen, M.; Francque, S.; Tsochatzis, E.A.; Krag, A. Steatotic liver disease. Lancet 2024, 404, 1761–1778. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Barr, R.G.; Berzigotti, A.; Sporea, I.; Wong, V.W.-S.; Reiberger, T.; Karlas, T.; Thiele, M.; Cardoso, A.C.; Ayonrinde, O.T.; et al. WFUMB Guidelines/Guidance on Liver Multiparametric Ultrasound. Part 2: Guidance on Liver Fat Quantification. Ultrasound Med. Biol. 2024, 50, 1088–1098. [Google Scholar] [CrossRef]
- Hobeika, C.; Ronot, M.; Guiu, B.; Ferraioli, G.; Iijima, H.; Tada, T.; Lee, D.H.; Kuroda, H.; Lee, Y.H.; Lee, J.M.; et al. Ultrasound-based steatosis grading system using 2D-attenuation imaging: An individual patient data meta-analysis with external validation. Hepatology 2025, 81, 212–227. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Dongen, C.V.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Mollura, D.J.; Culp, M.P.; Pollack, E.; Battino, G.; Scheel, J.R.; Mango, V.L.; Elahi, A.; Schweitzer, A.; Dako, F. Artificial Intelligence in Low- and Middle-Income Countries: Innovating Global Health Radiology. Radiology 2020, 297, 513–520. [Google Scholar] [CrossRef]
- Flippo, K.H.; Potthoff, M.J. Metabolic messengers: FGF21. Nat. Metab. 2021, 3, 309–317. [Google Scholar] [CrossRef]
- Harrison, S.A.; Rolph, T.; Knott, M.; Dubourg, J. FGF21 agonists: An emerging therapeutic for metabolic dysfunction-associated steatohepatitis and beyond. J. Hepatol. 2024, 81, 562–576. [Google Scholar] [CrossRef]
- Keuper, M.; Häring, H.-U.; Staiger, H. Circulating FGF21 Levels in Human Health and Metabolic Disease. Exp. Clin. Endocrinol. Diabetes 2020, 128, 752–770. [Google Scholar] [CrossRef]
- Dushay, J.; Chui, P.C.; Gopalakrishnan, G.S.; Varela-Rey, M.; Crawley, M.; Fisher, F.M.; Badman, M.K.; Martinez-Chantar, M.L.; Maratos-Flier, E. Increased Fibroblast Growth Factor 21 in Obesity and Nonalcoholic Fatty Liver Disease. Gastroenterology 2010, 139, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chan, H.L.-Y.; Wong, G.L.-H.; Choi, P.C.-L.; Chan, A.W.-H.; Chan, H.-Y.; Chim, A.M.-L.; Yeung, D.K.-W.; Chan, F.K.-L.; Woo, J.; et al. Non-invasive diagnosis of non-alcoholic steatohepatitis by combined serum biomarkers. J. Hepatol. 2012, 56, 1363–1370. [Google Scholar] [CrossRef]
- Xu, K.; He, B.-W.; Yu, J.-L.; Kang, H.-M.; Zheng, T.-T.; Chen, Z.Y.; Li, J.-S. Clinical significance of serum FGF21 levels in diagnosing nonalcoholic fatty liver disease early. Sci. Rep. 2024, 14, 25191. [Google Scholar] [CrossRef] [PubMed]
- Abozaid, Y.J.; Ayada, I.; van Kleef, L.A.; Vallerga, L.; Pan, Q.; Brouwer, W.P.; Ikram, M.A.; Van Meurs, J.; de Knegt, R.J.; Ghanbari, M. Plasma proteomic signature of fatty liver disease: The Rotterdam Study. Hepatology 2023, 78, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, U.; Perret-Liaudet, A.; van Waalwijk van Doorn, L.J.; Blennow, K.; Chiasserini, D.; Engelborghs, S.; Fladby, T.; Genc, S.; Kruse, N.; Kuiperij, H.B.; et al. A practical guide to immunoassay method validation. Front. Neurol. 2015, 6, 179. [Google Scholar] [CrossRef]
- Cha, C.; Lam, H.; Lee, Y.; Zhang, X. Analytical Method Validation and Instrument Performance Verification; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Ferraioli, G.; Barr, R.G.; Berzigotti, A.; Sporea, I.; Wong, V.W.-S.; Reiberger, T.; Karlas, T.; Thiele, M.; Cardoso, A.C.; Ayonrinde, O.T.; et al. WFUMB Guideline/Guidance on Liver Multiparametric Ultrasound: Part 1. Update to 2018 Guidelines on Liver Ultrasound Elastography. Ultrasound Med. Biol. 2024, 50, 1071–1087. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Zhou, X.H.; Obuchowski, N.A.; McClish, D.K. Statistical Methods in Diagnostic Medicine, 2nd ed.; Wiley: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Oddoze, C.; Lombard, E.; Portugal, H. Stability study of 81 analytes in human whole blood, in serum and in plasma. Clin. Biochem. 2012, 45, 464–469. [Google Scholar] [CrossRef]
- Tada, T.; Iijima, H.; Kobayashi, N.; Yoshida, M.; Nishimura, T.; Kumada, T.; Kondo, R.; Yano, H.; Kage, M.; Nakano, C.; et al. Usefulness of attenuation imaging with an ultrasound scanner for the evaluation of hepatic steatosis. Ultrasound Med. Biol. 2019, 45, 2679–2687. [Google Scholar] [CrossRef]
- Rohner, F.; Zeder, C.; Zimmermann, M.B.; Hurrell, R.F. Comparison of manual and automated ELISA methods for serum ferritin analysis. J. Clin. Lab. Anal. 2005, 19, 196–198. [Google Scholar] [CrossRef]
- Dunshee, D.R.; Bainbridge, T.W.; Kljavin, N.M.; Zavala-Solorio, J.; Schroeder, A.C.; Chan, R.; Corpuz, R.; Wong, M.; Zhou, W.; Deshmukh, G.; et al. Fibroblast Activation Protein Cleaves and Inactivates Fibroblast Growth Factor 21. J. Biol. Chem. 2016, 291, 5986–5996. [Google Scholar] [CrossRef]
- Rundle, A.G.; Vineis, P.; Ahsan, H. Design options for molecular epidemiology research within cohort studies. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Gislefoss, R.E.; Lauritzen, M.; Langseth, H.; Mørkrid, L. Effect of multiple freeze-thaw cycles on selected biochemical serum components. Clin. Chem. Lab. Med. 2017, 55, 967–973. [Google Scholar] [CrossRef]
- Gotoh, T.; Kumada, T.; Ogawa, S.; Niwa, F.; Toyoda, H.; Hirooka, M.; Koizumi, Y.; Hiasa, Y.; Akita, T.; Tanaka, J.; et al. Comparison between attenuation measurement and the controlled attenuation parameter for the assessment of hepatic steatosis based on MRI images. Liver Int. 2025, 45, e16210. [Google Scholar] [CrossRef] [PubMed]
- Handzlik, G.; Owczarek, A.J.; Więcek, A.; Mossakowska, M.; Zdrojewski, T.; Chudek, A.; Olszanecka-Glinianowicz, M.; Chudek, J. Fibroblast growth factor 21 inversely correlates with survival in elderly population—the results of the Polsenior2 study. Aging (Albany NY) 2024, 16, 12673–12684. [Google Scholar] [CrossRef]
- Villarroya, J.; Gallego-Escuredo, J.M.; Delgado-Anglés, A.; Cairó, M.; Moure, R.; Mateo, M.G.; Domingo, J.C.; Domingo, P.; Giralt, M.; Villarroya, F. Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell 2018, 17, e12822. [Google Scholar] [CrossRef] [PubMed]
- Hanks, L.J.; Gutiérrez, O.M.; Bamman, M.M.; Ashraf, A.; McCormick, K.L.; Casazza, K. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J. Clin. Transl. Endocrinol. 2015, 2, 77–82. [Google Scholar] [CrossRef]
- Franck, M.; John, K.; Aoua, S.A.; Rau, M.; Geier, A.; Schattenberg, J.M.; Wedemeyer, H.; Schulze-Osthoff, K.; Bantel, H. Hepatokine-based identification of fibrotic NASH and improved risk stratification in a multicentre cohort of NAFLD patients. Liver Int. 2023, 43, 2668–2679. [Google Scholar] [CrossRef]
- Lanng, A.R.; Gasbjerg, L.S.; Sucksdorff, A.I.F.; Svenningsen, J.S.; Vilsbøll, T.; Gillum, M.P.; Knop, F.K. Alcohol-induced fibroblast growth factor 21 secretion is increased in individuals with alcohol use disorder. Alcohol 2024, 121, 69–74. [Google Scholar] [CrossRef]
- Stankevic, E.; Israelsen, M.; Juel, H.B.; Madsen, A.L.; Ängquist, L.; Aldiss, P.S.J.; Torp, N.; Johansen, S.; Hansen, C.D.; Hansen, J.K.; et al. Binge drinking episode causes acute, specific alterations in systemic and hepatic inflammation-related markers. Liver Int. 2023, 43, 2680–2691. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed]
Intra-Assay Precision | Inter-Assay Precision | |||||
---|---|---|---|---|---|---|
Sample | Low | Medium | High | Low | Medium | High |
Number | 20 | 20 | 20 | 25 | 25 | 25 |
Mean (pg/mL) | 159 | 579 | 1177 | 207 | 607 | 1020 |
Standard deviation | 8.5 | 18.6 | 61.7 | 17.8 | 31.1 | 81.9 |
CV (%) | 5.4 | 3.2 | 5.2 | 8.6 | 5.1 | 8.0 |
Fold Dilution | Expected (pg/mL) | Observed (pg/mL) | Recovery (%) | CV (%) |
---|---|---|---|---|
×2 | 1500 | 1508.6 | 100.6 | 0.9 |
×4 | 750 | 793.75 | 105.8 | 0.3 |
×8 | 375 | 388.05 | 103.5 | 2.2 |
×16 | 187.5 | 182.4 | 97.3 | 1.5 |
×32 | 93.8 | 94.7 | 101.0 | 1.2 |
×64 | 46.9 | 51.95 | 110.8 | 0.1 |
×128 | 23.4 | 23.65 | 101.1 | 5.7 |
×256 | 11.7 | 5.9 | 50.4 | 28.8 |
×512 | 5.9 | 2.7 | 45.8 | 55.6 |
Spike | Measured Conc. (pg/mL) | CV (%) | Theoretical Conc. (pg/mL) | Recovery Rate (%) | |
---|---|---|---|---|---|
Sample 1 | 0 pg | 164 | 2.3 | – | – |
100 pg | 261 | 1.4 | 264 | 98.9 | |
200 pg | 360 | 0.6 | 364 | 98.9 | |
Sample 2 | 0 pg | 220 | 1.4 | – | – |
100 pg | 319 | 3.2 | 320 | 99.7 | |
200 pg | 413 | 1.2 | 420 | 98.3 | |
Sample 3 | 0 pg | 392 | 2.7 | – | – |
100 pg | 483 | 1.2 | 492 | 98.2 | |
200 pg | 568 | 1.0 | 592 | 95.9 |
Age, Years | 56 | (27–69) |
Male | 47 | (48) |
BMI, kg/m2 | 22.5 | (15.4–29.3) |
AST, U/L | 20 | (13–67) |
ALT, U/L | 21 | (7–134) |
γ-GT, U/L | 21 | (6–414) |
Total bilirubin, mg/dL | 0.8 | (0.3–2.8) |
Albumin, g/dL | 4.3 | (3.6–5.1) |
Platelet count, ×104 μL | 23.3 | (13.9–46.6) |
FIB-4 index | 1.13 | (0.40–2.28) |
Shear-wave speed, m/sec | 1.24 | (0.94–1.58) |
Attenuation coefficient, dB/cm/MHz | 0.63 | (0.32–0.97) |
Clinical Parameters | Statistics | |
---|---|---|
r | p Value | |
Age, years | 0.061 | 0.551 |
BMI, kg/m2 | 0.334 | <0.001 |
AST, U/L | 0.053 | 0.610 |
ALT, U/L | 0.089 | 0.385 |
γ-GT, U/L | 0.192 | 0.059 |
Total bilirubin, mg/dL | −0.159 | 0.119 |
Albumin, g/dL | −0.039 | 0.702 |
Platelet count, ×104/μL | 0.200 | 0.049 |
FIB-4 index | −0.111 | 0.279 |
Shear-wave speed, m/s | 0.036 | 0.724 |
Attenuation coefficient, dB/cm/MHz | 0.437 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.; Tanaka, S.; Kobayashi, R.; Murai, R.; Takahashi, S. Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease. Biomolecules 2025, 15, 877. https://doi.org/10.3390/biom15060877
Tanaka M, Tanaka S, Kobayashi R, Murai R, Takahashi S. Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease. Biomolecules. 2025; 15(6):877. https://doi.org/10.3390/biom15060877
Chicago/Turabian StyleTanaka, Makito, Shingo Tanaka, Ryo Kobayashi, Ryosei Murai, and Satoshi Takahashi. 2025. "Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease" Biomolecules 15, no. 6: 877. https://doi.org/10.3390/biom15060877
APA StyleTanaka, M., Tanaka, S., Kobayashi, R., Murai, R., & Takahashi, S. (2025). Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease. Biomolecules, 15(6), 877. https://doi.org/10.3390/biom15060877