Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,241)

Search Parameters:
Keywords = line monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4980 KiB  
Review
Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions
by Heera Jayan, Ruiyun Zhou, Chanjun Sun, Chen Wang, Limei Yin, Xiaobo Zou and Zhiming Guo
Foods 2025, 14(15), 2706; https://doi.org/10.3390/foods14152706 (registering DOI) - 1 Aug 2025
Abstract
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered [...] Read more.
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered significant interest for their numerous advantages in the development of food safety monitoring systems. The adaptable characteristics of gas sensors make them ideal for integration into production lines, while the flexibility of certain sensor types allows for incorporation into packaging materials. Various types of gas sensors have been developed for their distinct properties and are utilized in a wide range of applications. Metal-oxide semiconductors and optical sensors are widely studied for their potential use as gas sensors in food quality assessments due to their ability to provide visual indicators to consumers. The advancement of new nanomaterials and their integration with advanced data acquisition techniques is expected to enhance the performance and utility of sensors in sustainable practices within the food supply chain. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

11 pages, 1914 KiB  
Case Report
Case Report of Nephrogenic Diabetes Insipidus with a Novel Mutation in the AQP2 Gene
by Alejandro Padilla-Guzmán, Vanessa Amparo Ochoa-Jiménez, Jessica María Forero-Delgadillo, Karen Apraez-Murillo, Harry Pachajoa and Jaime M. Restrepo
Int. J. Mol. Sci. 2025, 26(15), 7415; https://doi.org/10.3390/ijms26157415 (registering DOI) - 1 Aug 2025
Abstract
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the [...] Read more.
Nephrogenic diabetes insipidus (NDI) is a rare hereditary disorder characterized by renal resistance to arginine vasopressin (AVP), resulting in the kidneys’ inability to concentrate urine. Approximately 90% of NDI cases follow an X-linked inheritance pattern and are associated with pathogenic variants in the AVPR2 gene, which encodes the vasopressin receptor type 2. The remaining 10% are attributed to mutations in the AQP2 gene, which encodes aquaporin-2, and may follow either autosomal dominant or recessive inheritance patterns. We present the case of a male infant, younger than nine months of age, who was clinically diagnosed with NDI at six months. The patient presented recurrent episodes of polydipsia, polyuria, dehydration, hypernatremia, and persistently low urine osmolality. Despite adjustments in pharmacologic treatment and strict monitoring of urinary output, the clinical response remained suboptimal. Given the lack of improvement and the radiological finding of an absent posterior pituitary (neurohypophysis), the possibility of coexistent central diabetes insipidus (CDI) was raised, prompting a therapeutic trial with desmopressin. Nevertheless, in the absence of clinical improvement, desmopressin was discontinued. The patient’s management was continued with hydrochlorothiazide, ibuprofen, and a high-calorie diet restricted in sodium and protein, resulting in progressive clinical stabilization. Whole-exome sequencing identified a novel homozygous missense variant in the AQP2 gene (c.398T > A; p.Val133Glu), classified as likely pathogenic according to the American College of Medical Genetics and Genomics (ACMG) criteria: PM2 (absent from population databases), PP2 (missense variant in a gene with a low rate of benign missense variation), and PP3 (multiple lines of computational evidence supporting a deleterious effect)]. NDI is typically diagnosed during early infancy due to the early onset of symptoms and the potential for severe complications if left untreated. In this case, although initial clinical suspicion included concomitant CDI, the timely initiation of supportive management and the subsequent incorporation of molecular diagnostics facilitated a definitive diagnosis. The identification of a previously unreported homozygous variant in AQP2 contributed to diagnostic confirmation and therapeutic decision-making. The diagnosis and comprehensive management of NDI within the context of polyuria-polydipsia syndrome necessitates a multidisciplinary approach, integrating clinical evaluation with advanced molecular diagnostics. The novel AQP2 c.398T > A (p.Val133Glu) variant described herein was associated with early and severe clinical manifestations, underscoring the importance of genetic testing in atypical or treatment-refractory presentations of diabetes insipidus. Full article
(This article belongs to the Special Issue A Molecular Perspective on the Genetics of Kidney Diseases)
Show Figures

Figure 1

27 pages, 973 KiB  
Article
New Risks in Hybrid Work and Teleworking Contexts—Insights from a Study in Portugal
by António R. Almeida, Glória Rebelo and João P. Pedra
Soc. Sci. 2025, 14(8), 478; https://doi.org/10.3390/socsci14080478 (registering DOI) - 31 Jul 2025
Abstract
With the development of information and communication technologies, analysing new risks of moral harassment at work is becoming increasingly pertinent, especially with the expansion of teleworking and hybrid working (a mix of remote and face-to-face work per week) in the wake of the [...] Read more.
With the development of information and communication technologies, analysing new risks of moral harassment at work is becoming increasingly pertinent, especially with the expansion of teleworking and hybrid working (a mix of remote and face-to-face work per week) in the wake of the COVID-19 pandemic. In an attempt to respond to the new issues of labour regulation, this study places special emphasis on new risks of moral harassment in hybrid work and teleworking contexts, considering both the international and European framework and the legal regime in Portugal, identifying its specificities. With the rise in teleworking in the post-pandemic period, the online monitoring of workers has accentuated the difficulty in drawing the line between managerial power and harassment. Moral harassment at work is a persistent challenge and organisations must recognise, prevent and respond to inappropriate behaviour in the organisation. The results of this study—based on the results of an online survey completed by employees (with employment contracts)—show that teleworking employees recognise that they have been pressured, above all, both to respond to messages quickly and pressure to work beyond hours and suggest possible gender differences in the way harassment in hybrid work and teleworking contexts is reported. Full article
Show Figures

Figure 1

30 pages, 4119 KiB  
Article
Ubiquitination Regulates Reorganization of the Membrane System During Cytomegalovirus Infection
by Barbara Radić, Igor Štimac, Alen Omerović, Ivona Viduka, Marina Marcelić, Gordana Blagojević Zagorac, Pero Lučin and Hana Mahmutefendić Lučin
Life 2025, 15(8), 1212; https://doi.org/10.3390/life15081212 - 31 Jul 2025
Abstract
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the [...] Read more.
Background: During infection with the cytomegalovirus (CMV), the membrane system of the infected cell is remodelled into a megastructure called the assembly compartment (AC). These extensive changes may involve the manipulation of the host cell proteome by targeting a pleiotropic function of the cell such as ubiquitination (Ub). In this study, we investigate whether the Ub system is required for the establishment and maintenance of the AC in murine CMV (MCMV)-infected cells Methods: NIH3T3 cells were infected with wild-type and recombinant MCMVs and the Ub system was inhibited with PYR-41. The expression of viral and host cell proteins was analyzed by Western blot. AC formation was monitored by immunofluorescence with confocal imaging and long-term live imaging as the dislocation of the Golgi and expansion of Rab10-positive tubular membranes (Rab10 TMs). A cell line with inducible expression of hemagglutinin (HA)-Ub was constructed to monitor ubiquitination. siRNA was used to deplete host cell factors. Infectious virion production was monitored using the plaque assay. Results: The Ub system is required for the establishment of the infection, progression of the replication cycle, viral gene expression and production of infectious virions. The Ub system also regulates the establishment and maintenance of the AC, including the expansion of Rab10 TMs. Increased ubiquitination of WASHC1, which is recruited to the machinery that drives the growth of Rab10 TMs, is consistent with Ub-dependent rheostatic control of membrane tubulation and the continued expansion of Rab10 TMs. Conclusions: The Ub system is intensively utilized at all stages of the MCMV replication cycle, including the reorganization of the membrane system into the AC. Disruption of rheostatic control of the membrane tubulation by ubiquitination and expansion of Rab10 TREs within the AC may contribute to the development of a sufficient amount of tubular membranes for virion envelopment. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Figure 1

18 pages, 2414 KiB  
Article
Deep Deliberation to Enhance Analysis of Complex Governance Systems: Reflecting on the Great Barrier Reef Experience
by Karen Vella, Allan Dale, Margaret Gooch, Diletta Calibeo, Mark Limb, Rachel Eberhard, Hurriyet Babacan, Jennifer McHugh and Umberto Baresi
Sustainability 2025, 17(15), 6911; https://doi.org/10.3390/su17156911 - 30 Jul 2025
Viewed by 123
Abstract
Deliberative approaches to governance systems analysis and improvement are rare. Australia’s Great Barrier Reef (GBR) provides the context to describe an innovative approach that combines reflexive and interactive engagement processes to (a) develop and design a framework to assess the GBR’s complex governance [...] Read more.
Deliberative approaches to governance systems analysis and improvement are rare. Australia’s Great Barrier Reef (GBR) provides the context to describe an innovative approach that combines reflexive and interactive engagement processes to (a) develop and design a framework to assess the GBR’s complex governance system health; and (b) undertake a benchmark assessment of governance system health. We drew upon appreciative inquiry and used multiple lines of evidence, including an extensive literature review, governance system mapping, focus group discussions and personal interviews. Together, these approaches allowed us to effectively engage key actors in value judgements about twenty key characteristic attributes of the governance system. These attributes were organised into four clusters which enabled us to broadly describe and benchmark the system. These included the following: (i) system coherence; (ii) connectivity and capacity; (iii) knowledge application; (iv) operational aspects of governance. This process facilitated deliberative discussion and consensus-building around attribute health and priorities for transformative action. This was achieved through the inclusion of diverse perspectives from across the governance system, analysis of rich datasets, and the provision of guidance from the project’s Steering Committee and Technical Working Group. Our inclusive, collaborative and deliberative approach, its analytical depth, and the framework’s repeatability enable continuous monitoring and adaptive improvement of the GBR governance system and can be readily applied to complex governance systems elsewhere. Full article
Show Figures

Figure 1

14 pages, 2969 KiB  
Article
ANSYS-Based Modeling and Simulation of Electrostatic Oil-Line Sensor
by Ruochen Liu, Ge Cai, Jianzhong Sun and Lanchun Zhang
Sensors 2025, 25(15), 4669; https://doi.org/10.3390/s25154669 - 28 Jul 2025
Viewed by 158
Abstract
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, [...] Read more.
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, an OLS that monitors the charge in an oil line using the principle of electrostatic induction is modeled and simulated. The sensor characteristics are simulated and tested using finite element simulation. The sensor efficiency, spatial sensitivity, and length-to-diameter ratio are simulated based on the point charges at different locations. The simulation results show that the sensitivity exhibits different trends when the point charge is inside and outside the probe. The length-to-diameter ratio is proportional to the sensor efficiency, the spatial sensitivity distribution law of multiple charges is consistent with that of a point charge, and the relative deviation rate between the mathematically calculated values and the simulated values is less than 3% under the same conditions. In conclusion, the finite element simulation results of the electrostatic oil line sensor constructed in this study are consistent with the theoretical model calculations and can be used in future mechanical fault diagnosis. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

10 pages, 318 KiB  
Article
In-Line Monitoring of Milk Lactose for Evaluating Metabolic and Physiological Status in Early-Lactation Dairy Cows
by Akvilė Girdauskaitė, Samanta Arlauskaitė, Arūnas Rutkauskas, Karina Džermeikaitė, Justina Krištolaitytė, Mindaugas Televičius, Dovilė Malašauskienė, Lina Anskienė, Sigitas Japertas and Ramūnas Antanaitis
Life 2025, 15(8), 1204; https://doi.org/10.3390/life15081204 - 28 Jul 2025
Viewed by 154
Abstract
Milk lactose concentration has been proposed as a noninvasive indicator of metabolic health in dairy cows, particularly during early lactation when metabolic demands are elevated. This study aimed to investigate the relationship between milk lactose levels and physiological, biochemical, and behavioral parameters in [...] Read more.
Milk lactose concentration has been proposed as a noninvasive indicator of metabolic health in dairy cows, particularly during early lactation when metabolic demands are elevated. This study aimed to investigate the relationship between milk lactose levels and physiological, biochemical, and behavioral parameters in early-lactation Holstein cows. Twenty-eight clinically healthy cows were divided into two groups: Group 1 (milk lactose < 4.70%, n = 14) and Group 2 (milk lactose ≥ 4.70%, n = 14). Both groups were monitored over a 21-day period using the Brolis HerdLine in-line milk analyzer (Brolis Sensor Technology, Vilnius, Lithuania) and SmaXtec intraruminal boluses (SmaXtec Animal Care Technology®, Graz, Austria). Parameters including milk yield, milk composition (lactose, fat, protein, and fat-to-protein ratio), blood biomarkers, and behavior were recorded. Cows with higher milk lactose concentrations (≥4.70%) produced significantly more milk (+12.76%) and showed increased water intake (+15.44%), as well as elevated levels of urea (+21.63%), alanine aminotransferase (ALT) (+22.96%), glucose (+4.75%), magnesium (+8.25%), and iron (+13.41%) compared to cows with lower lactose concentrations (<4.70%). A moderate positive correlation was found between milk lactose and urea levels (r = 0.429, p < 0.01), and low but significant correlations were observed with other indicators. These findings support the use of milk lactose concentration as a practical biomarker for assessing metabolic and physiological status in dairy cows, and highlight the value of integrating real-time monitoring technologies in precision livestock management. Full article
(This article belongs to the Special Issue Innovations in Dairy Cattle Health and Nutrition Management)
Show Figures

Figure 1

28 pages, 2854 KiB  
Article
Real-Time Functional Stratification of Tumor Cell Lines Using a Non-Cytotoxic Phospholipoproteomic Platform: A Label-Free Ex Vivo Model
by Ramón Gutiérrez-Sandoval, Francisco Gutiérrez-Castro, Natalia Muñoz-Godoy, Ider Rivadeneira, Adolay Sobarzo, Jordan Iturra, Ignacio Muñoz, Cristián Peña-Vargas, Matías Vidal and Francisco Krakowiak
Biology 2025, 14(8), 953; https://doi.org/10.3390/biology14080953 - 28 Jul 2025
Viewed by 155
Abstract
The development of scalable, non-invasive tools to assess tumor responsiveness to structurally active immunoformulations remains a critical unmet need in solid tumor immunotherapy. Here, we introduce a real-time, ex vivo functional system to classify tumor cell lines exposed to a phospholipoproteomic platform, without [...] Read more.
The development of scalable, non-invasive tools to assess tumor responsiveness to structurally active immunoformulations remains a critical unmet need in solid tumor immunotherapy. Here, we introduce a real-time, ex vivo functional system to classify tumor cell lines exposed to a phospholipoproteomic platform, without relying on cytotoxicity, co-culture systems, or molecular profiling. Tumor cells were monitored using IncuCyte® S3 (Sartorius) real-time imaging under ex vivo neutral conditions. No dendritic cell components or immune co-cultures were used in this mode. All results are derived from direct tumor cell responses to structurally active formulations. Using eight human tumor lines, we captured proliferative behavior, cell death rates, and secretomic profiles to assign each case into stimulatory, inhibitory, or neutral categories. A structured decision-tree logic supported the classification, and a Functional Stratification Index (FSI) was computed to quantify the response magnitude. Inhibitory lines showed early divergence and high IFN-γ/IL-10 ratios; stimulatory ones exhibited a proliferative gain under balanced immune signaling. The results were reproducible across independent batches. This system enables quantitative phenotypic screening under standardized, marker-free conditions and offers an adaptable platform for functional evaluation in immuno-oncology pipelines where traditional cytotoxic endpoints are insufficient. This approach has been codified into the STIP (Structured Traceability and Immunophenotypic Platform), supporting reproducible documentation across tumor models. This platform contributes to upstream validation logic in immuno-oncology workflows and supports early-stage regulatory documentation. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Graphical abstract

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 167
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 348
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

12 pages, 1720 KiB  
Article
Synergistic Imaging: Combined Lung Ultrasound and Low-Dose Chest CT for Quantitative Assessment of COVID-19 Severity—A Prospective Observational Study
by Andrzej Górecki, Piotr Piech, Karolina Kołodziejczyk, Ada Jankowska, Zuzanna Szostak, Anna Bronikowska, Bartosz Borowski and Grzegorz Staśkiewicz
Diagnostics 2025, 15(15), 1875; https://doi.org/10.3390/diagnostics15151875 - 26 Jul 2025
Viewed by 259
Abstract
Background/Objectives: To assess quantitatively the correlation between the lung ultrasound severity scores (LUSSs) and chest CT severity scores (CTSSs) derived from low-dose computed tomography (LDCT) for evaluating pulmonary inflammation in COVID-19 patients. Methods: In this prospective observational study, from an initial cohort of [...] Read more.
Background/Objectives: To assess quantitatively the correlation between the lung ultrasound severity scores (LUSSs) and chest CT severity scores (CTSSs) derived from low-dose computed tomography (LDCT) for evaluating pulmonary inflammation in COVID-19 patients. Methods: In this prospective observational study, from an initial cohort of 1000 patients, 555 adults (≥18 years) with confirmed COVID-19 were enrolled based on inclusion criteria. All underwent LDCT imaging, scored by the CTSS (0–25 points), quantifying involvement across five lung lobes. Lung ultrasound examinations using standardized semi-quantitative scales for the B-line (LUSS B) and consolidation (LUSS C) were performed in a subgroup of 170 patients; 110 had follow-up imaging after one week. Correlation analyses included Spearman’s and Pearson’s coefficients. Results: Significant positive correlations were found between the CTSS and both the LUSS B (r = 0.32; p < 0.001) and LUSS C (r = 0.24; p = 0.006), with the LUSS B showing a slightly stronger relationship. Each incremental increase in the LUSS B corresponded to an average increase of 0.18 CTSS points, whereas a one-point increase in the LUSS C corresponded to a 0.27-point CTSS increase. The mean influence of the LUSS on CTSS was 8.0%. Neither ultrasound score significantly predicted ICU admission or mortality (p > 0.05). Conclusion: Standardized lung ultrasound severity scores show a significant correlation with low-dose CT in assessing pulmonary involvement in COVID-19, particularly for the B-line artifacts. Lung ultrasound represents a valuable bedside tool, complementing—but not substituting—CT in predicting clinical severity. Integrating both imaging modalities may enable the acquisition of complementary bedside information and facilitate dynamic monitoring of disease progression. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 11036 KiB  
Article
Three-Dimensional Numerical Study on Fracturing Monitoring Using Controlled-Source Electromagnetic Method with Borehole Casing
by Qinrun Yang, Maojin Tan, Jianhua Yue, Yunqi Zou, Binchen Wang, Xiaozhen Teng, Haoyan Zhao and Pin Deng
Appl. Sci. 2025, 15(15), 8312; https://doi.org/10.3390/app15158312 - 25 Jul 2025
Viewed by 164
Abstract
Hydraulic fracturing is a crucial technology for developing unconventional oil and gas resources. However, conventional geophysical methods struggle to efficiently and accurately image proppant-connected channels created by hydraulic fracturing. The borehole-to-surface electromagnetic imaging method (BSEM) overcomes this limitation by utilizing a controlled cased [...] Read more.
Hydraulic fracturing is a crucial technology for developing unconventional oil and gas resources. However, conventional geophysical methods struggle to efficiently and accurately image proppant-connected channels created by hydraulic fracturing. The borehole-to-surface electromagnetic imaging method (BSEM) overcomes this limitation by utilizing a controlled cased well source. Placing the source close to the target reservoir and deploying multi-component receivers on the surface enable high-precision lateral monitoring, providing an effective approach for dynamic monitoring of hydraulic fracturing operations. This study focuses on key aspects of forward modeling for BSEM. A three-dimensional finite-volume method based on the Yee grid was used to simulate the borehole-to-surface electromagnetic system incorporating metal casings, validating the method of simulating metal casing using multiple line sources. The simulation of the observation system and the frequency-domain electromagnetic monitoring simulation based on actual well data confirm BSEM’s high sensitivity for monitoring deep subsurface formations. Critically, well casing exerts a substantial influence on surface electromagnetic responses, while the electromagnetic contribution from line sources emulating perforation zones necessitates explicit incorporation within data processing workflows. Full article
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 188
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 480 KiB  
Article
Decoding Treatment Failures in Metastatic Renal Cell Carcinoma: Predictors Across Immunotherapy and Targeted Therapies from a Retrospective Real-World Analysis
by Sorin Saftescu, Vlad-Norin Vornicu, Dorel-Ionel Popovici, Radu-Dumitru Dragomir, Dana-Sonia Nagy, Daniela-Lidia Sandu, Ana Dulan, Șerban-Mircea Negru and Alina-Gabriela Negru
J. Clin. Med. 2025, 14(15), 5271; https://doi.org/10.3390/jcm14155271 - 25 Jul 2025
Viewed by 209
Abstract
Background: Despite recent advances in the management of metastatic renal cell carcinoma (mRCC), real-world outcomes remain heterogeneous, and early treatment failure is common. Predictive biomarkers for time to treatment failure (TTF) outside clinical trials are poorly characterized. Objective: To identify clinical [...] Read more.
Background: Despite recent advances in the management of metastatic renal cell carcinoma (mRCC), real-world outcomes remain heterogeneous, and early treatment failure is common. Predictive biomarkers for time to treatment failure (TTF) outside clinical trials are poorly characterized. Objective: To identify clinical and laboratory predictors associated with early treatment failure in a real-world cohort of mRCC patients treated with immune checkpoint inhibitors (ICIs), tyrosine kinase inhibitors (TKIs), or combination regimens. Methods: We conducted a retrospective, single-center analysis of patients with metastatic non-urothelial RCC treated between 2018 and 2023. Cox proportional hazards regression was used to evaluate the association between baseline biological parameters and TTF for each treatment regimen. Results: Among 137 patients receiving first-line therapy, 50 received Ipilimumab + Nivolumab, 49 Sunitinib, and 17 Avelumab + Axitinib. For Ipilimumab + Nivolumab, elevated AST was significantly associated with shorter TTF. For Avelumab + Axitinib, shorter TTF was associated with lymph node metastases, low lymphocyte count, low creatinine, low BMI, and low hemoglobin. For Cabozantinib in subsequent lines, a higher platelet count, ALT, and presence of liver metastases were associated with shorter TTF. No statistically significant predictors were found for Nivolumab used in the second-line setting. Conclusions: Routine, accessible biomarkers such as AST, hemoglobin, lymphocyte count, and creatinine may serve as predictors of treatment failure in specific therapeutic contexts. These findings support risk-adapted strategies and individualized monitoring in real-world clinical practice, though further validation in larger cohorts is warranted. Full article
(This article belongs to the Special Issue Advances and Perspectives in Cancer Diagnostics and Treatment)
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 115
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

Back to TopTop