Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = lignocellulosic biomass hydrolysates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1196 KiB  
Article
Sustainable Bioconversion of Cashew Apple Bagasse Hemicellulosic Hydrolysate into Xylose Reductase and Xylitol by Candida tropicalis ATCC 750: Impact of Aeration and Fluid Dynamics
by Juliana de França Serpa, Franciandro Dantas dos Santos, Carlos Eduardo Alves Soares, Benevides Costa Pessela and Maria Valderez Ponte Rocha
Appl. Microbiol. 2025, 5(3), 75; https://doi.org/10.3390/applmicrobiol5030075 - 30 Jul 2025
Viewed by 178
Abstract
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and [...] Read more.
This study aimed to evaluate the production of xylose reductase (XR), an enzyme responsible for converting xylose into xylitol, by Candida tropicalis ATCC 750 using hemicellulosic hydrolysate from cashew apple bagasse (CABHM) as a low-cost carbon source. The effects of temperature, aeration, and fluid dynamics on XR biosynthesis were also investigated. The highest XR production (1.53 U mL−1) was achieved at 30 °C, with 8.3 g·L−1 of xylitol produced by the yeast under microaerobic conditions, demonstrating that aeration and fluid dynamics are important factors in this process. Cellular metabolism and enzyme production decreased at temperatures above 35 °C. The maximum enzymatic activity was observed at pH 7.0 and 50 °C. XR is a heterodimeric protein with a molecular mass of approximately 30 kDa. These results indicate that CABHM is a promising substrate for XR production by C. tropicalis, contributing to the development of enzymatic bioprocesses for xylitol production from lignocellulosic biomass. This study also demonstrates the potential of agro-industrial residues as sustainable feedstocks in biorefineries, aligning with the principles of a circular bioeconomy. Full article
Show Figures

Figure 1

37 pages, 4320 KiB  
Article
Proof of Concept for Enhanced Sugar Yields and Inhibitors Reduction from Aspen Biomass via Novel, Single-Step Nitrogen Explosive Decompression (NED 3.0) Pretreatment Method
by Damaris Okafor, Lisandra Rocha-Meneses, Vahur Rooni and Timo Kikas
Energies 2025, 18(15), 4026; https://doi.org/10.3390/en18154026 - 29 Jul 2025
Viewed by 248
Abstract
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript [...] Read more.
The transition to sustainable energy sources has intensified interest in lignocellulosic biomass (LCB) as a feedstock for second-generation biofuels. However, the inherent structural recalcitrance of LCB requires the utilization of an effective pretreatment to enhance enzymatic hydrolysis and subsequent fermentation yields. This manuscript presents a novel, single-step, and optimized nitrogen explosive decompression system (NED 3.0) designed to address the critical limitations of earlier NED versions by enabling the in situ removal of inhibitory compounds from biomass slurry and fermentation inefficiency at elevated temperatures, thereby reducing or eliminating the need for post-treatment detoxification. Aspen wood (Populus tremula) was pretreated by NED 3.0 at 200 °C, followed by enzymatic hydrolysis and fermentation. The analytical results confirmed substantial reductions in common fermentation inhibitors, such as acetic acid (up to 2.18 g/100 g dry biomass) and furfural (0.18 g/100 g dry biomass), during early filtrate recovery. Hydrolysate analysis revealed a glucose yield of 26.41 g/100 g dry biomass, corresponding to a hydrolysis efficiency of 41.3%. Fermentation yielded up to 8.05 g ethanol/100 g dry biomass and achieved a fermentation efficiency of 59.8%. Inhibitor concentrations in both hydrolysate and fermentation broth remained within tolerable limits, allowing for effective glucose release and sustained fermentation performance. Compared with earlier NED configurations, the optimized system improved sugar recovery and ethanol production. These findings confirm the operational advantages of NED 3.0, including reduced inhibitory stress, simplified process integration, and chemical-free operation, underscoring its potential for scalability in line with the EU Green Deal for bioethanol production from woody biomass. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

20 pages, 1185 KiB  
Article
Optimization of Fermentation Parameters for Enhanced Bioethanol Production by Multistress-Tolerant Saccharomycodes ludwigii APRE2 Using Undetoxified Sugarcane Bagasse Hydrolysate
by Preekamol Klanrit, Sudarat Thanonkeo, Warayutt Pilap, Jirawan Apiraksakorn, Khanittha Fiala, Ratanaporn Leesing, Mamoru Yamada and Pornthap Thanonkeo
Energies 2025, 18(13), 3428; https://doi.org/10.3390/en18133428 - 30 Jun 2025
Viewed by 296
Abstract
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol [...] Read more.
The presence of various inhibitory compounds in lignocellulosic hydrolysates poses a significant challenge for bioethanol production, requiring yeasts with exceptional multistress tolerance. This study introduces the novel application and demonstrates the robust performance of the nonconventional yeast Saccharomycodes ludwigii APRE2 for efficient bioethanol production directly from undetoxified sugarcane bagasse hydrolysate (SBH) at 37 °C. This approach critically eliminates the need for the costly detoxification pretreatments often required in industrial processes. Initial experiments confirmed S. ludwigii APRE2’s capability to ferment undetoxified SBH. To optimize fermentation efficiency, a central composite design (CCD) approach was implemented. This statistical method identified the following precise optimal parameters: sugar concentration (143.95 g/L), diammonium phosphate (4.99 g/L), pH (4.98), yeast extract (8.94 g/L), and magnesium sulfate (2.22 g/L). Under these optimized conditions, impressive results were achieved: a maximum ethanol concentration of 38.11 g/L, productivity of 1.59 g/L·h, and yield of 0.45 g/g. Notably, the ethanol productivity and theoretical yield achieved by S. ludwigii APRE2 using this inhibitor-rich, undetoxified SBH (containing acetic acid, formic acid, furfural, and 5-(hydroxymethyl)furfural) were superior to those previously reported for other ethanologenic yeasts under similar challenging conditions. This research establishes S. ludwigii APRE2 as a highly promising and industrially viable candidate for sustainable bioethanol production from lignocellulosic biomass, with its key novelty being its superior performance on undetoxified feedstocks, potentially reducing overall production costs. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

14 pages, 1550 KiB  
Article
Fermentation of Sugar Beet Pulp by E. coli for Enhanced Biohydrogen and Biomass Production
by Gayane Mikoyan, Liana Vanyan, Akerke Toleugazykyzy, Roza Bekbayeva, Kamila Baichiyeva, Kairat Bekbayev and Karen Trchounian
Energies 2025, 18(10), 2648; https://doi.org/10.3390/en18102648 - 20 May 2025
Cited by 1 | Viewed by 878
Abstract
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP [...] Read more.
This study investigates the potential of sugar beet pulp (SBP), a lignocellulosic by-product of sugar production, as a low-cost substrate for biohydrogen and biomass generation using Escherichia coli under dark fermentation conditions. Two strains—BW25113 wild-type and a genetically engineered septuple mutant—were employed. SBP was pretreated via thermochemical hydrolysis, and the effects of substrate concentration, dilution, and glycerol supplementation were evaluated. Hydrogen production was highly dependent on substrate dilution and nutrient balance. The septuple mutant achieved the highest H2 yield in 30 g L−1 SBP hydrolysate (0.75% sulfuric acid) at 5× dilution with glycerol, reaching 12.06 mmol H2 (g sugar)−1 and 0.28 mmol H2 (g waste)−1, while the wild type under the same conditions yielded 3.78 mmol H2 (g sugar)−1 and 0.25 mmol H2 (g waste)−1. In contrast, undiluted hydrolysates favored biomass accumulation over H2 production, with the highest biomass yield (0.3 g CDW L−1) obtained using the septuple mutant in 30 g L−1 SBP hydrolysate without glycerol. These findings highlight the potential of genetically optimized E. coli and optimized hydrolysate conditions to enhance the valorization of agro-industrial waste, supporting future advances in sustainable hydrogen bioeconomy and integrated waste biorefineries. Full article
Show Figures

Figure 1

16 pages, 4088 KiB  
Article
Whole Genome Sequencing of Kodamaea ohmeri SSK and Its Characterization for Degradation of Inhibitors from Lignocellulosic Biomass
by Yong-Qiang Yang, Xu Li, Zhi-Fei Wang, Yu-Long Deng, Zhen-Zhi Wang, Xing-Yu Fang, Mao-Dong Zhang, Wei Sun, Xin-Qing Zhao, Zhi-Qiang Liu and Feng-Li Zhang
Biology 2025, 14(5), 458; https://doi.org/10.3390/biology14050458 - 24 Apr 2025
Viewed by 494
Abstract
Lignocellulosic biomass is widely recognized as a renewable resource for bioconversion. However, the presence of inhibitors such as furfural, 5-HMF, and acetic acid can inhibit cell growth, thereby affecting the overall efficiency of the bioconversion process. The studies on the degradation of lignocellulosic [...] Read more.
Lignocellulosic biomass is widely recognized as a renewable resource for bioconversion. However, the presence of inhibitors such as furfural, 5-HMF, and acetic acid can inhibit cell growth, thereby affecting the overall efficiency of the bioconversion process. The studies on the degradation of lignocellulosic hydrolysate inhibitors by Saccharomyces cerevisiae have been limited. In this research, a yeast strain Kodamaea ohmeri can degrade inhibitors furfural, 5-HMF, and acetic acid, and the genome sequence of the strain was analyzed. Furthermore, the molecular detoxification mechanism of K. ohmeri SSK against lignocellulosic hydrolysate inhibitors was predicted using whole genome sequencing. Annotation based on the COG/KEGG databases identified 57 key detoxification genes, including the alcohol dehydrogenase (ADH) gene, aldo-keto/aldehyde reductase (AKR/ARI) gene, and aldehyde dehydrogenase (ALDH) gene. Stress tolerance experiments revealed that the maximum tolerance concentration for the strain was 5.2 g/L of furfural, 2.5 g/L of 5-HMF, and 5.9 g/L of acetic acid, respectively. A NAD(P)+-dependent bifunctional enzyme with possible ADH and ARI activities was found by conserved domain analysis. Phylogenetic analysis indicated that this enzyme shared 99% homology with the detoxification enzyme from S. cerevisiae S288C (GenBank: Q04894.1). This study represents the first comprehensive analysis of the inhibitor detoxification network in K. ohmeri SSK from a genome perspective, providing theoretical targets and design strategies for developing highly efficient biorefinery strains. Full article
Show Figures

Figure 1

18 pages, 1246 KiB  
Article
Role of In-House Enzymatic Cocktails from Endophytic Fungi in the Saccharification of Corn Wastes Towards a Sustainable and Integrated Biorefinery Approach
by Patrísia de Oliveira Rodrigues, Anderson Gabriel Corrêa, Lucas Carvalho Basílio de Azevedo, Daniel Pasquini and Milla Alves Baffi
Fermentation 2025, 11(3), 155; https://doi.org/10.3390/fermentation11030155 - 19 Mar 2025
Viewed by 738
Abstract
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation [...] Read more.
The valorization of agri-food wastes can provide value-added products, enzymes and biofuels. For the second-generation ethanol (2G) production, pulps rich in cellulose are desirable in order to release fermentable sugars. This study investigated the homemade biosynthesis of cellulases and hemicellulases via solid-state fermentation (SSF) using sugarcane bagasse (SB) and wheat bran (WB) for the growth of endophytic fungi (Beauveria bassiana, Trichoderma asperellum, Metarhizium anisopliae and Pochonia chlamydosporia). Cocktails with high enzymatic levels were obtained, with an emphasis for M. anisopliae in the production of β-glucosidase (83.61 U/g after 288 h) and T. asperellum for xylanase (785.50 U/g after 144 h). This novel M. anisopliae β-glucosidase demonstrated acidophile and thermotolerant properties (optimum activity at pH 5.5 and 60 °C and stability in a wide pH range and up to 60 °C), which are suitable for lignocellulose saccharifications. Hence, the M. anisopliae multi-enzyme blend was selected for the hydrolysis of raw and organosolv-pretreated corn straw (CS) and corncob (CC) using 100 CBU/g cellulose. After the ethanol/water (1:1) pretreatment, solid fractions rich in cellulose (55.27 in CC and 50.70% in CS) and with low concentrations of hemicellulose and lignin were found. Pretreated CC and CS hydrolysates reached a maximum TRS release of 12.48 and 13.68 g/L, with increments of 100.80 and 73.82% in comparison to untreated biomass, respectively, emphasizing the fundamental role of a pretreatment in bioconversions. This is the first report on β-glucosidase biosynthesis using M. anisopliae and its use in biomass hydrolysis. These findings demonstrated a closed-loop strategy for internal enzyme biosynthesis integrated to reducing sugar release which would be applied for further usage in biorefineries. Full article
Show Figures

Figure 1

14 pages, 1971 KiB  
Article
Metabolic Engineering of Zymomonas mobilis for Xylonic Acid Production from Lignocellulosic Hydrolysate
by Banrui Ruan, Xiongying Yan, Zhaoqing He, Qiaoning He and Shihui Yang
Fermentation 2025, 11(3), 141; https://doi.org/10.3390/fermentation11030141 - 13 Mar 2025
Cited by 1 | Viewed by 855
Abstract
Bio-based xylonic acid produced from inexpensive lignocellulosic biomass has enormous market potential and enhances the overall economic benefits of biorefinery processes. In this study, the introduction of genes encoding xylose dehydrogenase driven by the promoter Ppdc into Z. mobilis using a plasmid [...] Read more.
Bio-based xylonic acid produced from inexpensive lignocellulosic biomass has enormous market potential and enhances the overall economic benefits of biorefinery processes. In this study, the introduction of genes encoding xylose dehydrogenase driven by the promoter Ppdc into Z. mobilis using a plasmid vector resulted in the accumulation of xylonic acid at a titer of 16.8 ± 1.6 g/L. To achieve stable xylonic acid production, a gene cassette for xylonic acid production was integrated into the genome at the chromosomal locus of ZMO0038 and ZMO1650 using the endogenous type I-F CRISPR-Cas system. The titer of the resulting recombinant strain XA3 reduced to 12.2 ± 0.56 g/L, which could be the copy number difference between the plasmid and chromosomal integration. Oxygen content was then identified to be the key factor for xylonic acid production. To further increase xylonic acid production capability, a recombinant strain, XA9, with five copies of a gene cassette for xylonic acid production was constructed by integrating the gene cassette into the genome at the chromosomal locus of ZMO1094, ZMO1547, and ZMO1577 on the basis of XA3. The titer of xylonic acid increased to 51.9 ± 0.1 g/L with a maximum yield of 1.10 g/g, which is close to the theoretical yield in a pure sugar medium. In addition, the recombinant strain XA9 is genetically stable and can produce 16.2 ± 0.14 g/L of xylonic acid with a yield of 1.03 ± 0.01 g/g in the lignocellulosic hydrolysate. Our study thus constructed a recombinant strain, XA9, of Z. mobilis for xylonic acid production from lignocellulosic hydrolysate, demonstrating the capability of Z. mobilis as a biorefinery chassis for economic lignocellulosic biochemical production. Full article
(This article belongs to the Special Issue Metabolic Engineering in Microbial Synthesis)
Show Figures

Figure 1

18 pages, 17133 KiB  
Article
Influence of Inhibitors Generated in Lignocellulosic Hydrolysates from Group of Acids on the Growth of Strains TG1 and Tuner of Escherichia coli
by Suelen S. Gaspar, Júnia Alves-Ferreira, Patrícia Moniz, Talita Silva-Fernandes, Adriana I. R. Silvestre, Ivone Torrado, Gaetano R. Pesce, Florbela Carvalheiro, Luís C. Duarte and Maria C. Fernandes
Microorganisms 2025, 13(3), 605; https://doi.org/10.3390/microorganisms13030605 - 5 Mar 2025
Cited by 2 | Viewed by 967
Abstract
Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli [...] Read more.
Concerns over fossil fuels are of increasing interest in biorefineries that utilize lignocellulosic residues. Besides sugars, inhibitors are formed during biomass pretreatment, including acetic acid (AI) and formic acid (FI), which can hinder microbial fermentation. The TG1 and Tuner strains of Escherichia coli were subjected to various acid concentrations. Samples were taken during fermentation to monitor growth, sugar consumption, biomass yield, and product yield. With increasing AI, the TG1 strain maintained stable growth (0.102 1/h), while xylose consumption decreased, and product formation improved, making it better suited for high-acetic-acid industrial applications. In contrast, the Tuner strain performed better under low-inhibitor conditions but suffered metabolic inhibition at high AI levels, compensating by increasing lactic acid production—an adaptation absent in TG1. However, Tuner showed greater resistance to formic acid stress, sustaining higher growth and ethanol production, whereas TG1 experienced a greater metabolic decline but maintained stable acetic acid output. Both strains experienced inhibition in formic acid metabolism, but TG1 had a higher yield despite its lower overall robustness in formic acid conditions. The use of TG1 for value-added compounds such as ethanol or formic acid may help to avoid the use of chemicals that eliminate acetic acid. Tuner could be used for lactic acid production, especially in hydrolysates with under moderate concentration. Full article
Show Figures

Figure 1

22 pages, 1319 KiB  
Review
Effects of Lignocellulosic Biomass-Derived Hydrolysate Inhibitors on Cell Growth and Lipid Production During Microbial Fermentation of Oleaginous Microorganisms—A Review
by Qiwei Lyu, Rouf Ahmad Dar, Frank Baganz, Adam Smoliński, Abdel-Hamied Mohamed Rasmey, Ronghou Liu and Le Zhang
Fermentation 2025, 11(3), 121; https://doi.org/10.3390/fermentation11030121 - 4 Mar 2025
Cited by 4 | Viewed by 2133
Abstract
For efficient production of microbial lipids also known as single cell oil (SCO), selection of favorable growth conditions including the substrate for maximum conversion into storage lipids is imperative. Utilization of lignocellulosic biomass for microbial oil production is a promising approach as it [...] Read more.
For efficient production of microbial lipids also known as single cell oil (SCO), selection of favorable growth conditions including the substrate for maximum conversion into storage lipids is imperative. Utilization of lignocellulosic biomass for microbial oil production is a promising approach as it is renewable, sustainable, and available in abundance, with a significant quantity of fermentable sugars. Because of their intricate structure and biomolecular composition, lignocellulosic substrates exhibit high recalcitrance and demand specific pretreatments to release the fermentable sugars. However, pretreating the lignocellulosic substrate not only produces assimilable sugars but also various fermentation inhibitors that can significantly impede microbial growth and/or lipogenesis. Therefore, in this review, we discuss different inhibitors present in the lignocellulosic hydrolysates, and the impact on oleaginous microbial growth and metabolic activity, particularly concerning lipid production. Furthermore, the mode of inhibition of the various inhibitors and potential strategies to detoxify these are discussed in this review. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorization)
Show Figures

Figure 1

11 pages, 2043 KiB  
Article
Pre-Treatment and Characterization of Water Hyacinth Biomass (WHB) for Enhanced Xylose Production Using Dilute Alkali Treatment Method
by Rohan Harsh Jadhav and Apurba Dey
Water 2025, 17(3), 301; https://doi.org/10.3390/w17030301 - 22 Jan 2025
Cited by 2 | Viewed by 1660
Abstract
Lignocellulosic biomass from water hyacinth, a readily available waste material, holds potential for producing commercial products such as xylose, which can be further converted into value-added products like xylitol. However, the complex structure of lignocellulosic biomass necessitates energy-intensive processes to release fermentable sugars. [...] Read more.
Lignocellulosic biomass from water hyacinth, a readily available waste material, holds potential for producing commercial products such as xylose, which can be further converted into value-added products like xylitol. However, the complex structure of lignocellulosic biomass necessitates energy-intensive processes to release fermentable sugars. Chemical pre-treatment methods, such as alkali pre-treatment, offer a viable approach to degrade lignocellulose biomass. In this study, water hyacinth biomass (WHB) was treated with 3% potassium hydroxide and subjected to autoclaving to hydrolyse the sample. The total xylose released during the process was quantified using a UV-Vis spectrophotometer and was found to 0.253 g/g of water hyacinth biomass when the sample was treated for 20 min at 2% biomass concentration. The morphological changes in the treated biomass compared to the untreated sample were analysed using Field Emission Scanning Electron Microscopy (FE-SEM). Crystallinity alterations were evaluated through X-Ray Diffraction (XRD), while Fourier-Transform Infrared Spectroscopy (FTIR) was employed to study the changes in chemical states of the biomass. The primary objective of this study was to identify a reliable pre-treatment method for processing water hyacinth biomass, facilitating the efficient release of fermentable sugars for downstream applications. Full article
Show Figures

Graphical abstract

21 pages, 3375 KiB  
Article
Enhanced Sugar and Bioethanol Production from Broom Grass via NaOH-Autoclave Pretreatment
by Duangporn Premjet and Siripong Premjet
Polymers 2025, 17(3), 266; https://doi.org/10.3390/polym17030266 - 21 Jan 2025
Viewed by 1309
Abstract
The effective utilization of nonfood biomass for bioethanol production represents a promising strategy for sustainable energy development. Moreover, limited research has been conducted on broom grass (Thysanolaena latifolia) as a potential feedstock for bioethanol production, particularly regarding the effects of NaOH [...] Read more.
The effective utilization of nonfood biomass for bioethanol production represents a promising strategy for sustainable energy development. Moreover, limited research has been conducted on broom grass (Thysanolaena latifolia) as a potential feedstock for bioethanol production, particularly regarding the effects of NaOH autoclave pretreatment on its enzymatic digestibility and fermentability. This study optimized sodium hydroxide (NaOH) pretreatment combined with autoclaving to enhance the enzymatic digestibility of broom grass biomass. The effects of NaOH concentration (1–4%) and temperature (110–130 °C) on biomass composition, structural features, and enzymatic hydrolysis were systematically evaluated. Pretreatment with 2% NaOH at 120 °C emerged as optimal, achieving 74.7% lignin removal and 93.2% glucan recovery, thereby significantly improving enzymatic hydrolysis efficiency (88.0%) and glucose recovery (33.3%). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that these improvements were attributed to the increased surface porosity and the selective removal of amorphous components while maintaining cellulose crystallinity. The pretreated biomass hydrolysate exhibited excellent bioethanol production. Fermentation using Saccharomyces cerevisiae TISTR 5339 achieved an 86.4% ethanol conversion rate, yielding 147 g of bioethanol per 1000 g of pretreated biomass and representing a 2.6-fold increase compared to untreated feedstock. These findings demonstrate the potential of the NaOH autoclave pretreatment in enhancing bioethanol production from broom grass biomass, aiding the advancement of sustainable and cost-effective lignocellulosic biorefinery processes. The utilization of broom grass for bioethanol production presents an opportunity to valorize this multifaceted plant and expand its potential beyond its traditional uses. Full article
(This article belongs to the Special Issue Preparation and Application of Biodegradable Polymers)
Show Figures

Figure 1

33 pages, 3634 KiB  
Review
Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry
by Juliana C. Dias, Susana Marques, Pedro C. Branco, Thomas Rodrigues, Cristiana A. V. Torres, Filomena Freitas, Dmitry V. Evtyugin and Carla J. Silva
Forests 2025, 16(1), 163; https://doi.org/10.3390/f16010163 - 16 Jan 2025
Cited by 1 | Viewed by 1716
Abstract
In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. [...] Read more.
In line with environmental awareness movements and social concerns, the textile industry is prioritizing sustainability in its strategic planning, product decisions, and brand initiatives. The use of non-biodegradable materials, obtained from non-renewable sources, contributes heavily to environmental pollution throughout the textile production chain. As sustainable alternatives, considerable efforts are being made to incorporate biodegradable biopolymers derived from residual biomass, with reasonable production costs, to replace or reduce the use of synthetic petrochemical-based polymers. However, the commercial deployment of these biopolymers is dependent on high biomass availability and a cost-effective supply. Residual forest biomass, with lignocellulosic composition and seasonably available at low cost, constitutes an attractive renewable resource that might be used as raw material. Thus, this review aims at carrying out a comprehensive analysis of the existing literature on the use of residual forest biomass as a source of new biomaterials for the textile industry, identifying current gaps or problems. Three specific biopolymers are considered: lignin that is recovered from forest biomass, and the bacterial biopolymers poly(hydroxyalkanoates) (PHAs) and bacterial cellulose (BC), which can be produced from sugar-rich hydrolysates derived from the polysaccharide fractions of forest biomass. Lignin, PHA, and BC can find use in textile applications, for example, to develop fibers or technical textiles, thus replacing the currently used synthetic materials. This approach will considerably contribute to improving the sustainability of the textile industry by reducing the amount of non-biodegradable materials upon disposal of textiles, reducing their environmental impact. Moreover, the integration of residual forest biomass as renewable raw material to produce advanced biomaterials for the textile industry is consistent with the principles of the circular economy and the bioeconomy and offers potential for the development of innovative materials for this industry. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

20 pages, 1660 KiB  
Article
Biomass Demineralization and Pretreatment Strategies to Reduce Inhibitor Concentrations in Itaconic Acid Fermentation by Aspergillus terreus
by Gregory J. Kennedy, Michael J. Bowman, Kim L. Ascherl, Nancy N. Nichols and Badal C. Saha
Biomass 2024, 4(4), 1122-1141; https://doi.org/10.3390/biomass4040062 - 27 Oct 2024
Viewed by 1330
Abstract
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and [...] Read more.
Itaconic acid (IA) is a platform chemical, derived from non-petroleum sources, produced through the fermentation of glucose by Aspergillus terreus. However, producing IA from alternative sugar sources (e.g., lignocellulose) has been shown to be problematic, requiring post-hydrolysis mitigation to allow growth and IA production by the fungus. It is well known that the side products of lignocellulosic biomass conversion to sugars act as microbial growth inhibitors. An uncommon feature of fungal organic acid fermentations is production inhibition caused by mineral ions in biomass hydrolysate after pretreatment and enzymatic hydrolysis. To minimize mineral introduction during pretreatment and hydrolysis, we determined the sources of growth and production inhibitors at each of these steps. Biomass demineralization and four pretreatment strategies were evaluated for inhibitor introduction. Dilution assays determined the approximate degree of inhibition for each hydrolysate. An ammonium hydroxide pretreatment of demineralized wheat straw presented the lowest concentration of inhibitors and concomitant lowest inhibition: subsequent fermentations produced 35 g L−1 IA from wheat straw hydrolysate (91 g L−1 sugar) without post-hydrolysis mitigation. Full article
Show Figures

Graphical abstract

17 pages, 5106 KiB  
Article
Investigating the Potential of Grass Biomass (Thysanolaena latifolia) as an Alternative Feedstock for Sugar Platforms and Bioethanol Production
by Suwanan Wongleang, Duangporn Premjet and Siripong Premjet
Energies 2024, 17(16), 4017; https://doi.org/10.3390/en17164017 - 13 Aug 2024
Cited by 3 | Viewed by 1579
Abstract
Bioethanol, a lignocellulosic biofuel, has increased energy sustainability and lessened the environmental effects associated with energy production. Thysanolaena latifolia is a common weed found in the northern part of Thailand that is considered non-food biomass, with a high biomass productivity of approximately 10.2 [...] Read more.
Bioethanol, a lignocellulosic biofuel, has increased energy sustainability and lessened the environmental effects associated with energy production. Thysanolaena latifolia is a common weed found in the northern part of Thailand that is considered non-food biomass, with a high biomass productivity of approximately 10.2 kg/year. Here, we evaluated the potential of T. latifolia biomass as an environmentally friendly material source for producing alternative bioethanol. To this end, we treated the feedstock under mild conditions using various concentrations of phosphoric acid to create ideal conditions for enzymatic hydrolysis. Pretreatment with 75% phosphoric acid yielded the highest solid recovery (55.8 ± 0.6%) and glucans (93.0 ± 0.3%). Additionally, the hydrolysis efficiency and glucose yield of treated biomass were significantly improved. As a result, the liquid hydrolysate from T. latifolia used for ethanol fermentation by Saccharomyces cerevisiae TISTR 5339 generated 8.9 ± 0.0 g/L ethanol. These findings demonstrate that glucose derived from liquid hydrolysate is a promising sustainable carbon source for producing ethanol from T. latifolia feedstock. Thus, using T. latifolia as a feedstock for generating ethanol can improve the efficiency of bioenergy production. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

28 pages, 4507 KiB  
Article
Development of a Robust Saccharomyces cerevisiae Strain for Efficient Co-Fermentation of Mixed Sugars and Enhanced Inhibitor Tolerance through Protoplast Fusion
by Jianzhi Zhao, Yuping Zhao, Longhao Wu, Ning Yan, Shuo Yang, Lili Xu, Deyun He, Hongxing Li and Xiaoming Bao
Microorganisms 2024, 12(8), 1526; https://doi.org/10.3390/microorganisms12081526 - 25 Jul 2024
Cited by 7 | Viewed by 2194
Abstract
The economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant Saccharomyces cerevisiae strain, BLH510, through protoplast fusion and metabolic engineering to enhance its [...] Read more.
The economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant Saccharomyces cerevisiae strain, BLH510, through protoplast fusion and metabolic engineering to enhance its ability to co-ferment glucose, xylose, cellobiose, and xylooligosaccharides while tolerating various inhibitors commonly found in lignocellulosic hydrolysates. The parental strains, LF1 and BLN26, were selected for their superior glucose/xylose co-fermentation capabilities and inhibitor tolerance, respectively. The fusion strain BLH510 demonstrated efficient utilization of mixed sugars and high ethanol yield under oxygen-limited conditions. Under low inoculum conditions, strain BLH510 could completely consume all four kinds of sugars in the medium within 84 h. The fermentation produced 33.96 g/L ethanol, achieving 84.3% of the theoretical ethanol yield. Despite the challenging presence of mixed inhibitors, BLH510 successfully metabolized all four sugars above after 120 h of fermentation, producing approximately 30 g/L ethanol and reaching 83% of the theoretical yield. Also, strain BLH510 exhibited increased intracellular trehalose content, particularly under conditions with mixed inhibitors, where the intracellular trehalose reached 239.3 mg/g yeast biomass. This elevated trehalose content contributes to the enhanced stress tolerance of BLH510. The study also optimized conditions for protoplast preparation and fusion, balancing high preparation efficiency and satisfactory regeneration efficiency. The results indicate that BLH510 is a promising candidate for industrial second-generation bioethanol production from lignocellulosic biomass, offering improved performance under challenging fermentation conditions. Our work demonstrates the potential of combining protoplast fusion and metabolic engineering to develop superior S. cerevisiae strains for lignocellulosic bioethanol production. This approach can also be extended to develop robust microbial platforms for producing a wide array of lignocellulosic biomass-based biochemicals. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

Back to TopTop