Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry
Abstract
:1. Introduction
2. Forest Biomass as Sustainable Raw Material
3. Forest Biomass Processing
4. Forest-Derived Biomaterials in the Textile Industry
4.1. Poly(hydroxyalkanoates)
4.1.1. PHA Biosynthesis
4.1.2. PHA Production from Forest Biomass Residues
4.1.3. Application of PHA in the Textile Industry
4.2. Bacterial Cellulose
4.2.1. Biosynthesis of BC
4.2.2. Production of BC by Microorganisms
4.2.3. Application of BC in the Textile Industry
4.3. Lignin
Application of Lignin in the Textile Industry
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferreira, P.; Apolinário, A.; Forman, G. Optimising Textile Biomaterial Selection for Sustainable Product and Circular Design: Practical Guidelines for a Greener Future. Mater. Circ. Econ. 2023, 5, 14. [Google Scholar] [CrossRef]
- Desore, A.; Narula, S. An Overview on Corporate Response towards Sustainability Issues in Textile Industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. [Google Scholar] [CrossRef]
- European Comission EU Strategy for Sustainable and Circular Textiles. Available online: https://environment.ec.europa.eu/strategy/textiles-strategy_en (accessed on 30 October 2023).
- Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial Cellulose and Its Applications. Polymers 2022, 14, 1080. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste Biomass Valorization 2021, 12, 65–80. [Google Scholar] [CrossRef]
- Tian, W.; Huang, K.; Zhu, C.; Sun, Z.; Shao, L.; Hu, M.; Feng, X. Recent Progress in Biobased Synthetic Textile Fibers. Front. Mater. 2022, 9, 1098590. [Google Scholar] [CrossRef]
- Zhou, Y. The Importance and Applications of Forest Biomaterials. J. For. Res. 2023, 12, 1–2. [Google Scholar]
- Martini, S.; Kharismadewi, D.; Mardwita; Ginting, Y.R. Biomass Potential as an Alternative Resource for Valuable Products in the Perspective of Environmental Sustainability and a Circular Economy System. IOP Conf. Ser. Earth Environ. Sci. 2023, 1175, 012012. [Google Scholar] [CrossRef]
- Leitão, A.; Rebelo, F.; Pintado, M.; Ribeiro, T.B. AgroForest Biomass and Circular Bioeconomy. In Research Anthology on Ecosystem Conservation and Preserving Biodiversity; IGI Global: Hershey, PA, USA, 2022; pp. 1052–1097. [Google Scholar]
- van Wyk, J.P.H. Biotechnology and the Utilization of Biowaste as a Resource for Bioproduct Development. Trends Biotechnol. 2001, 19, 172–177. [Google Scholar] [CrossRef]
- Wiseman, A. (Ed.) Handbook of Enzyme Biotechnology; John Wiley and Sons Inc.: New York, NY, USA, 1975. [Google Scholar]
- Kennedy, J.F.; Phillips, J.F.; Williams, G.O. Wood and Cellulosics: Industrial Utilisation, Biotechnology, Structure and Properties, 1st ed.; Ellis Horwood Ltd.: Chichester, UK, 1987; Volume 71. [Google Scholar]
- Celpa: Boletim Estatístico 2020. Available online: https://www.agroportal.pt/celpa-boletim-estatistico-2020/ (accessed on 23 November 2023).
- Neiva, D.M.; Araújo, S.; Gominho, J.; Carneiro, A.d.C.; Pereira, H. Potential of Eucalyptus Globulus Industrial Bark as a Biorefinery Feedstock: Chemical and Fuel Characterization. Ind. Crops Prod. 2018, 123, 262–270. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jang, S.-K.; Kim, J.-H.; Park, S.-Y.; Kim, J.-C.; Jeong, H.; Kim, H.-Y.; Choi, I.-G. Simultaneous Production of Glucose, Furfural, and Ethanol Organosolv Lignin for Total Utilization of High Recalcitrant Biomass by Organosolv Pretreatment. Renew. Energy 2019, 130, 952–960. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.; He, H.; Pan, F.; Zhou, L.; Liu, X.; Ji, X.; Zhang, S. Cascade Utilization of Lignocellulosic Biomass to High-Value Products. Green. Chem. 2019, 21, 3499–3535. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Wu, R.; Liu, D. Organosolv Fractionating Pre-treatment of Lignocellulosic Biomass for Efficient Enzymatic Saccharification: Chemistry, Kinetics, and Substrate Structures. Biofuels Bioprod. Biorefining 2017, 11, 567–590. [Google Scholar] [CrossRef]
- Nishimura, H.; Kamiya, A.; Nagata, T.; Katahira, M.; Watanabe, T. Direct Evidence for α Ether Linkage between Lignin and Carbohydrates in Wood Cell Walls. Sci. Rep. 2018, 8, 6538. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C. Hemicellulose Bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.J.; Karimi, K. Enzyme-Based Hydrolysis Processes for Ethanol from Lignocellulosic Materials: A Review. Bioresources 2007, 2, 707–738. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, Q.V.; Nguyen, V.-H.; Le, T.-H.; Huynh, V.Q.N.; Vo, D.-V.N.; Trinh, Q.T.; Kim, S.Y.; Van Le, Q. Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review. Polymers 2019, 11, 1933. [Google Scholar] [CrossRef]
- Araque, E.; Parra, C.; Freer, J.; Contreras, D.; Rodríguez, J.; Mendonça, R.; Baeza, J. Evaluation of Organosolv Pretreatment for the Conversion of Pinus Radiata D. Don to Ethanol. Enzym. Microb. Technol. 2008, 43, 214–219. [Google Scholar] [CrossRef]
- Thoresen, P.P.; Matsakas, L.; Rova, U.; Christakopoulos, P. Recent Advances in Organosolv Fractionation: Towards Biomass Fractionation Technology of the Future. Bioresour. Technol. 2020, 306, 123189. [Google Scholar] [CrossRef]
- Romaní, A.; Larramendi, A.; Yáñez, R.; Cancela, Á.; Sánchez, Á.; Teixeira, J.A.; Domingues, L. Valorization of Eucalyptus Nitens Bark by Organosolv Pretreatment for the Production of Advanced Biofuels. Ind. Crops Prod. 2019, 132, 327–335. [Google Scholar] [CrossRef]
- Okolie, J.A.; Nanda, S.; Dalai, A.K.; Kozinski, J.A. Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste Biomass Valorization 2021, 12, 2145–2169. [Google Scholar] [CrossRef]
- Gírio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for Fuel Ethanol: A Review. Bioresour. Technol. 2010, 101, 4775–4800. [Google Scholar] [CrossRef] [PubMed]
- Taherzadeh, M.; Karimi, K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. Int. J. Mol. Sci. 2008, 9, 1621–1651. [Google Scholar] [CrossRef] [PubMed]
- Den, W.; Sharma, V.K.; Lee, M.; Nadadur, G.; Varma, R.S. Lignocellulosic Biomass Transformations via Greener Oxidative Pretreatment Processes: Access to Energy and Value-Added Chemicals. Front. Chem. 2018, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, R.; Jaiswal, A. Microbial Enzyme Production Using Lignocellulosic Food Industry Wastes as Feedstock: A Review. Bioengineering 2016, 3, 30. [Google Scholar] [CrossRef]
- Yankov, D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front. Chem. 2022, 10, 823005. [Google Scholar] [CrossRef]
- Zhang, Y.-H.P. Reviving the Carbohydrate Economy via Multi-Product Lignocellulose Biorefineries. J. Ind. Microbiol. Biotechnol. 2008, 35, 367–375. [Google Scholar] [CrossRef]
- Cheng, J.J.; Timilsina, G.R. Status and Barriers of Advanced Biofuel Technologies: A Review. Renew. Energy 2011, 36, 3541–3549. [Google Scholar] [CrossRef]
- Geddes, C.C.; Nieves, I.U.; Ingram, L.O. Advances in Ethanol Production. Curr. Opin. Biotechnol. 2011, 22, 312–319. [Google Scholar] [CrossRef]
- Siqueira, J.G.W.; Rodrigues, C.; Vandenberghe, L.P.d.S.; Woiciechowski, A.L.; Soccol, C.R. Current Advances in On-Site Cellulase Production and Application on Lignocellulosic Biomass Conversion to Biofuels: A Review. Biomass Bioenergy 2020, 132, 105419. [Google Scholar] [CrossRef]
- Bacovsky, D.; Ludwiczek, N.; Ognissanto, M.; Wörgetter, M. Status of Advanced Biofuels Demonstration Facilities in 2012. A Report to IEA Bioenergy Task 39; IEA: Paris, France, 2013; Volume 39, pp. 1–209. [Google Scholar]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Taylor, R.; Nattrass, L.; Alberts, G.; Robson, P.; Chudziak, C.; Bauen, A.; Libelli, I.M.; Lotti, G.; Prussi, M.; Nistri, R.; et al. From the Sugar Platform to Biofuels and Biochemicals: Final Report for the European Commission Directorate-General Energy, Contract No. ENER/C2/423-2012/SI2.673791. Available online: https://ec.europa.eu/energy/content/sugar-platform-biofuels-and-biochemicals_en (accessed on 8 November 2023).
- Jatoi, A.S.; Abbasi, S.A.; Hashmi, Z.; Shah, A.K.; Alam, M.S.; Bhatti, Z.A.; Maitlo, G.; Hussain, S.; Khandro, G.A.; Usto, M.A.; et al. Recent Trends and Future Perspectives of Lignocellulose Biomass for Biofuel Production: A Comprehensive Review. Biomass Convers. Biorefin 2023, 13, 6457–6469. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Duarte, L.C.; Medeiros, R.; Gírio, F.M. Optimization of Brewery’s Spent Grain Dilute-Acid Hydrolysis for the Production of Pentose-Rich Culture Media. Appl. Biochem. Biotechnol. 2004, 115, 1059–1072. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Glasser, W.G.; Wright, R.S. Steam-Assisted Biomass Fractionation. II. Fractionation Behavior of Various Biomass Resources. Biomass Bioenergy 1998, 14, 219–235. [Google Scholar] [CrossRef]
- Dias, B.; Lopes, M.; Fernandes, H.; Marques, S.; Gírio, F.; Belo, I. Biomass and Microbial Lipids Production by Yarrowia lipolytica W29 from Eucalyptus Bark Hydrolysate. Renew. Energy 2024, 224, 120173. [Google Scholar] [CrossRef]
- Francisco, M.; Aguiar, T.Q.; Abreu, G.; Marques, S.; Gírio, F.; Domingues, L. Single-Cell Oil Production by Engineered Ashbya gossypii from Non-Detoxified Lignocellulosic Biomass Hydrolysate. Fermentation 2023, 9, 791. [Google Scholar] [CrossRef]
- Rodrigues, T.; Torres, C.A.V.; Marques, S.; Gírio, F.; Freitas, F.; Reis, M.A.M. Polyhydroxyalkanoate Production from Eucalyptus Bark’s Enzymatic Hydrolysate. Materials 2024, 17, 1773. [Google Scholar] [CrossRef]
- Magina, S.; Marques, S.; Gírio, F.; Lourenço, A.; Barros-Timmons, A.; Evtuguin, D.V. Chemical Composition and Structural Features of Cellolignin from Steam Explosion Followed by Enzymatic Hydrolysis of Eucalyptus Globulus Bark. Ind. Crops Prod. 2024, 211, 118217. [Google Scholar] [CrossRef]
- Silva, J.B.; Pereira, J.R.; Marreiros, B.C.; Reis, M.A.M.; Freitas, F. Microbial Production of Medium-Chain Length Polyhydroxyalkanoates. Process Biochem. 2021, 102, 393–407. [Google Scholar] [CrossRef]
- Felgueiras, C.; Azoia, N.G.; Gonçalves, C.; Gama, M.; Dourado, F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front. Bioeng. Biotechnol. 2021, 9, 608826. [Google Scholar] [CrossRef]
- Esmail, A.; Pereira, J.R.; Sevrin, C.; Grandfils, C.; Menda, U.D.; Fortunato, E.; Oliva, A.; Freitas, F. Preparation and Characterization of Porous Scaffolds Based on Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate). Life 2021, 11, 935. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Rodríguez, B.; Torres-Giner, S.; Reis, M.A.M.; Silva, F.; Matos, M.; Cabedo, L.; Lagarón, J.M. Blends of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) with Fruit Pulp Biowaste Derived Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate-Co-3-Hydroxyhexanoate) for Organic Recycling Food Packaging. Polymers 2021, 13, 1155. [Google Scholar] [CrossRef] [PubMed]
- Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner, M. Potential of Polyhydroxyalkanoate (PHA) Polymers Family as Substitutes of Petroleum Based Polymers for Packaging Applications and Solutions Brought by Their Composites to Form Barrier Materials. Pure Appl. Chem. 2017, 89, 1841–1848. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Muneer, F.; Rasul, I.; Azeem, F.; Siddique, M.H.; Zubair, M.; Nadeem, H. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J. Polym. Environ. 2020, 28, 2301–2323. [Google Scholar] [CrossRef]
- Gautam, S.; Gautam, A.; Pawaday, J.; Kanzariya, R.K.; Yao, Z. Current Status and Challenges in the Commercial Production of Polyhydroxyalkanoate-Based Bioplastic: A Review. Processes 2024, 12, 1720. [Google Scholar] [CrossRef]
- Vicente, D.; Proença, D.N.; Morais, P.V. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. Int. J. Environ. Res. Public Health 2023, 20, 2959. [Google Scholar] [CrossRef]
- Samrot, A.V.; Samanvitha, S.K.; Shobana, N.; Renitta, E.R.; Senthilkumar, P.; Kumar, S.S.; Abirami, S.; Dhiva, S.; Bavanilatha, M.; Prakash, P.; et al. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers 2021, 13, 3302. [Google Scholar] [CrossRef]
- Tortajada, M.; da Silva, L.F.; Prieto, M.A. Second-Generation Functionalized Medium-Chain-Length Polyhydroxyalkanoates: The Gateway to High-Value Bioplastic Applications. Int. Microbiol. 2013, 16, 1–15. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Al-Battashi, H.; Annamalai, N.; Al-Kindi, S.; Nair, A.S.; Al-Bahry, S.; Verma, J.P.; Sivakumar, N. Production of Bioplastic (Poly-3-Hydroxybutyrate) Using Waste Paper as a Feedstock: Optimization of Enzymatic Hydrolysis and Fermentation Employing Burkholderia sacchari. J. Clean. Prod. 2019, 214, 236–247. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Pérez-Rivero, C.; Uwaezuoke, O.J.; Ngwuluka, N.C. From Waste to Wealth: Upcycling of Plastic and Lignocellulosic Wastes to PHAs. J. Chem. Technol. Biotechnol. 2022, 97, 3217–3240. [Google Scholar] [CrossRef]
- Kucera, D.; Benesova, P.; Ladicky, P.; Pekar, M.; Sedlacek, P.; Obruca, S. Production of Polyhydroxyalkanoates Using Hydrolyzates of Spruce Sawdust: Comparison of Hydrolyzates Detoxification by Application of Overliming, Active Carbon, and Lignite. Bioengineering 2017, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Dias, M.; Rodríguez-Contreras, A.; Kunaver, M.; Žagar, E.; Kržan, A.; Braunegg, G. Liquefied Wood as Inexpensive Precursor-Feedstock for Bio-Mediated Incorporation of (R)-3-Hydroxyvalerate into Polyhydroxyalkanoates. Materials 2015, 8, 6543–6557. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Cho, D.-H.; Jung, H.J.; Kim, B.; Kim, S.H.; Bhatia, S.K.; Gurav, R.; Jeon, J.-M.; Yoon, J.-J.; Kim, W.; et al. Finding of Novel Polyhydroxybutyrate Producer Loktanella sp. SM43 Capable of Balanced Utilization of Glucose and Xylose from Lignocellulosic Biomass. Int. J. Biol. Macromol. 2022, 208, 809–818. [Google Scholar] [CrossRef]
- Bowers, T.; Vaidya, A.; Smith, D.A.; Lloyd-Jones, G. Softwood Hydrolysate as a Carbon Source for Polyhydroxyalkanoate Production. J. Chem. Technol. Biotechnol. 2014, 89, 1030–1037. [Google Scholar] [CrossRef]
- Dietrich, K.; Dumont, M.-J.; Del Rio, L.F.; Orsat, V. Sustainable PHA Production in Integrated Lignocellulose Biorefineries. N. Biotechnol. 2019, 49, 161–168. [Google Scholar] [CrossRef]
- Dai, J.; Gliniewicz, K.; Settles, M.L.; Coats, E.R.; McDonald, A.G. Influence of Organic Loading Rate and Solid Retention Time on Polyhydroxybutyrate Production from Hybrid Poplar Hydrolysates Using Mixed Microbial Cultures. Bioresour. Technol. 2015, 175, 23–33. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, X.; Li, Q.; Wang, X.; Liu, M.; Xie, S.; Chai, L.; Yuan, J. Directed Bioconversion of Kraft Lignin to Polyhydroxyalkanoate by Cupriavidus basilensis B-8 without Any Pretreatment. Process Biochem. 2017, 52, 238–242. [Google Scholar] [CrossRef]
- Li, M.; Wilkins, M.R. Recent Advances in Polyhydroxyalkanoate Production: Feedstocks, Strains and Process Developments. Int. J. Biol. Macromol. 2020, 156, 691–703. [Google Scholar] [CrossRef]
- Frederick, N.; Li, M.; Carrier, D.J.; Buser, M.D.; Wilkins, M.R. Switchgrass Storage Effects on the Recovery of Carbohydrates after Liquid Hot Water Pretreatment and Enzymatic Hydrolysis. AIMS Bioeng. 2016, 3, 389–399. [Google Scholar] [CrossRef]
- Ding, C.; Li, M.; Hu, Y. High-Activity Production of Xylanase by Pichia Stipitis: Purification, Characterization, Kinetic Evaluation and Xylooligosaccharides Production. Int. J. Biol. Macromol. 2018, 117, 72–77. [Google Scholar] [CrossRef]
- Sa, K.; Ravi, Y.K.; Ma, G.; Chattopadhyay, I.; Palani, S.; Kumar, V.; Kumar, G.; Jeyakumar, R.B. Development of an Integrated Biorefinery System for Bioconversion of Lignocellulosic Biomass to Polyhydroxyalkanoates and Biohydrogen. ACS Sustain. Chem. Eng. 2023, 11, 4606–4622. [Google Scholar] [CrossRef]
- Cerrone, F.; Davis, R.; Kenny, S.T.; Woods, T.; O’Donovan, A.; Gupta, V.K.; Tuohy, M.; Babu, R.P.; O’Kiely, P.; O’Connor, K. Use of a Mannitol Rich Ensiled Grass Press Juice (EGPJ) as a Sole Carbon Source for Polyhydroxyalkanoates (PHAs) Production through High Cell Density Cultivation. Bioresour. Technol. 2015, 191, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.H.; Bhukya, B. Biotransformation of Toxic Lignin and Aromatic Compounds of Lignocellulosic Feedstock into Eco-Friendly Biopolymers by Pseudomonas putida KT2440. Bioresour. Technol. 2022, 363, 128001. [Google Scholar] [CrossRef]
- Silva, L.F.; Taciro, M.K.; Raicher, G.; Piccoli, R.A.M.; Mendonça, T.T.; Lopes, M.S.G.; Gomez, J.G.C. Perspectives on the Production of Polyhydroxyalkanoates in Biorefineries Associated with the Production of Sugar and Ethanol. Int. J. Biol. Macromol. 2014, 71, 2–7. [Google Scholar] [CrossRef]
- Salamanca-Cardona, L.; Scheel, R.A.; Bergey, N.S.; Stipanovic, A.J.; Matsumoto, K.; Taguchi, S.; Nomura, C.T. Consolidated Bioprocessing of Poly(Lactate-Co-3-Hydroxybutyrate) from Xylan as a Sole Feedstock by Genetically-Engineered Escherichia coli. J. Biosci. Bioeng. 2016, 122, 406–414. [Google Scholar] [CrossRef]
- Kopf, S.; Åkesson, D.; Skrifvars, M. Textile Fiber Production of Biopolymers—A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications. Polym. Rev. 2023, 63, 200–245. [Google Scholar] [CrossRef]
- Puppi, D.; Pecorini, G.; Chiellini, F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering 2019, 6, 108. [Google Scholar] [CrossRef]
- Usurelu, C.D.; Badila, S.; Frone, A.N.; Panaitescu, D.M. Poly(3-Hydroxybutyrate) Nanocomposites with Cellulose Nanocrystals. Polymers 2022, 14, 1974. [Google Scholar] [CrossRef]
- Hinuber, C.; Haussler, L.; Vogel, R.; Brunig, H.; Heinrich, G.; Werner, C. Hollow Fibers Made from a Poly(3-Hydroxybutyrate)/Poly-ε-Caprolactone Blend. Express Polym. Lett. 2011, 5, 643–652. [Google Scholar] [CrossRef]
- Uddin, M.K.; Novembre, L.; Greco, A.; Sannino, A. Polyhydroxyalkanoates, A Prospective Solution in the Textile Industry—A Review. Polym. Degrad. Stab. 2024, 219, 110619. [Google Scholar] [CrossRef]
- Liu, Q.; Shyr, T.-W.; Tung, C.-H.; Liu, Z.; Shan, G.; Zhu, M.; Deng, B. Particular Thermal Properties of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Oligomers. J. Polym. Res. 2012, 19, 9756. [Google Scholar] [CrossRef]
- Vogel, R.; Tändler, B.; Voigt, D.; Jehnichen, D.; Häußler, L.; Peitzsch, L.; Brünig, H. Melt Spinning of Bacterial Aliphatic Polyester Using Reactive Extrusion for Improvement of Crystallization. Macromol. Biosci. 2007, 7, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Raza, Z.A.; Khalil, S.; Abid, S. Recent Progress in Development and Chemical Modification of Poly(Hydroxybutyrate)-Based Blends for Potential Medical Applications. Int. J. Biol. Macromol. 2020, 160, 77–100. [Google Scholar] [CrossRef]
- Mármol, G.; Gauss, C.; Fangueiro, R. Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement. Molecules 2020, 25, 4653. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Ito, K.; Fujisawa, T.; Doi, Y.; Iwata, T. Formation of Highly Ordered Structure in Poly[(R)-3-Hydroxybutyrate- Co -(R)-3-Hydroxyvalerate] High-Strength Fibers. Macromolecules 2006, 39, 2940–2946. [Google Scholar] [CrossRef]
- Alagoz, A.S.; Rodriguez-Cabello, J.C.; Hasirci, V. PHBV Wet-Spun Scaffold Coated with ELR-REDV Improves Vascularization for Bone Tissue Engineering. Biomed. Mater. 2018, 13, 055010. [Google Scholar] [CrossRef]
- Kundrat, V.; Matouskova, P.; Marova, I. Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials 2019, 13, 86. [Google Scholar] [CrossRef]
- Kervran, M.; Vagner, C.; Cochez, M.; Ponçot, M.; Saeb, M.R.; Vahabi, H. Thermal Degradation of Polylactic Acid (PLA)/Polyhydroxybutyrate (PHB) Blends: A Systematic Review. Polym. Degrad. Stab. 2022, 201, 109995. [Google Scholar] [CrossRef]
- Huang, W.; Shi, Y.; Wang, W.; Sheng, Y.; Guo, Y.; Li, Y.; Yang, Q.; Chen, P. Polylactide/Poly[(R)-3-hydroxybutyrate] (PHB) Blend Fibers with Superior Heat-resistance: Effect of PHB on Crystallization. Polym. Adv. Technol. 2023, 34, 1479–1491. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Li, Y.; Wang, W.; Sui, M.; Yang, Q.; Tong, Y.; Yang, K.; Chen, P. Toward Heat Resistant Polylactide Blend Fibers via Incorporation of Low Poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate] Content. J. Appl. Polym. Sci. 2022, 139, e52652. [Google Scholar] [CrossRef]
- Girard, V.; Chaussé, J.; Vermette, P. Bacterial Cellulose: A Comprehensive Review. J. Appl. Polym. Sci. 2024, 141, 55163. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H.; Ray, R.R. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and Bacterial Nanocellulose: Production, Properties and Applications in Medicine, Food, Cosmetics, Electronics and Engineering. A Review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Reiniati, I.; Hrymak, A.N.; Margaritis, A. Recent Developments in the Production and Applications of Bacterial Cellulose Fibers and Nanocrystals. Crit. Rev. Biotechnol. 2017, 37, 510–524. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, A.; Patra, A.K.; Mahajan, R. A Sustainable and Green Process for Scouring of Cotton Fabrics Using Xylano-Pectinolytic Synergism: Switching from Noxious Chemicals to Eco-Friendly Catalysts. 3 Biotech 2018, 8, 184. [Google Scholar] [CrossRef]
- Esmail, A.; Rebocho, A.T.; Marques, A.C.; Silvestre, S.; Gonçalves, A.; Fortunato, E.; Torres, C.A.V.; Reis, M.A.M.; Freitas, F. Bioconversion of Terephthalic Acid and Ethylene Glycol Into Bacterial Cellulose by Komagataeibacter xylinus DSM 2004 and DSM 46604. Front Bioeng Biotechnol 2022, 10, 853322. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Popa, L.; Ghica, M.V.; Tudoroiu, E.-E.; Ionescu, D.-G.; Dinu-Pîrvu, C.-E. Bacterial Cellulose—A Remarkable Polymer as a Source for Biomaterials Tailoring. Materials 2022, 15, 1054. [Google Scholar] [CrossRef]
- da Silva Rocha, A.R.; Venturim, B.C.; Ellwanger, E.R.A.; Pagnan, C.S.; da Silveira, W.B.; Martin, J.G.P. Bacterial Cellulose: Strategies for Its Production in the Context of Bioeconomy. J. Basic. Microbiol. 2023, 63, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Dourado, F.; Ryngajllo, M.; Jedrzejczak-Krzepkowska, M.; Bielecki, S.; Gama, M. Taxonomic Review and Microbial Ecology in Bacterial Nanocellulose Fermentation. In Bacterial Nanocellulose from Biotechnology to Bio-Economy; Gama, M., Dourado, F., Bielecki, S., Eds.; Elsevier: Amesterdam, The Netherlands, 2016; pp. 1–17. [Google Scholar]
- Thongwai, N.; Futui, W.; Ladpala, N.; Sirichai, B.; Weechan, A.; Kanklai, J.; Rungsirivanich, P. Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms 2022, 10, 528. [Google Scholar] [CrossRef] [PubMed]
- Gullo, M.; La China, S.; Falcone, P.M.; Giudici, P. Biotechnological Production of Cellulose by Acetic Acid Bacteria: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 6885–6898. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.U.; Ullah, M.W.; Khan, S.; Shah, N.; Park, J.K. Strategies for Cost-Effective and Enhanced Production of Bacterial Cellulose. Int. J. Biol. Macromol. 2017, 102, 1166–1173. [Google Scholar] [CrossRef]
- Chan, C.K.; Shin, J.; Jiang, S.X.K. Development of Tailor-Shaped Bacterial Cellulose Textile Cultivation Techniques for Zero-Waste Design. Cloth. Text. Res. J. 2018, 36, 33–44. [Google Scholar] [CrossRef]
- Wang, J.; Tavakoli, J.; Tang, Y. Bacterial Cellulose Production, Properties and Applications with Different Culture Methods—A Review. Carbohydr. Polym. 2019, 219, 63–76. [Google Scholar] [CrossRef]
- Stepanov, N.; Efremenko, E. “Deceived” Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts 2018, 8, 33. [Google Scholar] [CrossRef]
- Sa’adah, A.N.; Milyawan, G.N.A.; Nadya, T.; Silviana, S. A Mini-Review of Bio-Scrubber Derived from Bacterial Cellulose Impregnated by Flavonoid of Moringa Leaves. IOP Conf. Ser. Earth Environ. Sci. 2022, 963, 012022. [Google Scholar] [CrossRef]
- Amarasekara, A.S.; Wang, D.; Grady, T.L. A Comparison of Kombucha SCOBY Bacterial Cellulose Purification Methods. SN Appl. Sci. 2020, 2, 240. [Google Scholar] [CrossRef]
- Mohammadkazemi, F.; Azin, M.; Ashori, A. Production of Bacterial Cellulose Using Different Carbon Sources and Culture Media. Carbohydr. Polym. 2015, 117, 518–523. [Google Scholar] [CrossRef]
- Lin, D.; Lopez-Sanchez, P.; Li, R.; Li, Z. Production of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917 Using Only Waste Beer Yeast as Nutrient Source. Bioresour Technol 2014, 151, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lupașcu, R.E.; Ghica, M.V.; Dinu-Pîrvu, C.-E.; Popa, L.; Ștefan Velescu, B.; Arsene, A.L. An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. Materials 2022, 15, 676. [Google Scholar] [CrossRef] [PubMed]
- Bianchet, R.T.; Vieira Cubas, A.L.; Machado, M.M.; Siegel Moecke, E.H. Applicability of Bacterial Cellulose in Cosmetics—Bibliometric Review. Biotechnol. Rep. 2020, 27, e00502. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.F.D.S.; Rocha, M.A.V.; Fenrnandes, L.M.A.; Queiroz, J.A.; Agra, A.C.M.G.; Amorim, J.D.P.; Sarubbo, L.A.; Sarubbo, L.A. Bacterial Cellulose: Characterization of a Biomaterial for Apparel Products Application. Res. J. Text. Appar. 2022, 26, 532–545. [Google Scholar] [CrossRef]
- Fernandes, M.; Souto, A.P.; Dourado, F.; Gama, M. Application of Bacterial Cellulose in the Textile and Shoe Industry: Development of Biocomposites. Polysaccharides 2021, 2, 566–581. [Google Scholar] [CrossRef]
- Provin, A.P.; dos Reis, V.O.; Hilesheim, S.E.; Bianchet, R.T.; de Aguiar Dutra, A.R.; Cubas, A.L.V. Use of Bacterial Cellulose in the Textile Industry and the Wettability Challenge—A Review. Cellulose 2021, 28, 8255–8274. [Google Scholar] [CrossRef]
- Han, J.; Shim, E.; Kim, H.R. Effects of Cultivation, Washing, and Bleaching Conditions on Bacterial Cellulose Fabric Production. Text. Res. J. 2019, 89, 1094–1104. [Google Scholar] [CrossRef]
- Zhong, C. Colored Bacteria Cellulose Product and Preparation Method. Thereof. Patent CN102127576A, 24 April 2013. [Google Scholar]
- Shim, E.; Kim, H.R. Coloration of Bacterial Cellulose Using In Situ and Ex Situ Methods. Text. Res. J. 2019, 89, 1297–1310. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.R. Production of Coffee-Dyed Bacterial Cellulose as a Bio-Leather and Using It as a Dye Adsorbent. PLoS ONE 2022, 17, e0265743. [Google Scholar] [CrossRef]
- Mizuno, M.; Kamiya, Y.; Katsuta, T.; Oshima, N.; Nozaki, K.; Amano, Y. Creation of Bacterial Cellulose-Fabric Complexed Material. Sen’i Gakkaishi 2012, 68, 42–47. [Google Scholar] [CrossRef]
- Naeem, M.A.; Siddiqui, Q.; Khan, M.R.; Mushtaq, M.; Wasim, M.; Farooq, A.; Naveed, T.; Wei, Q. Bacterial Cellulose-Natural Fiber Composites Produced by Fibers Extracted from Banana Peel Waste. J. Ind. Text. 2022, 51, 990S–1006S. [Google Scholar] [CrossRef]
- Fernandes, M.; Gama, M.; Dourado, F.; Souto, A.P. Development of Novel Bacterial Cellulose Composites for the Textile and Shoe Industry. Microb. Biotechnol. 2019, 12, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Meng, C.; Zheng, Y.; Xie, Y.; He, W.; Wang, Y.; Qiao, K.; Yue, L. The Effects of Two Biocompatible Plasticizers on the Performance of Dry Bacterial Cellulose Membrane: A Comparative Study. Cellulose 2018, 25, 5893–5908. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, L.; Yuan, Y.; Wei, C.; Bai, Z.; Xu, J. All-Solid-State Yarn Supercapacitors Based on Hierarchically Structured Bacterial Cellulose Nanofiber-Coated Cotton Yarns. Cellulose 2016, 23, 3987–3997. [Google Scholar] [CrossRef]
- Catherine Jewell Designing with Life: Biofabricate’s Suzanne Lee Envisions a “New Material World”. Available online: https://www.wipo.int/web/wipo-magazine/articles/designing-with-life-biofabricates-suzanne-lee-envisions-a-new-material-world-56276 (accessed on 29 December 2023).
- SOYA C(O)U(L)TURE—Useful Things Arise out of Waste. Available online: https://ars.electronica.art/aeblog/en/2015/09/30/soya-coulture/ (accessed on 30 September 2023).
- Wood, J.; Verran, J.; Redfern, J. Bacterial Cellulose Grown from Kombucha: Assessment of Textile Performance Properties Using Fashion Apparel Tests. Text. Res. J. 2023, 93, 3094–3108. [Google Scholar] [CrossRef]
- Nanollose. Available online: https://nanollose.com/Technology/Our-Technology/ (accessed on 11 December 2023).
- Leather-Free Handbag Made of Bacterial Cellulose. Available online: https://materialdistrict.com/article/handbag-bacterial-cellulose/ (accessed on 11 December 2023).
- Polybion. Available online: https://www.polybion.bio/ (accessed on 11 December 2023).
- Hahn, J. Ganni Unveils Handbag Made from Bacterial Leather at LDF. Available online: https://www.dezeen.com/2023/07/04/ganni-bacterial-cellulose-leather-jacket-polybion/ (accessed on 11 December 2023).
- Carlson, C. Modern Synthesis Uses Bacteria to Create Biomaterial Fabric. Available online: https://www.dezeen.com/2023/04/03/modern-synthesis-bacteria-biomaterial-fabric/ (accessed on 11 December 2023).
- El-Gendi, H.; Salama, A.; El-Fakharany, E.M.; Saleh, A.K. Optimization of Bacterial Cellulose Production from Prickly Pear Peels and Its Ex Situ Impregnation with Fruit Byproducts for Antimicrobial and Strawberry Packaging Applications. Carbohydr. Polym. 2023, 302, 120383. [Google Scholar] [CrossRef]
- Rathinamoorthy, R.; Kiruba, T. Bacterial Cellulose—A Potential Material for Sustainable Eco-Friendly Fashion Products. J. Nat. Fibers 2022, 19, 3275–3287. [Google Scholar] [CrossRef]
- Pedroso-Roussado, C. The Fashion Industry Needs Microbiology: Opportunities and Challenges. mSphere 2023, 8, e0068122. [Google Scholar] [CrossRef]
- da Silva, C.J.G.; de Medeiros, A.D.M.; de Amorim, J.D.P.; do Nascimento, H.A.; Converti, A.; Costa, A.F.S.; Sarubbo, L.A. Bacterial Cellulose Biotextiles for the Future of Sustainable Fashion: A Review. Environ. Chem. Lett. 2021, 19, 2967–2980. [Google Scholar] [CrossRef]
- Dourado, F.; Fontão, A.; Leal, M.; Cristina Rodrigues, A.; Gama, M. Process Modeling and Techno-Economic Evaluation of an Industrial Bacterial NanoCellulose Fermentation Process. In Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 199–214. [Google Scholar]
- Akintunde, M.O.; Adebayo-Tayo, B.C.; Ishola, M.M.; Zamani, A.; Horváth, I.S. Bacterial Cellulose Production from Agricultural Residues by Two Komagataeibacter sp. Strains. Bioengineered 2022, 13, 10010–10025. [Google Scholar] [CrossRef]
- Ogrizek, L.; Lamovšek, J.; Čuš, F.; Leskovšek, M.; Gorjanc, M. Properties of Bacterial Cellulose Produced Using White and Red Grape Bagasse as a Nutrient Source. Processes 2021, 9, 1088. [Google Scholar] [CrossRef]
- Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources. Front. Microbiol. 2017, 8, 2027. [Google Scholar] [CrossRef] [PubMed]
- Tsouko, E.; Maina, S.; Ladakis, D.; Kookos, I.K.; Koutinas, A. Integrated Biorefinery Development for the Extraction of Value-Added Components and Bacterial Cellulose Production from Orange Peel Waste Streams. Renew. Energy 2020, 160, 944–954. [Google Scholar] [CrossRef]
- Sar, T.; Yesilcimen Akbas, M. Potential Use of Olive Oil Mill Wastewater for Bacterial Cellulose Production. Bioengineered 2022, 13, 7659–7669. [Google Scholar] [CrossRef]
- Ghozali, M.; Meliana, Y.; Chalid, M. Synthesis and Characterization of Bacterial Cellulose by Acetobacter xylinum Using Liquid Tapioca Waste. Mater. Today Proc. 2021, 44, 2131–2134. [Google Scholar] [CrossRef]
- Bioenergy International. Available online: https://bioenergyinternational.com/wbm/ (accessed on 11 December 2023).
- Glasser, W.G.; Kelly, S.S. Lignin. In Encyclopedia of Polymer Science and Engineering, 1st ed.; Mark, H.B., Bikales, N.M., Overberger, C.C., Menges, G., Eds.; WileyInterscience: New York, NY, USA, 1987; Volume 8. [Google Scholar]
- Blažej, A.; Košík, M. Phytomass: A Raw Material for Chemistry and Biotechnology; Ellis Horwood: New York, NY, USA, 1993. [Google Scholar]
- Agarwal, S.L.; Russo, S. (Eds.) Comprehensive Polymer Science; Pergamon: Oxford, UK, 1992. [Google Scholar]
- Belgacem, N.; Pizzi, A. (Eds.) Lignocellulosic Fibers and Wood Handbook: Renewable Materials for Today’s Environment; Wiley-Scrivener Publ. LLC.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rabinovich, M.L. Lignin By-Products of Soviet Hydrolysis Industry: Resources Characteristics and Utilization as a Fuel. Cellul. Chem. Technol. 2014, 48, 613–631. [Google Scholar]
- Tofani, G.; Jasiukaitytė-Grojzdek, E.; Grilc, M.; Likozar, B. Organosolv Biorefinery: Resource-Based Process Optimisation, Pilot Technology Scale-up and Economics. Green Chem. 2024, 26, 186–201. [Google Scholar] [CrossRef]
- Raman, A.; Sankar, A.; Abhirami, S.D.; Abhirami, A.; Saritha, A. Insights into the Sustainable Development of Lignin-Based Textiles for Functional Applications. Macromol. Mater. Eng. 2022, 307, 202200114. [Google Scholar] [CrossRef]
- Gaynor, J.G.; Szlek, D.B.; Kwon, S.; Tiller, P.S.; Byington, M.S.; Argyropoulos, D.S. Lignin Use in Nonwovens: A Review. Bioresources 2022, 17, 3445–3488. [Google Scholar] [CrossRef]
- Jin, Y.; Lin, J.; Cheng, Y.; Lu, C. Lignin-Based High-Performance Fibers by Textile Spinning Techniques. Materials 2021, 14, 3378. [Google Scholar] [CrossRef]
- Mendes, I.S.F.; Prates, A.; Evtuguin, D.V. Production of Rayon Fibres from Cellulosic Pulps: State of the Art and Current Developments. Carbohydr. Polym. 2021, 273, 118466. [Google Scholar] [CrossRef] [PubMed]
- Protz, R.; Lehmann, A.; Ganster, J.; Fink, H.-P. Solubility and Spinnability of Cellulose-Lignin Blends in Aqueous NMMO. Carbohydr. Polym. 2021, 251, 117027. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Hauru, L.K.J.; Parviainen, A.; King, A.W.T.; Kilpeläinen, I.; Sixta, H. Ionic Liquids for the Production of Man-Made Cellulosic Fibers: Opportunities and Challenges. In Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Advances in Polymer Science; Rojas, O., Ed.; Springer: Cham, Switzerland, 2015; Volume 271, pp. 133–168. [Google Scholar]
- Byrne, N.; De Silva, R.; Ma, Y.; Sixta, H.; Hummel, M. Enhanced Stabilization of Cellulose-Lignin Hybrid Filaments for Carbon Fiber Production. Cellulose 2018, 25, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Trogen, M.; Le, N.-D.; Sawada, D.; Guizani, C.; Lourençon, T.V.; Pitkänen, L.; Sixta, H.; Shah, R.; O’Neill, H.; Balakshin, M.; et al. Cellulose-Lignin Composite Fibres as Precursors for Carbon Fibres. Part 1—Manufacturing and Properties of Precursor Fibres. Carbohydr. Polym. 2021, 252, 117133. [Google Scholar] [CrossRef]
- Dallmeyer, I.; Ko, F.; Kadla, J.F. Electrospinning of Technical Lignins for the Production of Fibrous Networks. J. Wood Chem. Technol. 2010, 30, 315–329. [Google Scholar] [CrossRef]
- Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Fierro, V.; Celzard, A. PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers 2016, 8, 331. [Google Scholar] [CrossRef]
- Gama, N.; Evtyugin, D.D.; Lourenço, A.; Lopes, C.; Evtuguin, D.V. Ellagic Acid as Stabilizer in the Thermo-Oxidative Degradation of Thermoplastic Polyurethane. Polym. Degrad. Stab. 2023, 215, 110456. [Google Scholar] [CrossRef]
- Amid, H.; Mazé, B.; Flickinger, M.C.; Pourdeyhimi, B. Hybrid Adsorbent Nonwoven Structures: A Review of Current Technologies. J. Mater. Sci. 2016, 51, 4173–4200. [Google Scholar] [CrossRef]
- Nisar, S.; Raza, Z.A. Corn Straw Lignin—A Sustainable Bioinspired Finish for Superhydrophobic and UV-Protective Cellulose Fabric. Int. J. Biol. Macromol. 2024, 257, 128393. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Xu, Y.-J.; Jiang, Z.-M.; Liu, Y.; Zhu, P. Novel and Eco-Friendly Flame-Retardant Cotton Fabrics with Lignosulfonate and Chitosan through LbL: Flame Retardancy, Smoke Suppression and Flame-Retardant Mechanism. Polym. Degrad. Stab. 2020, 181, 109302. [Google Scholar] [CrossRef]
- Shukla, A.; Sharma, V.; Basak, S.; Ali, S.W. Sodium Lignin Sulfonate: A Bio-Macromolecule for Making Fire Retardant Cotton Fabric. Cellulose 2019, 26, 8191–8208. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Liu, H.; Zhang, D.; Shi, Q.-S.; Zhong, X.-Q.; Guo, Y.; Xie, X.-B. High Value Valorization of Lignin as Environmental Benign Antimicrobial. Mater. Today Bio 2023, 18, 100520. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.S. Lignin Nanoparticles: Eco-Friendly and Versatile Tool for New Era. Bioresour. Technol. Rep. 2020, 9, 100374. [Google Scholar] [CrossRef]
- Ali, M.A.-S.; Abdel-Moein, N.M.; Owis, A.S.; Ahmed, S.E.; Hanafy, E.A. Eco-Friendly Lignin Nanoparticles as Antioxidant and Antimicrobial Material for Enhanced Textile Production. Sci. Rep. 2024, 14, 17470. [Google Scholar] [CrossRef]
- Kaya, C.; Stegmaier, T.; Gresser, G.T. Investigation of the Protective Function of a Lignin Coating of Natural Fiber Geotextiles against Biodegradation. Materials 2023, 16, 4849. [Google Scholar] [CrossRef]
- Hassan, M.M. Valorisation of Sulphonated Lignin as a Dye for the Sustainable Colouration of Wool Fabric Using Sustainable Mordanting Agents: Enhanced Colour Yield, Colourfastness, and Functional Properties. RSC Sustain. 2024, 2, 676–685. [Google Scholar] [CrossRef]
- Kim, S.; Silva, C.; Zille, A.; Lopez, C.; Evtuguin, D.V.; Cavaco-Paulo, A. Characterisation of Enzymatically Oxidised Lignosulfonates and Their Application on Lignocellulosic Fabrics. Polym. Int. 2009, 58, 863–868. [Google Scholar] [CrossRef]
- Mun, J.S.; Mun, S.P. Potential of Hardwood Kraft Lignin as a Bio-Based Dye for Cotton Fabrics. Bioresources 2023, 19, 973–984. [Google Scholar] [CrossRef]
- Bhushan, S.; Kumar, A.; Singh, N.; Sheikh, J. Functionalization of Wool Fabric Using Lignin Biomolecules Extracted from Groundnut Shells. Int. J. Biol. Macromol. 2020, 142, 559–563. [Google Scholar] [CrossRef]
- Kim, S.; Silva, C.; Evtuguin, D.V.; Gamelas, J.A.F.; Cavaco-Paulo, A. Polyoxometalate/Laccase-Mediated Oxidative Polymerization of Catechol for Textile Dyeing. Appl. Microbiol. Biotechnol. 2011, 89, 981–987. [Google Scholar] [CrossRef]
- Khan, T.A.; Lee, J.-H.; Kim, H.-J. Lignin-Based Adhesives and Coatings. In Lignocellulose for Future Bioeconomy; Ariffin, H., Sapuan, S.M., Hassan, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 153–206. [Google Scholar]
- Lin, L.; Tu, Y.; Li, Z.; Wu, H.; Mao, H.; Wang, C. Synthesis and Application of Multifunctional Lignin-Modified Cationic Waterborne Polyurethane in Textiles. Int. J. Biol. Macromol. 2024, 262, 130063. [Google Scholar] [CrossRef]
Feedstock | Microorganism | PHA Type | PHA (g/L) | PHA (%) | Productivity (g/L.h) | Scale | References |
---|---|---|---|---|---|---|---|
Eucalyptus bark | Pseudomonas sp. | PHB | 7.70 | 31 | 0.150 | Batch bioreactor | [44] |
Burkholderia thailandensis DSM 13276 | 1.10 | 12.3 | 0.023 | ||||
Sawdust of spruce wood | Burkholderia sacchari | PHB | 0.89 | 87.60 | Shake-flask | [60] | |
Burkholderia cepacia | 1.05 | 74.70 | |||||
Cupriavidus necator | PHBV | 78.70 | 0.360 | [61] | |||
60.50 | 75.30 | 2.840 | Batch reactor | ||||
Pine tree wood | Loktanella sp. SM43 | PHB | 3.66 | 78.30 | Shake-flask | [62] | |
Sphingobium scionense WP01 | 0.39 | 32.00 | Batch reactor | [63] | |||
Wood | Paraburkholderia sacchari | PHB | 34.50 | 58.00 | 0.720 | Fed-batch reactor | [64] |
Poplar wood | Mixed microbial cultures | PHB | 27.51 | [65] | |||
Kraft lignin | Cupriavidus basiliensis B8 | PHB | 0.32 | Fed-batch reactor | [66] |
Characteristic | Kraft Lignin | Soda Lignin | Sulphite Lignin | Organosolv | Hydrolysis Lignin | Enzymatic Lignin |
---|---|---|---|---|---|---|
Purity (%) | 80–98 | 80–95 | 50–70 | 90–99 | 50–70 | 50–70 |
Solubility: | ||||||
-Water (pH 2–7) | No | No | Yes | No | No | No |
-Organic solvents | Yes | Yes | No | Yes | No | Partially |
Molecular weight, kDa | 1.0–2.0 | 1.0–2.5 | 1.5–5.0 | 1.5–4.0 | - | - |
Sulphur content (%) | 1.0–5.0 | No | 3.0–8.0 | No | 0.0–0.5 | No |
Production scale | Semi-Industrial | Pilot | Industrial | Pilot | Industrial | Pilot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, J.C.; Marques, S.; Branco, P.C.; Rodrigues, T.; Torres, C.A.V.; Freitas, F.; Evtyugin, D.V.; Silva, C.J. Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry. Forests 2025, 16, 163. https://doi.org/10.3390/f16010163
Dias JC, Marques S, Branco PC, Rodrigues T, Torres CAV, Freitas F, Evtyugin DV, Silva CJ. Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry. Forests. 2025; 16(1):163. https://doi.org/10.3390/f16010163
Chicago/Turabian StyleDias, Juliana C., Susana Marques, Pedro C. Branco, Thomas Rodrigues, Cristiana A. V. Torres, Filomena Freitas, Dmitry V. Evtyugin, and Carla J. Silva. 2025. "Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry" Forests 16, no. 1: 163. https://doi.org/10.3390/f16010163
APA StyleDias, J. C., Marques, S., Branco, P. C., Rodrigues, T., Torres, C. A. V., Freitas, F., Evtyugin, D. V., & Silva, C. J. (2025). Biopolymers Derived from Forest Biomass for the Sustainable Textile Industry. Forests, 16(1), 163. https://doi.org/10.3390/f16010163