Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,887)

Search Parameters:
Keywords = lighting distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

14 pages, 2036 KiB  
Article
Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study
by Marta Ribera-Zabaco, Carlos Laredo, Emma Muñoz-Moreno, Andrea Cabero-Arnold, Irene Rosa-Batlle, Inés Bartolomé-Arenas, Sergio Amaro, Ángel Chamorro and Salvatore Rudilosso
Brain Sci. 2025, 15(8), 804; https://doi.org/10.3390/brainsci15080804 - 28 Jul 2025
Abstract
Background: Vascular risk factors (VRFs) are known to influence cerebral small vessel disease (cSVD) burden and progression. However, their specific impact on the presence and distribution of each cSVD imaging marker (white matter hyperintensity [WMH], perivascular spaces [PVSs], lacunes, and cerebral microbleeds [...] Read more.
Background: Vascular risk factors (VRFs) are known to influence cerebral small vessel disease (cSVD) burden and progression. However, their specific impact on the presence and distribution of each cSVD imaging marker (white matter hyperintensity [WMH], perivascular spaces [PVSs], lacunes, and cerebral microbleeds [CMBs]) and their spatial distribution remains unclear. Methods: We conducted a retrospective analysis of 93 patients with lacunar stroke with a standardized investigational magnetic resonance imaging protocol using a 3T scanner. WMH and PVSs were segmented semi-automatically, and lacunes and CMBs were manually segmented. We assessed the univariable associations of four common VRFs (hypertension, hyperlipidemia, diabetes, and smoking) with the load of each cSVD marker. Then, we assessed the independent associations of these VRFs in multivariable regression models adjusted for age and sex. Spatial lesion patterns were explored with regional volumetric comparisons using Pearson’s coefficient analysis, which was adjusted for multiple comparisons, and by visually examining heatmap lesion distributions. Results: Hypertension was the VRF that exhibited stronger associations with the cSVD markers in the univariable analysis. In the multivariable analysis, only lacunes (p = 0.009) and PVSs in the basal ganglia (p = 0.014) and white matter (p = 0.016) were still associated with hypertension. In the regional analysis, hypertension showed a higher WMH load in deep structures and white matter, particularly in the posterior periventricular regions. In patients with hyperlipidemia, WMH was preferentially found in hippocampal regions. Conclusions: Hypertension was confirmed to be the VRF with the most impact on cSVD load, especially for lacunes and PVSs, while the lesion topography was variable for each VRF. These findings shed light on the complexity of cSVD expression in relation to factors detrimental to vascular health. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

16 pages, 11910 KiB  
Article
Characterization and Expression Analysis of β-Glucosidase Gene Under Abiotic Stresses in Pepper (Capsicum annuum L.)
by Jing Wang, Jiaxin Huang, Xu Jia, Zhenxin Hao, Yuancai Yang, Ruxia Tian and Yanping Liang
Genes 2025, 16(8), 889; https://doi.org/10.3390/genes16080889 - 27 Jul 2025
Abstract
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the [...] Read more.
Background: Pepper (Capsicum annuum L.) is highly susceptible to various abiotic stresses during their growth and development, leading to severe reductions in both yield and quality. β-Glucosidase (BGLU) is widely involved in plant growth and development, as well as in the response to abiotic stress. Methods: We performed a genome-wide identification of pepper BGLU (CaBGLU) genes. Phylogenetic analysis included BGLU proteins from Arabidopsis, tomato, and pepper. Gene structures, conserved motifs, and promoter cis-elements were analyzed bioinformatically. Synteny within the pepper genome was assessed. Protein-protein interaction potential was predicted. Gene expression patterns were analyzed across tissues and under abiotic stresses using transcriptomic data and qRT-PCR. Subcellular localization of a key candidate protein CaBGLU21 was confirmed experimentally. Results: We identified 32 CaBGLU genes unevenly distributed across eight chromosomes. Phylogenetic classification of 99 BGLU proteins into 12 subfamilies revealed an uneven distribution of CaBGLUs across six subfamilies. Proteins within subfamilies shared conserved motifs and gene structures. CaBGLU promoters harbored abundant light-, hormone- (MeJA, ABA, SA, GA), and stress-responsive elements (including low temperature). A duplicated gene pair (CaBGLU19/CaBGLU24) was identified. 27 CaBGLU proteins showed potential for interactions. Expression analysis indicated CaBGLU5 and CaBGLU30 were mesophyll-specific, while CaBGLU21 was constitutively high in non-leaf tissues. CaBGLU21 was consistently upregulated by cold, heat, and ABA. Subcellular localization confirmed CaBGLU21 resides in the tonoplast. Conclusions: This comprehensive analysis characterizes the pepper BGLU gene family. CaBGLU21, exhibiting constitutive expression in non-leaf tissues, strong upregulation under multiple stresses, and tonoplast localization, emerges as a prime candidate gene for further investigation into abiotic stress tolerance mechanisms in pepper. The findings provide a foundation for future functional studies and stress-resistant pepper breeding. Full article
(This article belongs to the Special Issue Molecular Adaptation and Evolutionary Genetics in Plants)
Show Figures

Figure 1

13 pages, 1220 KiB  
Article
Uncertainty Evaluation of Two-Dimensional Horizontal Distributed Photometric Sensor Based on MCM for Illuminance Measurement Task
by Jianguo Sun, Yueyao Wang, Yinbao Cheng, Guanghu Zhu, Jianwen Shao and Yuebing Sha
Sensors 2025, 25(15), 4648; https://doi.org/10.3390/s25154648 - 27 Jul 2025
Abstract
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This [...] Read more.
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This paper addresses the problem of uncertainty evaluation in photometric parameter measurement with a two-dimensional horizontal distributed photometric sensor and proposes an uncertainty evaluation framework for this task. We have established an uncertainty analysis model for the measurement system and provided two uncertainty synthesis methods, The Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method. This study designed illuminance measurement experiments to validate the feasibility of the proposed uncertainty evaluation method. The results demonstrate that the actual probability distribution of the measurement data follows a trapezoidal distribution. Furthermore, the expanded uncertainty calculated using the GUM method was 21.1% higher than that obtained by the MCM. This work effectively addresses the uncertainty evaluation challenge for illuminance measurement tasks using a two-dimensional horizontal distributed photometric sensor. The findings offer valuable reference for the uncertainty assessment of other high-precision optical instruments and possess significant engineering value in enhancing the reliability of optical metrology systems. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

13 pages, 1520 KiB  
Article
Dynamic vs. Static Light Scattering: Evaluating the Tandem Use of Dynamic Light Scattering and Optical Microscopy as an Attractive Alternative for Oleosomes Size Characterization
by Idit Yuli, Lotan Ben Yakov, Ariel Gliksberg and Paul Salama
Cosmetics 2025, 12(4), 158; https://doi.org/10.3390/cosmetics12040158 - 25 Jul 2025
Viewed by 148
Abstract
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy [...] Read more.
Accurate characterization of oleosome particle size distribution is needed for understanding their functionality in various applications. Traditionally, high-cost methods such as static laser diffraction and confocal or electron microscopy have been used. The current study presents a cost-effective alternative by combining optical microscopy (OM) with image analysis and dynamic light scattering (DLS) to evaluate particle size distribution in safflower (Carthamus tinctorius) oleosomes. Monodisperse and polydisperse standards (2 µm and 1–10 µm, respectively) were selected to validate instrument performance. The use of a smaller cuvette with a shorter path length in DLS extended its detection capabilities by minimizing multiple scattering and thermal effects. DLS and OM produced relatively consistent results, accurate particles’ diameters and distribution widths that agreed well with the standards. In contrast, static light scattering (SLS) showed strong sensitivity to the weighting method used (by number vs. by volume). In the case of polydisperse standard, volume-weighted SLS overestimated the particle size and yielded a broader distribution with a span of 2.2 compared to a span value of 0.8 as reported by the supplier. These findings highlight the importance of method selection and demonstrate the potential of combining DLS and OM as a practical and reliable approach for oleosome characterization. Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

24 pages, 5977 KiB  
Article
An Investigation into the Evolutionary Characteristics and Expression Patterns of the Basic Leucine Zipper Gene Family in the Endangered Species Phoebe bournei Under Abiotic Stress Through Bioinformatics
by Yizhuo Feng, Almas Bakari, Hengfeng Guan, Jingyan Wang, Linping Zhang, Menglan Xu, Michael Nyoni, Shijiang Cao and Zhenzhen Zhang
Plants 2025, 14(15), 2292; https://doi.org/10.3390/plants14152292 - 25 Jul 2025
Viewed by 199
Abstract
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This [...] Read more.
The bZIP gene family play a crucial role in plant growth, development, and stress responses, functioning as transcription factors. While this gene family has been studied in several plant species, its roles in the endangered woody plant Phoebe bournei remain largely unclear. This study comprehensively analyzed the PbbZIP gene family in P. bournei, identifying 71 PbbZIP genes distributed across all 12 chromosomes. The amino acid count in these genes ranged from 74 to 839, with molecular weights varying from 8813.28 Da to 88,864.94 Da. Phylogenetic analysis categorized the PbbZIP genes into 12 subfamilies (A-K, S). Interspecific collinearity analysis revealed homologous PbbZIP genes between P. bournei and Arabidopsis thaliana. A promoter cis-acting element analysis indicated that PbbZIP genes contain various elements responsive to plant hormones, stress signals, and light. Additionally, expression analysis of public RNA-seq data showed that PbbZIP genes are distributed across multiple tissues, exhibiting distinct expression patterns specific to root bark, root xylem, stem bark, stem xylem, and leaves. We also performed qRT-PCR analysis on five representative PbbZIP genes (PbbZIP14, PbbZIP26, PbbZIP32, PbbZIP67, and PbbZIP69). The results demonstrated significant differences in the expression of PbbZIP genes under various abiotic stress conditions, including salt stress, heat, and drought. Notably, PbbZIP67 and PbbZIP69 exhibited robust responses under salt or heat stress conditions. This study confirmed the roles of the PbbZIP gene family in responding to various abiotic stresses, thereby providing insights into its functions in plant growth, development, and stress adaptation. The findings lay a foundation for future research on breeding and enhancing stress resistance in P. bournei. Full article
(This article belongs to the Special Issue Advances in Forest Tree Genetics and Breeding)
Show Figures

Figure 1

13 pages, 1881 KiB  
Article
Transforming Rice Husk Ash into Road Safety: A Sustainable Approach to Glass Microsphere Production
by Ingrid Machado Teixeira, Juliano Pase Neto, Acsiel Budny, Luis Enrique Gomez Armas, Chiara Valsecchi and Jacson Weber de Menezes
Ceramics 2025, 8(3), 93; https://doi.org/10.3390/ceramics8030093 - 24 Jul 2025
Viewed by 167
Abstract
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This [...] Read more.
Glass microspheres are essential components in horizontal road markings due to their retroreflective properties, enhancing visibility and safety under low-light conditions. Traditionally produced from soda-lime glass made with high-purity silica from sand, their manufacturing raises environmental concerns amid growing global sand scarcity. This study explores the viability of rice husk ash (RHA)—a high-silica byproduct of rice processing—as a sustainable raw material for microsphere fabrication. A glass composition containing 70 wt% SiO2 was formulated using RHA and melted at 1500 °C. Microspheres were produced through flame spheroidization and characterized following the Brazilian standard NBR 16184:2021 for Type IB beads. The RHA-derived microspheres exhibited high sphericity, appropriate size distribution (63–300 μm), density of 2.42 g/cm3, and the required acid resistance. UV-Vis analysis confirmed their optical transparency, and the refractive index was measured as 1.55 ± 0.03. Retroreflectivity tests under standardized conditions revealed performance comparable to commercial counterparts. These results demonstrate the technical feasibility of replacing conventional silica with RHA in glass microsphere production, aligning with circular economy principles and promoting sustainable infrastructure. Given Brazil’s significant rice production and corresponding RHA availability, this approach offers both environmental and socio-economic benefits for road safety and material innovation. Full article
(This article belongs to the Special Issue Ceramics in the Circular Economy for a Sustainable World)
Show Figures

Graphical abstract

21 pages, 2108 KiB  
Article
Indoor Environmental Quality in Tanzanian Secondary Schools: Objective Baseline Measurements
by Oluyemi Toyinbo, Eunice Jengo, Xuzel Villavicencio Peralta and Björn Haßler
Atmosphere 2025, 16(8), 902; https://doi.org/10.3390/atmos16080902 - 24 Jul 2025
Viewed by 99
Abstract
This study assessed the baseline indoor environmental quality (IEQ) of secondary school classrooms in Tanzania by measuring temperature, relative humidity, noise, lighting, and indoor air quality. Objective measurements were conducted using calibrated sensors in 14 classrooms across five schools, with data collected during [...] Read more.
This study assessed the baseline indoor environmental quality (IEQ) of secondary school classrooms in Tanzania by measuring temperature, relative humidity, noise, lighting, and indoor air quality. Objective measurements were conducted using calibrated sensors in 14 classrooms across five schools, with data collected during occupied school hours and additional noise measurements during unoccupied periods. All classrooms are naturally ventilated through operable windows and doors. The findings reveal a pattern of cumulative IEQ deficiencies: classroom temperatures frequently exceeded the recommended 20–24 °C range, reaching means as high as 30.4 °C, while relative humidity varied widely, with levels occasionally surpassing 65%. Noise levels consistently exceeded the World Health Organization (WHO)’s recommended 35 dBA threshold, with significant differences observed between occupied and unoccupied periods (p = 0.02). Light distribution was uneven, with significantly higher lux levels near windows than at classroom centers (p < 0.001), and artificial lighting was generally insufficient due to infrastructure limitations. Although CO2 concentrations remained below the 1000 ppm threshold, indicating adequate ventilation, particulate matter levels were often elevated, with PM2.5 reaching up to 58.80 µg/m3 and PM10 up to 96.90 µg/m3, exceeding health-based guidelines. Together, these findings suggest that students are exposed to multiple environmental stressors that may impair health, comfort, and academic performance. This study provides a critical baseline for future research and context-specific interventions aimed at improving learning environments in Tanzanian schools and similar settings in East Africa. Full article
(This article belongs to the Special Issue Indoor Environmental Quality, Health and Performance)
Show Figures

Graphical abstract

14 pages, 492 KiB  
Article
Learnable Priors Support Reconstruction in Diffuse Optical Tomography
by Alessandra Serianni, Alessandro Benfenati and Paola Causin
Photonics 2025, 12(8), 746; https://doi.org/10.3390/photonics12080746 - 24 Jul 2025
Viewed by 135
Abstract
Diffuse Optical Tomography (DOT) is a non-invasive medical imaging technique that makes use of Near-Infrared (NIR) light to recover the spatial distribution of optical coefficients in biological tissues for diagnostic purposes. Due to the intense scattering of light within tissues, the reconstruction process [...] Read more.
Diffuse Optical Tomography (DOT) is a non-invasive medical imaging technique that makes use of Near-Infrared (NIR) light to recover the spatial distribution of optical coefficients in biological tissues for diagnostic purposes. Due to the intense scattering of light within tissues, the reconstruction process inherent to DOT is severely ill-posed. In this paper, we propose to tackle the ill-conditioning by learning a prior over the solution space using an autoencoder-type neural network. Specifically, the decoder part of the autoencoder is used as a generative model. It maps a latent code to estimated physical parameters given in input to the forward model. The latent code is itself the result of an optimization loop which minimizes the discrepancy of the solution computed by the forward model with available observations. The structure and interpretability of the latent space are enhanced by minimizing the rank of its covariance matrix, thereby promoting more effective utilization of its information-carrying capacity. The deep learning-based prior significantly enhances reconstruction capabilities in this challenging domain, demonstrating the potential of integrating advanced neural network techniques into DOT. Full article
Show Figures

Figure 1

23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 124
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

18 pages, 4721 KiB  
Article
Study on Stability and Fluidity of HPMC-Modified Gangue Slurry with Industrial Validation
by Junyu Jin, Xufeng Jin, Yu Wang and Fang Qiao
Materials 2025, 18(15), 3461; https://doi.org/10.3390/ma18153461 - 23 Jul 2025
Viewed by 230
Abstract
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work [...] Read more.
HPMC, regulating slurry properties, is widely used in cement-based materials. Research on the application of HPMC in gangue slurry is still in its early stages. Moreover, the interactive effects of various factors on gangue slurry performance have not been thoroughly investigated. The work examined the effects of slurry concentration (X1), maximum gangue particle size (X2), and HPMC dosage (X3) on slurry performance using response surface methodology (RSM). The microstructure of the slurry was characterized via scanning electron microscopy (SEM) and polarized light microscopy (PLM), while low-field nuclear magnetic resonance (LF-NMR) was employed to analyze water distribution. Additionally, industrial field tests were conducted. The results are presented below. (1) X1 and X3 exhibited a negative correlation with layering degree and slump flow, while X2 showed a positive correlation. Slurry concentration had the greatest impact on slurry performance, followed by maximum particle size and HPMC dosage. HPMC significantly improved slurry stability, imposing the minimum negative influence on fluidity. Interaction terms X1X2 and X1X3 significantly affected layering degree and slump flow, while X2X3 significantly affected layering degree instead of slump flow. (2) Derived from the RSM, the statistical models for layering degree and slump flow define the optimal slurry mix proportions. The gangue gradation index ranged from 0.40 to 0.428, with different gradations requiring specific slurry concentration and HPMC dosages. (3) HPMC promoted the formation of a 3D floc network structure of fine particles through adsorption-bridging effects. The spatial supporting effect of the floc network inhibited the sedimentation of coarse particles, which enhanced the stability of the slurry. Meanwhile, HPMC only converted a small amount of free water into floc water, which had a minimal impact on fluidity. HPMC addition achieved the synergistic optimization of slurry stability and fluidity. (4) Field industrial trials confirmed that HPMC-optimized gangue slurry demonstrated significant improvements in both stability and flowability. The optimized slurry achieved blockage-free pipeline transportation, with a maximum spreading radius exceeding 60 m in the goaf and a maximum single-borehole backfilling volume of 2200 m3. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

38 pages, 9589 KiB  
Article
Identification of Interactions Between the Effects of Geodynamic Activity and Changes in Radon Concentration as Markers of Seismic Events
by Lidia Fijałkowska-Lichwa, Damian Kasza, Marcin Zając, Tadeusz A. Przylibski and Marek Kaczorowski
Appl. Sci. 2025, 15(15), 8199; https://doi.org/10.3390/app15158199 - 23 Jul 2025
Viewed by 126
Abstract
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset [...] Read more.
This article describes the interactions between radon emissions and tectonic movements that accompany seismic activity as a function of time. The interpretation is based on advanced data analysis methods, such as Fourier wavelet transform, SGolay correlation analysis, and time-based data categorization. The dataset comprised the measurement results of 222Rn activity concentrations and the effects of the tectonic activity of rock masses acquired from two water-tube tiltmeters and five SRDN-3 radon probes. The analysis included four seismic events with moderate and light magnitudes (≥4.0), with a hypocenter at a depth of 1–10 km, located approximately 75 km from the research site. Each seismic shock had a different distribution of rock mass phases recorded by the integrated (probe-tiltmeter) measurement system. The results indicate that at the research site, the radon-tectonic signal is best identified between 25 and 48 h and between 49 and 72 h before the seismic shock. Positive correlations between the tectonic signal and the radon signal associated with the tension phase in the rock mass and negative correlations between the tectonic signal and the radon signal associated with the compression phase allow the description of the behavior of the rock mass before the seismic shock. Mixed correlations (positive and negative) indicate that both the stress and strain phases of the rock mass are recorded. The observed correlations seem particularly promising, as they can be recorded already 1–3 days before the seismic event, allowing an appropriately early response to the expected seismic event. Full article
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Untargeted Metabolomics Reveals Distinct Anthocyanin Profiles in Napier Grass (Pennisetum purpureum Schumach.) Cultivars
by Zhi-Yue Wang, Pei-Yin Lin, Chwan-Yang Hong, Kevin Chi-Chung Chou and Ting-Jang Lu
Foods 2025, 14(15), 2582; https://doi.org/10.3390/foods14152582 - 23 Jul 2025
Viewed by 180
Abstract
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for [...] Read more.
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for the untargeted detection of anthocyanins, a group of secondary metabolites, in napier grass. Clear MS2 fragmentation patterns were observed for anthocyanins, characterized by diagnostic aglycone signals and sequential losses of hexosyl (C6H10O5), deoxyhexosyl (C6H10O4), pentosyl (C5H8O4), and p-coumaroyl groups (C9H8O3). Based on matching with authentic standards and an in-house database, ten anthocyanins were identified, seven of which were newly reported in napier grass. In a single-laboratory validation analysis, both absolute and semi-quantitative results reliably reflected the specific distribution of metabolites across different cultivars and plant organs. The purple cultivar (TS5) exhibited the highest anthocyanin content, with the cyanidin 3-O-glucoside content reaching 5.0 ± 0.5 mg/g, whereas the green cultivar (TS2), despite its less pigmented appearance, contained substantial amounts of malvidin 3-O-arabinoside (0.7 ± <0.1 mg/g). Flavonoid profiling revealed that monoglycosylated anthocyanins were the dominant forms in floral tissues. These findings shed light on napier grass metabolism and support future Poaceae breeding and functional food development. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

17 pages, 3842 KiB  
Article
The Influence of Summer Cyclonic Circulation in the Southern Gulf of California on Planktonic Copepod Communities
by Franco Antonio Rocha-Díaz, María Adela Monreal-Gómez, Erik Coria-Monter, David Alberto Salas-de-León, Elizabeth Durán-Campos and Sergio Cházaro-Olvera
J. Mar. Sci. Eng. 2025, 13(8), 1394; https://doi.org/10.3390/jmse13081394 - 23 Jul 2025
Viewed by 149
Abstract
This study evaluated how the summer circulation pattern in the Southern Gulf of California influences copepod communities. The evaluation was based on hydrographic data and zooplankton samples collected during a multidisciplinary research cruise conducted in June and July of 2019. The results revealed [...] Read more.
This study evaluated how the summer circulation pattern in the Southern Gulf of California influences copepod communities. The evaluation was based on hydrographic data and zooplankton samples collected during a multidisciplinary research cruise conducted in June and July of 2019. The results revealed the presence of a cyclonic circulation with a diameter of approximately 100 km, located near the entrance of the Gulf, affecting the upper 200 m layer. A total of 30 copepod species were identified, including 20 from the order Calanoida and 10 from Cyclopoida. The most abundant Calanoida species were Canthocalanus pauper, Clausocalanus furcatus, and Subeucalanus subcrassus, with respective densities of 2316.80, 1593.60, and 1584.64 ind m−3. The most abundant Cyclopoida species were Oithona setigera, Dioithona rigida, and Oncaea venusta, which had densities of 963.44, 290.56, and 235.52 ind m−3, respectively. The horizontal distribution of these species showed variations influenced by the cyclonic circulation. Specifically, low abundance values were observed at the center of cyclonic circulation, while higher values were found at its periphery. This pattern was consistent among the dominant species, indicating that they do not benefit from the cold subsurface waters induced by circulation. In fact, the distribution of some species was higher in a band of warm water located in the eastern portion of the study area. Overall, our findings shed light on how the summer cyclonic circulation in the Southern Gulf of California affects the copepod community, an aspect that has not been previously explored. This research enhances our understanding of the processes influencing this group of organisms in a highly dynamic environment. Full article
(This article belongs to the Special Issue Mesozooplankton Ecology in Marine Environments)
Show Figures

Figure 1

14 pages, 959 KiB  
Article
Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e Colliders
by Emanuela Musumeci, Adrián Irles, Redamy Pérez-Ramos, Imanol Corredoira, Edward Sarkisyan-Grinbaum, Vasiliki A. Mitsou and Miguel Ángel Sanchis-Lozano
Physics 2025, 7(3), 30; https://doi.org/10.3390/physics7030030 - 22 Jul 2025
Viewed by 226
Abstract
Future e+e colliders are expected to play a fundamental role in measuring Standard Model (SM) parameters with unprecedented precision and in probing physics beyond the SM (BSM). This study investigates two-particle angular correlation distributions involving final-state SM charged hadrons. Unexpected [...] Read more.
Future e+e colliders are expected to play a fundamental role in measuring Standard Model (SM) parameters with unprecedented precision and in probing physics beyond the SM (BSM). This study investigates two-particle angular correlation distributions involving final-state SM charged hadrons. Unexpected correlation structures in these distributions is considered to be a hint for new physics perturbing the QCD partonic cascade and thereby modifying azimuthal and (pseudo)rapidity correlations. Using Pythia8 Monte Carlo generator and fast simulation, including selection cuts and detector effects, we study potential structures in the two-particle angular correlation function. We adopt the QCD-like Hidden Valley (HV) scenario as implemented in Pythia8 generator, with relatively light HV v-quarks (below about 100 GeV), to illustrate the potential of this method. Full article
(This article belongs to the Section High Energy Physics)
Show Figures

Figure 1

Back to TopTop