Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e− Colliders
Abstract
1. Introduction
2. Two-Particle Angular Correlations
3. Hidden Valley Phenomenology
4. Analysis at Detector Level
- : constraints are set on the number of displaced vertices per jet (to equal to 0) and the number of neutral and charged PFOs (below 22 and below 15, respectively);
- : cuts are applied on the reconstructed ISR photon candidates angle () and energy ( 40 GeV);
- : constraints on the di-jet invariant mass ( GeV) and on the energy of the most energetic jet ( GeV);
- : a thrust value is imposed.
5. Prospects on the Experimental Sensitivity
6. Different Energies and Colliders
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALEPH | Apparatus for LEP PHysics (detector, experiment and Collaboration) |
Belle | name (experiment and Collaboration) |
BSM | beyond the SM |
BNL | Brookhaven National Laboratory |
B1 | selection criterion (see text) |
CERN | European Organization for Nuclear Research |
CepC | Circular Electron Positron Collider |
CGC | color glass condensate |
c.m. | center-of-mass |
cont. | continuum (see text) |
Herwig | Hadron Emission Reactions With Interfering Gluons (high-energy physics Monte Carlo generator) |
FCC | Future Circular Collider |
HV | Hidden valley |
H20 | name (ILC program of single-Higgs measurements) |
ISR | initial state radiation |
ILC | International Linear Collider |
ILD | International Large Detector |
inv | invariant |
LHC | Large Hadron Collider |
NP | new physics |
PFO | particle flow object |
Pythia | name (high-energy physics Monte Carlo generator) |
QCD | quantum chromodynamics |
RHIC | Relativistic Heavy Ion Collider |
RMS | root mean square |
RR | radiative return |
SGV | Simulation à Grande Vitesse |
SM | Standard Model |
S1, S2, S3 | selection criteria (see text) |
References
- Kittel, W.; De Wolf, E.A. Soft Multihadron Dynamics; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2005. [Google Scholar] [CrossRef]
- Botet, R.; Ploszajczak, M. Universal Fluctuations: The Phenomenology of Hadronic Matter; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2002. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2005, 95, 152301. [Google Scholar] [CrossRef] [PubMed]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bindel, R.; Busza, W.; Chai, Z.; Chetluru, V.; et al. System size dependence of cluster properties from two-particle angular correlations in Cu + Cu and Au + Au collisions at √sNN = 200 GeV. Phys. Rev. C 2010, 81, 024904. [Google Scholar] [CrossRef]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Busza, W.; Carrol, A.; et al. High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au + Au collisions at √sNN = 200GeV. Phys. Rev. Lett. 2010, 104, 062301. [Google Scholar] [CrossRef] [PubMed]
- Abelev, B.I. et al. [STAR Collaboration] Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. C 2009, 80, 064912. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration] Elliptic flow of charged particles in Pb–Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 2010, 105, 252302. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S. et al. [The CMS Collaboration] Long-range and short-range dihadron angular correlations in central PbPb collisions at √sNN = 2.76 TeV. J. High Energy Phys. 2011, 2011, 76. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [The CMS Collaboration] Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at √sNN = 2.76 TeV. Eur. Phys. J. C 2012, 72, 2012. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead–lead collisions with the ATLAS detector. Phys. Rev. C 2012, 86, 014907. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [The CMS Collaboration] Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at √sNN = 2.76 TeV. J. High Energy Phys. 2014, 2014, 88. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [The CMS Collaboration] Observation of long-range, near-side angular correlations in proton–proton collisions at the LHC. J. High Energy Phys. 2010, 2010, 91. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Observation of long-range, near-side angular correlations in pPb collisions at the LHC. Phys. Lett. B 2013, 718, 795–814. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Long-range angular correlations on the near and away side in p–Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B 2013, 719, 29–41. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Observation of associated near-side and away-side long-range correlations in √sNN = 5.02 TeV proton–lead collisions with the ATLAS detector. Phys. Rev. Lett. 2013, 110, 182302. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S. et al. [CMS Collaboration] Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb ollisions. Phys. Lett. B 2013, 724, 213–240. [Google Scholar] [CrossRef]
- Abelev, B.B. et al. [ALICE Collaboration] Long-range angular correlations of π, K and p in p–Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B 2013, 726, 164–177. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. B 2015, 742, 200–224. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Evidence for collective multiparticle correlations in p–Pb collisions. Phys. Rev. Lett. 2015, 115, 012301. [Google Scholar] [CrossRef] [PubMed]
- Aad, G. et al. [ATLAS Collaboration] Observation of long-range elliptic azimuthal anisotropies in √s = 13 and 2.76 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 2016, 116, 172301. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, V. et al. [CMS Collaboration] Measurement of long-range near-side two-particle angular correlations in pp collisions at √s = 13 TeV. Phys. Rev. Lett. 2016, 116, 172302. [Google Scholar] [CrossRef] [PubMed]
- Aaij, R. et al. [LHCb Collaboration] Measurements of long-range near-side angular correlations in √sNN = 5 TeV proton–lead collisions in the forward region. Phys. Lett. B 2016, 762, 473–483. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [The CMS Collaboration] Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, 765, 193–220. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [ATLAS Collaboration] Measurement of multi-particle azimuthal correlations in pp, p+Pb and low-multiplicity Pb+Pb collisions with the ATLAS detector. Eur. Phys. J. C 2017, 77, 428. [Google Scholar] [CrossRef] [PubMed]
- Aaboud, M. et al. [ATLAS Collaboration] Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and p+Pb collisions with the ATLAS detector at the CERN Large Hadron Collider. Phys. Rev. C 2018, 97, 024904. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Measurement of the sensitivity of two-particle correlations in pp collisions to the presence of hard scatterings. Phys. Rev. Lett. 2023, 131, 162301. [Google Scholar] [CrossRef] [PubMed]
- Hayrapetyan, A. et al. [CMS Collaboration] Observation of enhanced long-range elliptic anisotropies inside high-multiplicity jets in pp collisions at √s = 13 TeV. Phys. Rev. Lett. 2024, 133, 142301. [Google Scholar] [CrossRef] [PubMed]
- The CMS Collaboration. Unveiling the Dynamics of Long-Range Correlations in High-Multiplicity Jets Through Substructure Engineering in pp Collisions at √s = 13 TeV; Report CMS PAS HIN-24-2024; CERN: Geneva, Switzerland, 2025; Available online: https://cds.cern.ch/record/2930797 (accessed on 3 July 2025).
- Shuryak, E.V. Origin of the ’ridge’ phenomenon induced by jets in heavy ion collisions. Phys. Rev. C 2007, 76, 047901. [Google Scholar] [CrossRef]
- Dumitru, A.; Gelis, F.; McLerran, L.; Venugopalan, R. Glasma flux tubes and the near side ridge phenomenon at RHIC. Nucl. Phys. A 2008, 810, 91–108. [Google Scholar] [CrossRef]
- Bożek, P.; Broniowski, W. Collective dynamics in high-energy proton–nucleus collisions. Phys. Rev. C 2013, 88, 014903. [Google Scholar] [CrossRef]
- Dusling, K.; Li, W.; Schenke, B. Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 2016, 25, 1630002. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.-A.; Sarkisyan-Grinbaum, E. A correlated-cluster model and the ridge phenomenon in hadron–hadron collisions. Phys. Lett. B 2017, 766, 170–176. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.-A.; Sarkisyan-Grinbaum, E. Ridge effect and three-particle correlations. Phys. Rev. D 2017, 96, 074012. [Google Scholar] [CrossRef]
- Noronha, J.; Schenke, B.; Shen, C.; Zhao, W. Progress and challenges in small systems. Int. J. Mod. Phys. E 2024, 33, 2430005. [Google Scholar] [CrossRef]
- Badea, A.; Baty, A.; Chang, P.; Innocenti, G.M.; Maggi, M.; Mcginn, C.; Peters, M.; Sheng, T.-A.; Thaler, J.; Lee, Y.-J. Measurements of two-particle correlations in e+e- collisions at 91 GeV with ALEPH archived data. Phys. Rev. Lett. 2019, 123, 212002. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C. et al. [Belle Collaboration] Measurement of two-particle correlations of hadrons in e+e- collisions at Belle. Phys. Rev. Lett. 2022, 128, 142005. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C. et al. [The Belle Collaboration] Two-particle angular correlations in e+e- collisions to hadronic final states in two reference coordinates at Belle. J. High Energy Phys. 2023, 2023, 171. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chen, Y.; Badea, A.; Baty, A.; Innocenti, G.M.; Maggi, M.; McGinn, C.; Peters, M.; Sheng, T.-A.; Thaler, J.; et al. Long-range near-side correlation in e+e- collisions at 183–209 GeV with ALEPH archived data. Phys. Lett. B 2024, 856, 138957. [Google Scholar] [CrossRef]
- Gelis, F.; Iancu, E.; Jalilian-Marian, J.; Venugopalan, R. The color glass condensate. Ann. Rev. Nucl. Part. Sci. 2010, 60, 463–489. [Google Scholar] [CrossRef]
- Strassler, M.J.; Zurek, K.M. Echoes of a hidden valley at hadron colliders. Phys. Lett. B 2007, 651, 374–379. [Google Scholar] [CrossRef]
- Pérez-Ramos, R.; Sanchis-Lozano, M.-A.; Sarkisyan-Grinbaum, E.K. Searching for hidden matter with long-range angular correlations at e+e- colliders. Phys. Rev. D 2022, 105, 053001. [Google Scholar] [CrossRef]
- Lagouri, T. Review on Higgs Hidden–Dark Sector physics at High-Energy Colliders. Symmetry 2022, 14, 1299. [Google Scholar] [CrossRef]
- Strassler, M.J. Why unparticle models with mass gaps are examples of hidden valleys. arXiv 2008. [Google Scholar] [CrossRef]
- Knapen, S.; Griso, S.P.; Papucci, M.; Robinson, D.J. Triggering soft bombs at the LHC. J. High Energy Phys. 2017, 2017, 76. [Google Scholar] [CrossRef]
- Albouy, G.; Barron, J.; Beauchesne, H.; Bernreuther, E.; Bona, M.; Cazzaniga, C.; Cesarotti, C.; Cohen, T.; de Cosa, A.; Curtin, D.; et al. Theory, phenomenology, and experimental avenues for dark showers: A Snowmass 2021 report. Eur. Phys. J. C 2022, 82, 1132. [Google Scholar] [CrossRef]
- Beauchesne, H.; Bertuzzo, E.; Grilli di Cortona, G. Dark matter in Hidden Valley models with stable and unstable light dark mesons. J. High Energy Phys. 2019, 2019, 118. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, 191, 159–177. [Google Scholar] [CrossRef]
- Berggren, M. SGV 3.0—A fast detector simulation. arXiv 2012, arXiv:1203.0217. [Google Scholar] [CrossRef]
- Abramowicz, H. et al. [The ILD Concept Group] International Large Detector: Interim Design Report. arXiv 2020. [Google Scholar] [CrossRef]
- Gaede, F. Marlin and LCCD—Software tools for the ILC. Nucl. Instrum. Meth. Phys. Res. A Acceler. Spectrom. Detect. Assoc. Equip. 2006, 559, 177–180. [Google Scholar] [CrossRef]
- Thomson, M.A. Particle flow calorimetry and the PandoraPFA algorithm. Nucl. Instrum. Instrum. Meth. Phys. Res. A Acceler. Spectrom. Detect. Assoc. Equip. 2009, 611, 25–40. [Google Scholar] [CrossRef]
- Musumeci, E.; Perez-Ramos, R.; Irles, A.; Corredoira, I.; Mitsou, V.A.; Sarkisyan-Grinbaum, E.; Sanchis-Lozano, M.A. Two-particle angular correlations in the search for new physics at future e+e- colliders. In Proceedings of the International Workshop on Future Linear Colliders—LCWS 2023, Menlo Park, CA, USA, 15–19 May 2023. Brau, J.E., Ed.; SLAC eConf C23-05-15.3, online. [Google Scholar] [CrossRef]
- Irles, A.; Márquez, J.P.; Pöschl, R.; Richard, F.; Saibel, A.; Yamamoto, H.; Yamatsu, N. Probing gauge-Higgs unification models at the ILC with quark–antiquark forward–backward asymmetry at center-of-mass energies above the Z mass. Eur. Phys. J. C 2024, 84, 537. [Google Scholar] [CrossRef]
- Bambade, P.; Barklow, T.; Behnke, T.; Berggen, M.; Brau, J.; Burrows, P.; Denisov, D.; Faus-Golfe, A.; Foster, B.; Fujii, K.; et al. The International Linear Collider: A Global Project. arXiv 2019, arXiv:1903.01629. [Google Scholar] [CrossRef] [PubMed]
- Bähr, M.; Gieseke, S.; Gigg, M.A.; Grellscheid, D.; Hamilton, K.; Latunde-Dada, O.; Plätzer, S.; Richardson, P.; Seymour, M.H.; Sherstnev, A.; et al. Herwig++ physics and manual. Eur. Phys. J. C 2008, 58, 639–707. [Google Scholar] [CrossRef]
- Bellm, J.; Gieske, S.; Grellscheid, D.; Plätzer, S.; Rauch, M.; Reuschle, C.; Richardson, P.; Schichtel, P.; Seymour, M.H.; Siódmok, A.; et al. Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 2016, 76, 196. [Google Scholar] [CrossRef]
- Musumeci, E.; Irles, A.; Perez-Ramos, R.; Corredoira, I.; Sarkisyan-Grinbaum, E.; Mitsou, V.A.; Sanchis-Lozano, M.A. Hidden Sectors at FCC-ee with Two-Particle Angular Correlations; A Contribution to the FCC Feasibility Study in Preparation for the Third European Strategy for Particle Physics Update, January, 2026; CERN: Geneva, Switzerland, 2025. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.-A. Prospects of searching for (un)particles from hidden sectors using rapidity correlations in multiparticle production at the LHC. Int. J. Mod. Phys. A 2009, 24, 4529–4572. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.A.; Sarkisyan-Grinbaum, E.K. Searching for new physics with three-particle correlations in pp collisions at the LHC. Phys. Lett. B 2018, 781, 505–509. [Google Scholar] [CrossRef]
Process | (GeV) | (GeV) | (pb) | Efficiency (%) | |
---|---|---|---|---|---|
125 | 0.1 | 36 | |||
125 | 10 | 36 | |||
125 | 50 | 42 | |||
125 | 100 | 42 | |||
100 | 50 | 1.29 | 42 | ||
80 | 40 | 1.54 | 36 | ||
with ISR | 48 | ≲0.01 | |||
≲0.001 | − |
Efficiency (%) | ||||
---|---|---|---|---|
Cuts | HV | -RR | 4q | -cont. |
S1, i.e., multiplicity cut | 89 | 30 | 64 | 40 |
S1 and S2, i.e., S1 and ISR photon cuts | 42 | 3.8 | 12 | 8.8 |
S1, S2 and S3, i.e., S1, S2, energy and invariant mass cuts | 42 | ≲0.01 | ≲0.001 | − |
S1, S2 and B1, i.e., S1, S2 and thrust cuts | − | − | − | 5.6 |
Model | Process | (pb) | (pb) |
---|---|---|---|
HV | |||
SM | with ISR | 11 | 2.9 |
3.4 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musumeci, E.; Irles, A.; Pérez-Ramos, R.; Corredoira, I.; Sarkisyan-Grinbaum, E.; Mitsou, V.A.; Sanchis-Lozano, M.Á. Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e− Colliders. Physics 2025, 7, 30. https://doi.org/10.3390/physics7030030
Musumeci E, Irles A, Pérez-Ramos R, Corredoira I, Sarkisyan-Grinbaum E, Mitsou VA, Sanchis-Lozano MÁ. Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e− Colliders. Physics. 2025; 7(3):30. https://doi.org/10.3390/physics7030030
Chicago/Turabian StyleMusumeci, Emanuela, Adrián Irles, Redamy Pérez-Ramos, Imanol Corredoira, Edward Sarkisyan-Grinbaum, Vasiliki A. Mitsou, and Miguel Ángel Sanchis-Lozano. 2025. "Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e− Colliders" Physics 7, no. 3: 30. https://doi.org/10.3390/physics7030030
APA StyleMusumeci, E., Irles, A., Pérez-Ramos, R., Corredoira, I., Sarkisyan-Grinbaum, E., Mitsou, V. A., & Sanchis-Lozano, M. Á. (2025). Exploring Hidden Sectors with Two-Particle Angular Correlations at Future e+e− Colliders. Physics, 7(3), 30. https://doi.org/10.3390/physics7030030