Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = light exposure at night

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 575 KiB  
Proceeding Paper
Analysing Aquatic Invertebrate Health in Terms of Artificial Light at Night
by Farhan Jamil and Chayan Munshi
Biol. Life Sci. Forum 2025, 45(1), 3; https://doi.org/10.3390/blsf2025045003 - 1 Aug 2025
Viewed by 207
Abstract
Artificial Light at Night (ALAN) is a recent issue of concern for researchers primarily working on the anthropogenic impacts on animal and ecosystem health. Our concern is associated with the ALAN exposure to an aquatic ecosystem by disrupting the natural dark–light cycle, which [...] Read more.
Artificial Light at Night (ALAN) is a recent issue of concern for researchers primarily working on the anthropogenic impacts on animal and ecosystem health. Our concern is associated with the ALAN exposure to an aquatic ecosystem by disrupting the natural dark–light cycle, which is essential for maintaining the overall health of the ecosystem and its inhabitants. In this study, we have attempted to understand the adverse consequences of ALAN in inducing neuro-behavioural stress in a freshwater prawn species (aquatic arthropod) Macrobrachium lamarrei by considering grooming behaviour, a well-established indicator of neurological stress in animals. Our results show that continuous ALAN exposure (for seven days) can increase collective grooming activity in Macrobrachium lamarrei over time. In our experiment, we have used two intensities of ALAN (50 and 120 lux). Although the response (in terms collective grooming) to both intensities are apparently different, our fundamental hypothesis is confirmed, where it is evident that prolonged light exposure can induce an elevation in cumulative grooming performances in a freshwater prawn population. Full article
Show Figures

Figure 1

25 pages, 5128 KiB  
Article
The Effect of Additional Night and Pre-Harvest Blue and Red LEDs and White Lighting During the Day on the Morphophysiological and Biochemical Traits of Basil Varieties (Ocimum basilicum L.) Under Hydroponic Conditions
by Inna V. Knyazeva, Olga Panfilova, Oksana Vershinina, Ibrahim Kahramanoğlu, Alexander A. Smirnov and Andrey Titenkov
Horticulturae 2025, 11(7), 784; https://doi.org/10.3390/horticulturae11070784 - 3 Jul 2025
Viewed by 408
Abstract
The effect of white and additional red and blue LED lighting at night (Blue-NLL, Red-NLL) and during the pre-harvest period (Blue-P-hLL, Red-P-hLL) on morphological and physiological parameters, elemental composition, content of polyphenols, and essential oils of purple basil cultivars ‘Ararat’ and green basil [...] Read more.
The effect of white and additional red and blue LED lighting at night (Blue-NLL, Red-NLL) and during the pre-harvest period (Blue-P-hLL, Red-P-hLL) on morphological and physiological parameters, elemental composition, content of polyphenols, and essential oils of purple basil cultivars ‘Ararat’ and green basil ‘Tonus’ grown in the hydroponic conditions of the climatic chamber was studied. The height of the plants was determined by the variety and the LED irradiation period. The highest purple basil plants were obtained in the variant with Blue-NLL illumination; the highest green basil plants were obtained under Blue-P-hLL and Red-P-hLL. The red spectrum, regardless of the lighting period and variety, increased the area and number of leaves, biomass, and vegetative productivity. Significant changes in the elemental composition of the vegetative mass of basil varieties were determined by the period of exposure to the red spectrum. Red-P-hLL stimulated the absorption and accumulation of Mg, Ca, S, and P from the nutrient solution, and Red-P-hLL reduced the nitrate content by more than 30.00%. Blue-NLL lighting increased the content of quercetin, rosmarinic acid, and essential oil and reduced the nitrate content in the vegetative mass by more than 40.00%. The effectiveness of the white LED was observed in increasing the vegetative mass of ‘Tonus’. The results of this study will be in demand in the real sector of the economy when improving resource-saving technologies for growing environmentally friendly leafy vegetable crops with improved chemical composition and high vegetative productivity. Full article
Show Figures

Figure 1

17 pages, 360 KiB  
Review
Influence of Sensory Needs on Sleep and Neurodevelopmental Care in At-Risk Neonates
by Axel Hübler
Children 2025, 12(6), 781; https://doi.org/10.3390/children12060781 - 16 Jun 2025
Viewed by 704
Abstract
Objective: The development of a normal sleep–wake rhythm in the first weeks of life depends on the physiological sensory needs of the newborn as well as the environment surrounding them. This includes, for example, avoiding pain, exposure to bright light at night and [...] Read more.
Objective: The development of a normal sleep–wake rhythm in the first weeks of life depends on the physiological sensory needs of the newborn as well as the environment surrounding them. This includes, for example, avoiding pain, exposure to bright light at night and high noise levels. In high-risk newborns, this process can be influenced by immaturity of the central and peripheral nervous systems, therapeutic strategies and the work organization of an intensive care unit. Methods: This study used a narrative review to examine the literature on the interrelationship of sensory modalities on sleep–wake behavior in the context of neonatal intensive care. The current Cochrane reviews on cycled lighting’s effect on premature infants’ circadian rhythm development and noise or sound management in the neonatal intensive care unit, as well as the World Health Organization (WHO) global position paper on kangaroo mother care, were included. Results: An extensive body of literature relates to fetal and neonatal development of the five sensory modalities: touch, taste, smell, hearing and sight. In contrast, there is a lack of evidence regarding the choice of optimal lighting and suitable measures for noise reduction. Since 2023, the WHO has recommended that, from the moment of birth, every “small and sick” newborn should remain in skin-to-skin contact (SSC) with their mother. Developmental support pursues a multimodal approach with the goal of fostering early parent–child bonding, including the child’s needs and environmental conditions. Discussion: The implementation of early SSC and attention to the sleep–wake cycle require systemic changes in both the obstetric and neonatal settings to ensure seamless perinatal management and subsequent neonatal intensive care. Since there is a lack of evidence on the optimal sensory environment, well-designed, well-conducted and fully reported randomized controlled trials are needed that analyze short-term effects and long-term neurodevelopmental outcomes. Full article
(This article belongs to the Special Issue Current Advances in Paediatric Sleep Medicine)
Show Figures

Figure 1

13 pages, 706 KiB  
Review
How Shift Work Affects Our Gut Microbiota: Impact on Gastrointestinal Diseases
by Angela Saviano, Marcello Candelli, Mattia Brigida, Carmine Petruzziello, Pietro Tilli, Francesco Franceschi and Veronica Ojetti
Medicina 2025, 61(6), 995; https://doi.org/10.3390/medicina61060995 - 27 May 2025
Viewed by 907
Abstract
Background and Objectives: Shift work and night work are common among emergency physicians. It is necessary to provide continuous care to patients, especially with acute diseases, including throughout the night. Literature studies show that shift and night workers have an altered light [...] Read more.
Background and Objectives: Shift work and night work are common among emergency physicians. It is necessary to provide continuous care to patients, especially with acute diseases, including throughout the night. Literature studies show that shift and night workers have an altered light exposure, timing of sleep and intake of food. The consequence of this desynchronization with the biological clock can lead these workers to be more exposed to developing some acute and chronic health conditions. In particular, the alteration of the sleep–wake cycle, fatigue, the shortened sleep duration and the misalignment of the body’s hormone production is a codified risk factor of gut dysbiosis that can lead to acute and chronic diseases, also gastrointestinal ones. the aim of this narrative review is to collect and summarize evidence about the association between the disruption of the circadian rhythm, sleep and food timing alterations, gut dysbiosis and the risk of gastrointestinal diseases among shift and night workers. Materials and Methods: we searched for evidence about the association of shift and night work, dysbiosis, gut microbiota and gastrointestinal diseases among shift workers in healthcare settings. Results: shift work and night work are associated with a higher risk of diseases, an inflammatory state and the alteration of the gut microbiota composition; but definitive data are still inconsistent. Conclusions: Until now, obtaining conclusive results in regard to the relationship between shift work, the gut microbiota and the increased risk of gastrointestinal disorders has been particularly complex and not yet feasible. More confirmatory studies are needed to better characterize risk factors and realize preventive measures. Full article
Show Figures

Figure 1

15 pages, 2178 KiB  
Article
Comparative Effects of Red and Blue LED Light on Melatonin Levels During Three-Hour Exposure in Healthy Adults
by Ana Sanchez-Cano, María José Luesma-Bartolomé, Estela Solanas and Elvira Orduna-Hospital
Life 2025, 15(5), 715; https://doi.org/10.3390/life15050715 - 28 Apr 2025
Viewed by 3374
Abstract
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19–55 [...] Read more.
Circadian rhythms, essential for regulating human physiology and behavior, are influenced by light exposure, particularly at night. This study examined the impact of red (631 nm) and blue (464 nm) LED light on melatonin secretion, a key circadian marker. Twelve participants aged 19–55 years were exposed to red and blue light for three hours (9:00 p.m.–midnight), with hourly saliva samples analyzed via ELISA to track melatonin levels. Initially, melatonin levels were comparable under both light conditions. After one hour, both lights suppressed melatonin, but differences emerged after two hours: blue light-maintained suppression, with levels at 7.5 pg/mL, while red light allowed recovery to 26.0 pg/mL (p = 0.019). This pattern persisted at the third hour. Blue light had stronger suppression effects, particularly in younger participants and men. These results underscore blue light’s disruptive effects on circadian health and highlight red light as a less disruptive alternative for nighttime environments. Full article
(This article belongs to the Special Issue Vision Science and Optometry)
Show Figures

Figure 1

17 pages, 6107 KiB  
Article
Heat Stress Downregulates Photosystem I Redox State on Leaf Photosynthesis in Grapevine
by Qian Qiu, Yanli Sun, Dinghan Guo, Lei Wang, Vinay Pagay and Shiping Wang
Agronomy 2025, 15(4), 948; https://doi.org/10.3390/agronomy15040948 - 14 Apr 2025
Cited by 1 | Viewed by 914
Abstract
Semi-arid viticultural regions globally are experiencing severe and frequent growing-season heat waves that negatively impact grapevine (Vitis vinifera L.) physiological performance and productivity. At the leaf level, heat stress can photodamage both Photosystem I (PSI) and Photosystem II (PSII). In order to [...] Read more.
Semi-arid viticultural regions globally are experiencing severe and frequent growing-season heat waves that negatively impact grapevine (Vitis vinifera L.) physiological performance and productivity. At the leaf level, heat stress can photodamage both Photosystem I (PSI) and Photosystem II (PSII). In order to study the self-protection mechanism of grapevine leaves, in this study, 3-year-old potted ‘Merlot’ and ‘Muscat Hamburg’ grapevines were exposed to a 5-day simulated heatwave (45/25 °C day/night) and compared to vines maintained at 25/18 °C. After heat exposure, ‘Merlot’ demonstrated superior thermotolerance and superior physiological performance as measured by gas exchange, oxidative parameters, chlorophyll loss, and photoinhibition of PSI and PSII. Additionally, non-photochemical quenching (NPQ) dissipated the excess light energy in the form of heat. Y(NPQ) progressively rose from 0 to 0.6, signaling the start of the grapevine leaves’ self-defense against temperature stress. Furthermore, the stimulation of cyclic electron flow (CEF) under high temperatures contributed to the energy balance of PSI. The CEF of ‘Muscat Hamburg’ under high light intensities increased dramatically from 1 to 4. NAD(P)H dehydrogenase-dependent CEF around PSI increased markedly, suggesting its role in self-protection. These results demonstrate that both NPQ and CEF play key photoprotective roles by generating a proton gradient under heat stress. Full article
Show Figures

Figure 1

16 pages, 1952 KiB  
Review
Modified Cortisol Circadian Rhythm: The Hidden Toll of Night-Shift Work
by Aikaterini Andreadi, Stella Andreadi, Federica Todaro, Lorenzo Ippoliti, Alfonso Bellia, Andrea Magrini, George P. Chrousos and Davide Lauro
Int. J. Mol. Sci. 2025, 26(5), 2090; https://doi.org/10.3390/ijms26052090 - 27 Feb 2025
Cited by 5 | Viewed by 11223
Abstract
The circadian rhythm of cortisol, a key hormone essential for maintaining metabolic balance and stress homeostasis, is profoundly disrupted by night-shift work. This narrative review examines the physiological mechanisms underlying cortisol regulation, the effects of shift work on its circadian rhythm, the associated [...] Read more.
The circadian rhythm of cortisol, a key hormone essential for maintaining metabolic balance and stress homeostasis, is profoundly disrupted by night-shift work. This narrative review examines the physiological mechanisms underlying cortisol regulation, the effects of shift work on its circadian rhythm, the associated health risks, and potential mitigation strategies. Night-shift work alters the natural secretion pattern of cortisol, leading to dysregulation of the hypothalamic–pituitary–adrenal axis, which in turn can contribute to metabolic disorders, cardiovascular diseases, and impaired cognitive function. Understanding the physiological pathways mediating these changes is crucial for developing targeted interventions to mitigate the adverse effects of circadian misalignment. Potential strategies, such as controlled light exposure, strategic napping, and personalized scheduling, may help to stabilize cortisol rhythms and improve health outcomes. This review aims to provide insights that can guide future research and inform occupational health policies for night-shift workers by addressing these challenges. Full article
(This article belongs to the Special Issue Molecular Mechanism of Circadian Rhythm)
Show Figures

Figure 1

15 pages, 1904 KiB  
Article
Pre-Sowing Seed Treatments with Cold Atmospheric Plasma for the Control of Seedling Blights of Winter Wheat
by Tzenko Vatchev, Ivo Todorov Yanashkov, Plamena Marinova and Evgenia Benova
Processes 2025, 13(3), 632; https://doi.org/10.3390/pr13030632 - 23 Feb 2025
Viewed by 1136
Abstract
A wide range of seed-borne and soil-borne plant pathogens belonging to various fungal and fungal-like species cause pre-emergence seed decay and post-emergence seedling blights of wheat and other small-grain cereal crops. To prevent the death of the seedlings, poor establishment and reduced stand [...] Read more.
A wide range of seed-borne and soil-borne plant pathogens belonging to various fungal and fungal-like species cause pre-emergence seed decay and post-emergence seedling blights of wheat and other small-grain cereal crops. To prevent the death of the seedlings, poor establishment and reduced stand of the crops, extensive crop rotations, planting good-quality seeds and seed treatments with fungicides are used on regular basis. This study is aimed at assessing the efficacy of pre-sowing seed treatments with cold atmospheric plasma for the disinfestation of winter wheat seed from economically important fungal and fungal-like pathogens. Uninoculated or surface-inoculated with Fusarium culmorum, Bipolaris sorokiniana or Pythium ultimum wheat seeds, the cultivar Madara was treated by cold plasma produced either by microwave torch (MW) or underwater diaphragm discharge (UW) with low power at very short treatment times, or remained untreated controls. As per the treatments, the seeds were sown in a ready-to-use growing medium comprising a mixture of light and dark moss peat (w:w) 90–95%, 5–10% perlite and 3–5 kg/m3 CaCO3, having an electrical conductivity of 40 mS/m, pH (H2O) of 5.5–6.5 and moisture content of 60–70%, filling in 250 × 250 × 70 mm aluminum flat seed trays (40 grains per tray, four trays per treatment). The plants were cultivated for 45 days in a growth chamber held at (20 ± 2) °C, set to a cycle of 8 h/night and 16 h/day under fluorescent light of 2000–3000 lux intensity. For each replicate, disease incidence (DI) was determined as the total percentage of missing, dead and apparently symptomatic plants. Seed treatment with a microwave plasma torch with a power of 16 W for 40 s significantly (p < 0.001) reduced seedling blights caused by F. culmorum, B. sorokiniana and P. ultimum by 46.8%, 51.0% and 77.3%, respectively, but limited the emergence of wheat seedlings by 15.9% on average. Simultaneously, the effectiveness of underwater discharge seed treatments reached an average of about a 60% reduction of seedling blight caused by F. culmorum and B. sorokiniana and about 37% of the disease caused by P. ultimum. Pre-sowing treatments with a MW plasma torch with an input power of 11 W and treatment time of 60, 90 or 120 s exposure also showed significant (p < 0.001) effects in controlling winter wheat seedling blights caused by the three pathogens. The effectiveness of the treatment increased with increasing the time period of exposure and reached full disease control (>80% reduction) for B. sorokiniana and P. ultimum seedling blights. This study demonstrated that pre-sowing treatment with a microwave plasma torch and underwater diaphragm discharge at a relatively low input power and short exposure time can be used for disinfestation and the effective control of seedling blights in winter wheat caused by seed-borne fungal pathogens, such as Fusarium culmorum and Bipolaris sorokiniana, and fungal-like oomycetes, such as Pythium ultimum. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 25824 KiB  
Article
NoctuDroneNet: Real-Time Semantic Segmentation of Nighttime UAV Imagery in Complex Environments
by Ruokun Qu, Jintao Tan, Yelu Liu, Chenglong Li and Hui Jiang
Drones 2025, 9(2), 97; https://doi.org/10.3390/drones9020097 - 27 Jan 2025
Viewed by 1131
Abstract
Nighttime semantic segmentation represents a challenging frontier in computer vision, made particularly difficult by severe low-light conditions, pronounced noise, and complex illumination patterns. These challenges intensify when dealing with Unmanned Aerial Vehicle (UAV) imagery, where varying camera angles and altitudes compound the difficulty. [...] Read more.
Nighttime semantic segmentation represents a challenging frontier in computer vision, made particularly difficult by severe low-light conditions, pronounced noise, and complex illumination patterns. These challenges intensify when dealing with Unmanned Aerial Vehicle (UAV) imagery, where varying camera angles and altitudes compound the difficulty. In this paper, we introduce NoctuDroneNet (Nocturnal UAV Drone Network, hereinafter referred to as NoctuDroneNet), a real-time segmentation model tailored specifically for nighttime UAV scenarios. Our approach integrates convolution-based global reasoning with training-only semantic alignment modules to effectively handle diverse and extreme nighttime conditions. We construct a new dataset, NUI-Night, focusing on low-illumination UAV scenes to rigorously evaluate performance under conditions rarely represented in standard benchmarks. Beyond NUI-Night, we assess NoctuDroneNet on the Varied Drone Dataset (VDD), a normal-illumination UAV dataset, demonstrating the model’s robustness and adaptability to varying flight domains despite the lack of large-scale low-light UAV benchmarks. Furthermore, evaluations on the Night-City dataset confirm its scalability and applicability to complex nighttime urban environments. NoctuDroneNet achieves state-of-the-art performance on NUI-Night, surpassing strong real-time baselines in both segmentation accuracy and speed. Qualitative analyses highlight its resilience to under-/over-exposure and small-object detection, underscoring its potential for real-world applications like UAV emergency landings under minimal illumination. Full article
Show Figures

Figure 1

32 pages, 10673 KiB  
Article
Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity
by Małgorzata Jasińska, Ewa Jasek-Gajda, Marek Ziaja, Jan A. Litwin, Grzegorz J. Lis and Elżbieta Pyza
Int. J. Mol. Sci. 2024, 25(23), 12870; https://doi.org/10.3390/ijms252312870 - 29 Nov 2024
Viewed by 983
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day–night cycle. This study examined the effects of the circadian clock and light on synaptic [...] Read more.
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day–night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock’s effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity. Full article
(This article belongs to the Special Issue Synapse Dynamics: From Molecular Mechanisms to Functional Plasticity)
Show Figures

Figure 1

14 pages, 716 KiB  
Article
Supplemental Low-Irradiance Mono/Polychromatic LED Lighting Significantly Enhances Floral Biology of the Long-Day F1 Hybrid Strawberry ‘Soraya’ (Fragaria x ananassa Duch.)
by Edward Durner
Int. J. Plant Biol. 2024, 15(4), 1187-1200; https://doi.org/10.3390/ijpb15040082 - 13 Nov 2024
Viewed by 1105
Abstract
Floral and vegetative responses of the strawberry (Fragaria x ananassa Duch.) to specific light wavelengths are not well documented. LED lights make it feasible for precise exposure to specific wavelengths during a 24 h cycle to alter growth responses regulated by phytochromes [...] Read more.
Floral and vegetative responses of the strawberry (Fragaria x ananassa Duch.) to specific light wavelengths are not well documented. LED lights make it feasible for precise exposure to specific wavelengths during a 24 h cycle to alter growth responses regulated by phytochromes and cryptochromes and thereby potentially enhance fruit productivity in both a controlled environment and field systems or to enhance stolon production for controlled environment propagation. This research developed a systematic method to assess the effects of supplemental, low-irradiance LED lighting on strawberry flowering and vegetative biology. Growth of the long-day F1 seed-propagated cultivar ‘Soraya’ was evaluated during and following 6 or 12 weeks of exposure to supplemental red (660 nm), far-red (730 nm), blue (454 nm), or incandescent lighting at various times during the dark period of a 24 h cycle under a 10 h non-inductive photoperiod at non-inductive temperatures (>27/18 °C, day/night). Treatment effects were monitored via flower mapping and phenology during treatment, field and greenhouse production after treatment, and floral scores derived by ranking treatment effects within the evaluation method and then combining them into a single, simple score. The most promising treatment for enhancing the floral nature of plug plants was exposure to far-red + red light as a 5 h night interruption. This treatment increased inflorescence production in the greenhouse by 285% and resulted in multi-branched, floral plants with the potential for enhancing yield in either greenhouse or field production. Greenhouse runner production increased by 483% following exposure to incandescent lighting at the beginning of the dark period; thus, this treatment or one using a spectral distribution similar to incandescent may be suitable for enhancing vegetative propagation in controlled environments. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

14 pages, 13514 KiB  
Article
A Nighttime Driving-Scene Segmentation Method Based on Light-Enhanced Network
by Lihua Bi, Wenjiao Zhang, Xiangfei Zhang and Canlin Li
World Electr. Veh. J. 2024, 15(11), 490; https://doi.org/10.3390/wevj15110490 - 27 Oct 2024
Cited by 1 | Viewed by 1497
Abstract
To solve the semantic segmentation problem of night driving-scene images, which often have low brightness, low contrast, and uneven illumination, a nighttime driving-scene segmentation method based on a light-enhanced network was proposed. Firstly, we designed a light enhancement network, which comprises two parts: [...] Read more.
To solve the semantic segmentation problem of night driving-scene images, which often have low brightness, low contrast, and uneven illumination, a nighttime driving-scene segmentation method based on a light-enhanced network was proposed. Firstly, we designed a light enhancement network, which comprises two parts: a color correction module and a parameter predictor. The color correction module mitigates the impact of illumination variations on the segmentation network by adjusting the color information of the image. Meanwhile, the parameter predictor accurately predicts the parameters of the image filter through the analysis of global content, including factors such as brightness, contrast, hue, and exposure level, thereby effectively enhancing the image quality. Subsequently, the output of the light enhancement network is input into the segmentation network to obtain the final segmentation prediction. Experimental results show that the proposed method achieves mean Intersection over Union (mIoU) values of 59.4% on the Dark Zurich-test dataset, outperforming other segmentation algorithms for nighttime driving-scenes. Full article
(This article belongs to the Special Issue Vehicle-Road Collaboration and Connected Automated Driving)
Show Figures

Figure 1

16 pages, 3494 KiB  
Article
Time-Restricted Feeding Attenuates Adipose Tissue Inflammation and Fibrosis in Mice Under Chronic Light Exposure
by Jiyeon Nah, Narae Yun, Hyunjin Yoo, Surin Park and Munkyong Pae
Int. J. Mol. Sci. 2024, 25(21), 11524; https://doi.org/10.3390/ijms252111524 - 26 Oct 2024
Cited by 1 | Viewed by 1488
Abstract
Time-restricted feeding (TRF) has emerged as a promising dietary approach for improving metabolic parameters associated with obesity. However, it remains largely unclear whether TRF offers benefits for obesity related to exposure to light at night. This study examined whether lean and obese mice [...] Read more.
Time-restricted feeding (TRF) has emerged as a promising dietary approach for improving metabolic parameters associated with obesity. However, it remains largely unclear whether TRF offers benefits for obesity related to exposure to light at night. This study examined whether lean and obese mice under chronic light exposure could benefit from TRF intervention. Six-week-old C57BL/6 male mice were fed either a low-fat diet or a high-fat diet under a 12 h light/12 h dark cycle for 6 weeks. They were then divided into three subgroups: control light, chronic 24 h light, and chronic light with a daily 10 h TRF. Chronic light exposure led to increased weight gain and higher expression of inflammatory and fibrotic markers in the adipose tissue of both lean and obese mice. It also increased hepatic triglyceride content in mice, regardless of their weight status. TRF protected both lean and obese mice from weight gain, normalized inflammatory and fibrotic gene expression, and reduced adipose tissue collagen and liver triglyceride accumulation caused by light exposure alone or in combination with obesity. These results suggest that TRF could have clinical implications for preventing obesity associated with night shift work, regardless of current weight status. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 2477 KiB  
Article
Quantifying Night Sky Brightness as a Stressor for Coastal Ecosystems in Moreton Bay, Queensland
by Noam Levin, Rachel Madeleine Cooper and Salit Kark
Remote Sens. 2024, 16(20), 3828; https://doi.org/10.3390/rs16203828 - 15 Oct 2024
Cited by 1 | Viewed by 1413
Abstract
Growing light pollution is increasingly studied in terrestrial environments. However, research on night lights in coastal ecosystems is limited. We aimed to complement spaceborne remote sensing with ground-based hemispheric photos to quantify the exposure of coastal habitats to light pollution. We used a [...] Read more.
Growing light pollution is increasingly studied in terrestrial environments. However, research on night lights in coastal ecosystems is limited. We aimed to complement spaceborne remote sensing with ground-based hemispheric photos to quantify the exposure of coastal habitats to light pollution. We used a calibrated DSLR Canon camera with a fisheye lens to photograph the night sky in 24 sites in the rapidly developing area of Moreton Bay, Queensland, Australia, extracting multiple brightness metrics. We then examined the use of the LANcubeV2 photometer and night-time satellite data from SDGSAT-1 for coastal areas. We found that the skies were darker in less urbanized areas and on islands compared with the mainland. Sky brightness near the zenith was correlated with satellite observations only at a coarse spatial scale. When examining light pollution horizontally above the horizon (60–80° degrees below the zenith), we found that the seaward direction was brighter than the landward direction in most sites due to urban glow on the seaward side. These findings emphasize the importance of ground measurements of light pollution alongside satellite imagery. In order to reduce the exposure of coastal ecosystems to light pollution, actions need to go beyond sites with conservation importance and extend to adjacent urban areas. Full article
(This article belongs to the Special Issue Nighttime Light Remote Sensing Products for Urban Applications)
Show Figures

Figure 1

14 pages, 824 KiB  
Systematic Review
Exposure to Light at Night and Risk of Cancer: A Systematic Review, Meta-Analysis, and Data Synthesis
by Samuel Ma, Yossef Alsabawi, Hashem B El-Serag and Aaron P Thrift
Cancers 2024, 16(15), 2653; https://doi.org/10.3390/cancers16152653 - 26 Jul 2024
Cited by 5 | Viewed by 2783
Abstract
Background: Emerging interest surrounds the role of environmental factors, notably exposure to light at night (LAN), as a potential cause of cancer. The aim of this study was to conduct a systematic review and, if possible, meta-analysis of observational studies on LAN and [...] Read more.
Background: Emerging interest surrounds the role of environmental factors, notably exposure to light at night (LAN), as a potential cause of cancer. The aim of this study was to conduct a systematic review and, if possible, meta-analysis of observational studies on LAN and cancer risk of multiple types. Methods: A systematic literature search in PubMed, Web of Science, and Embase, spanning from inception to May 2023, was conducted. Studies focusing on the association between LAN exposure and cancer risk in adult populations were included. We used random effects models to calculate pooled risk estimates (RR) and 95% confidence intervals (CI). We assessed study quality using the Risk of Bias in Non-randomized Studies of Interventions. Results: Among 8492 initially identified studies, 26 met the inclusion criteria (13 were case–control and 13 were cohort studies). These studies were published from 2001 to 2023 and assessed diverse cancer types in North America, Asia, Europe, and Australia. Except for breast cancer, there was a paucity of site-specific cancer studies. In the meta-analysis of 19 breast cancer studies, higher exposure to indoor (summary RR, 1.08; 95% CI 1.01–1.15) and outdoor (summary RR, 1.10; 95% CI, 1.04–1.15) LAN were associated with increased risk. After excluding one low-quality study, the results were unchanged. Conclusions: We found a positive association between LAN exposure and breast cancer risk in women. However, data are lacking for other cancer types, and further studies are required to better understand the role of LAN on cancer. Full article
(This article belongs to the Section Systematic Review or Meta-Analysis in Cancer Research)
Show Figures

Graphical abstract

Back to TopTop