Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = level of water-industry load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 56966 KiB  
Article
Changes in Water-Industry Load on River Water Resources in the Volga–Kama and Angara–Yenisei Reservoir Catchments Under Contemporary Global Warming
by Aleksandr G. Georgiadi, Elena A. Barabanova, Irina P. Milyukova, Pavel Y. Groisman and Alexej N. Narykov
Water 2025, 17(16), 2486; https://doi.org/10.3390/w17162486 - 21 Aug 2025
Abstract
Changes in river runoff resources, volumes of water intake from surface water sources, and discharge of wastewater into them under contemporary global warming in the basins of the Volga–Kama and Angara–Yenisei reservoirs were analyzed by comparison with the base period, characterized by colder [...] Read more.
Changes in river runoff resources, volumes of water intake from surface water sources, and discharge of wastewater into them under contemporary global warming in the basins of the Volga–Kama and Angara–Yenisei reservoirs were analyzed by comparison with the base period, characterized by colder climatic conditions and the largest volumes of water intake and wastewater discharge. The water stress index (WSI) and the index of reciprocal dilution of polluted wastewater (RDI) were examined to reveal features of the change in the water-industry load on river runoff resources in reservoir basins during the period of contemporary global warming (compared to the previous base period) as a result of climate change combined with changes in the volumes of water intake and discharge of polluted wastewater. Both indices were calculated relative to the annual free flow for years of average river flow and the flow of low-water years. The dilution factor was estimated relative to the annual total flow. 1. The basins of the Volga–Kama reservoirs are characterized by a higher level of water-industry load, which is especially noticeable in the significantly lower RDI. 2. When calculating the dilution factor relative to the annual total flow, the level of water-industry load turns out to be much lower both in the base period and in the period of contemporary global warming. 3. At the same time, under global warming conditions, the dilution level of polluted wastewater in the basins of all reservoirs exceeds the minimum required level. Full article
Show Figures

Figure 1

16 pages, 1933 KiB  
Article
Failure Analysis of Biological Treatment Units Under Shock Loads of Rubber Industry Wastewater Containing Emerging Pollutants: Case Study
by Valentin Romanovski
Water 2025, 17(16), 2419; https://doi.org/10.3390/w17162419 - 15 Aug 2025
Viewed by 316
Abstract
This paper presents the results of a survey of the designed biological wastewater treatment facilities of an enterprise specializing in the production of rubber products. The aim of the study was to assess the efficiency of wastewater treatment systems under the conditions of [...] Read more.
This paper presents the results of a survey of the designed biological wastewater treatment facilities of an enterprise specializing in the production of rubber products. The aim of the study was to assess the efficiency of wastewater treatment systems under the conditions of a salvo discharge of industrial effluents that differ in composition from domestic wastewater. The analysis covered the parameters of water supply, water disposal, and wastewater characteristics at various stages of treatment. Three samples were taken: after washing the premises (WW1), at the inlet to the treatment facility (WW2), and at the outlet after treatment (WW3). Experimental assessment of the purification efficiency for key pollutants showed a high degree of removal of surfactants (91.2%), oil products (84.4%), and COD (63.4%). However, phosphorus–phosphate turned out to be significantly higher than the norm—2.32 mg/L with an acceptable level of 0.2 mg/L—which corresponds to an excess of 11.6 times. A low degree of ammonium nitrogen removal was also revealed—62%. Calculations showed a critically high ratio of COD/BOD5 = 5.1 with the recommended <2.6, which indicates a small share of biodegradable substances and the need to implement physical and chemical treatment methods. The absence of the characteristic smell of household wastewater and the presence of black inorganic sediment confirm the toxicity of emerging pollutants for activated sludge. It is concluded that the installed biological treatment system cannot cope with the salvo loads of industrial wastewater. Optimization measures are proposed: preliminary local treatment, dosed feed, and a separate treatment system. Full article
(This article belongs to the Special Issue Water Treatment Technology for Emerging Contaminants, 2nd Edition)
Show Figures

Figure 1

20 pages, 1936 KiB  
Article
Preparation and Evaluation of Anti-Fatigue Effects of Sea Buckthorn–Wolfberry Compound Coffee
by Yuxian Chen, Lili Zhao, Qinghui Wang, Xuhai Yang and Jun Wang
Foods 2025, 14(16), 2818; https://doi.org/10.3390/foods14162818 - 14 Aug 2025
Viewed by 305
Abstract
In this study, a sea buckthorn–wolfberry compound coffee (SWCC) solid beverage was formulated and evaluated based on sensory scores, dispersibility, and water solubility. The optimal formulation consisted of 9% sea buckthorn powder, 16% wolfberry powder, 65% coffee powder, 8% sugar, 1.25% microcrystalline cellulose, [...] Read more.
In this study, a sea buckthorn–wolfberry compound coffee (SWCC) solid beverage was formulated and evaluated based on sensory scores, dispersibility, and water solubility. The optimal formulation consisted of 9% sea buckthorn powder, 16% wolfberry powder, 65% coffee powder, 8% sugar, 1.25% microcrystalline cellulose, 0.5% sodium bicarbonate, and 0.25% tricalcium phosphate. The SWCC contained 18.75 ± 0.43 mg RE/g total flavonoids and 4.60 ± 0.04 mg GAE/g total phenols, demonstrating superior in vitro antioxidant activity compared to the raw sea buckthorn or wolfberry powders, with a 90.21 ± 0.15% DPPH radical scavenging rate, 90.56 ± 0.35% ABTS radical scavenging rate, and 6.64 ± 0.03 mg Trolox/g ferric-reducing power. In vivo experiments showed that specific doses (1.25–5.00 g/kg·BW/day) of SWCC exhibited significant physical fatigue-relieving and antioxidant effects, significantly extending loaded swimming time, reducing BLA accumulation, increasing LG reserves, enhancing SOD activity, and lowering MDA levels in serum. Overall, our findings offer both theoretical and practical insights for utilizing medicinal and edible resources in functional food development, meeting the growing demand for healthy and diverse food options, and contributing significantly to the advancement of public nutrition and the healthy food industry. Full article
(This article belongs to the Special Issue Emerging Processing Technology and Equipment for Foods)
Show Figures

Figure 1

15 pages, 2045 KiB  
Article
Characterization of Hydrogen-in-Oxygen Changes in Alkaline Electrolysis Hydrogen Production System and Analysis of Influencing Factors
by Shuiyong Wang, Huabin Chen, Song Hu, Wanxiang Zhao, Mingya Chen, Dongfang Chen and Xiaoming Xu
Processes 2025, 13(8), 2517; https://doi.org/10.3390/pr13082517 - 10 Aug 2025
Viewed by 479
Abstract
Industrial alkaline water electrolysis systems face challenges in maintaining hydrogen-in-oxygen impurity within safe limits under fluctuating operating conditions. This study aims to characterize the dynamic response of hydrogen-in-oxygen concentration in an industrial 10 kW alkaline water electrolysis test platform (2 Nm3/h [...] Read more.
Industrial alkaline water electrolysis systems face challenges in maintaining hydrogen-in-oxygen impurity within safe limits under fluctuating operating conditions. This study aims to characterize the dynamic response of hydrogen-in-oxygen concentration in an industrial 10 kW alkaline water electrolysis test platform (2 Nm3/h hydrogen output at 1.6 MPa and 90 °C) and to identify how operating parameters influence hydrogen-in-oxygen behavior. We systematically varied the cell current, system pressure, and electrolyte flow rate while monitoring real-time hydrogen-in-oxygen levels. The results show that hydrogen-in-oxygen exhibits significant inertia and delay: during startup, hydrogen-in-oxygen remained below the 2% safety threshold and stabilized at 0.9% at full load, whereas a step decrease to 60% load caused hydrogen-in-oxygen to rise to 1.6%. Furthermore, reducing the pressure from 1.4 to 1.0 MPa lowered the hydrogen-in-oxygen concentration by up to 15%, and halving the alkaline flow rate suppressed hydrogen-in-oxygen by over 20% compared to constant conditions. These findings provide new quantitative insights into hydrogen-in-oxygen dynamics and offer a basis for optimizing control strategies to keep gas purity within safe limits in industrial-scale alkaline water electrolysis systems. Full article
Show Figures

Figure 1

14 pages, 3487 KiB  
Article
Analysis of the Effectiveness of the Energy-Efficient Gravity Filtration Process in Terms of Its Application as the Third Stage of Wastewater Treatment
by Kazimierz Szymański, Jacek Piekarski, Tomasz Dąbrowski, Krzysztof Piaskowski, Renata Świderska-Dąbrowska and Katarzyna Ignatowicz
Energies 2025, 18(16), 4213; https://doi.org/10.3390/en18164213 - 8 Aug 2025
Viewed by 274
Abstract
The energy self-sufficiency of wastewater treatment plants has become an essential aspect of sustainable water and energy resource management. On the other hand, due to the expansion of urban conglomerations and agricultural activities, as well as more frequent and erratic meteorological phenomena (e.g., [...] Read more.
The energy self-sufficiency of wastewater treatment plants has become an essential aspect of sustainable water and energy resource management. On the other hand, due to the expansion of urban conglomerations and agricultural activities, as well as more frequent and erratic meteorological phenomena (e.g., droughts), the majority of EU nations are confronted with water scarcity and the deterioration of water quality. As a consequence, EU member states pledged to implement “tertiary treatment” in all municipal wastewater treatment facilities by the end of 2040. This publication presents an analysis of the efficiency of an energy-efficient gravity cloth disk filter used for treating municipal wastewater in a treatment plant located in a tourist resort in Poland, operating under variable hydraulic loading conditions. Gravity cloth disk filters appear to be the least energy-consuming. The energy consumption of disk filters was 13 Wh/m3 in 2024. The filter ensures the leveling of disturbances in the operation of earlier treatment stages, particularly in terms of retaining total suspended solids (TSSs). The achieved efficiency of TSS removal was 45%. The TSS value in the outflow from the filter did not exceed the limit value from the permit (35 mg/L). When operated correctly, additional filtration and disinfection may become essential components of a wastewater treatment plant, enabling the achievement of wastewater quality that supports water recovery for technological and agricultural purposes, particularly in small, non-industrial areas. They should also consume less energy than other advanced technologies used in the third and fourth stages of wastewater treatment. Full article
Show Figures

Figure 1

24 pages, 8197 KiB  
Article
Reuse of Decommissioned Tubular Steel Wind Turbine Towers: General Considerations and Two Case Studies
by Sokratis Sideris, Charis J. Gantes, Stefanos Gkatzogiannis and Bo Li
Designs 2025, 9(4), 92; https://doi.org/10.3390/designs9040092 - 6 Aug 2025
Viewed by 338
Abstract
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach [...] Read more.
Nowadays, the circular economy is driving the construction industry towards greater sustainability for both environmental and financial purposes. One prominent area of research with significant contributions to circular economy is the reuse of steel from decommissioned structures in new construction projects. This approach is deemed far more efficient than ordinary steel recycling, due to the fact that it contributes towards reducing both the cost of the new project and the associated carbon emissions. Along these lines, the feasibility of utilizing steel wind turbine towers (WTTs) as part of a new structure is investigated herein, considering that wind turbines are decommissioned after a nominal life of approximately 25 years due to fatigue limitations. General principles of structural steel reuse are first presented in a systematic manner, followed by two case studies. Realistic data about the geometry and cross-sections of previous generation models of WTTs were obtained from the Greek Center for Renewable Energy Sources and Savings (CRES), including drawings and photographic material from their demonstrative wind farm in the area of Keratea. A specific wind turbine was selected that is about to exceed its life expectancy and will soon be decommissioned. Two alternative applications for the reuse of the tower were proposed and analyzed, with emphasis on the structural aspects. One deals with the use of parts of the tower as a small-span pedestrian bridge, while the second addresses the transformation of a tower section into a water storage tank. Several decision factors have contributed to the selection of these two reuse scenarios, including, amongst others, the geometric compatibility of the decommissioned wind turbine tower with the proposed applications, engineering intuition about the tower having adequate strength for its new role, the potential to minimize fatigue loads in the reused state, the minimization of cutting and joining processes as much as possible to restrain further CO2 emissions, reduction in waste material, the societal contribution of the potential reuse applications, etc. The two examples are briefly presented, aiming to demonstrate the concept and feasibility at the preliminary design level, highlighting the potential of decommissioned WTTs to find proper use for their future life. Full article
Show Figures

Figure 1

20 pages, 3528 KiB  
Article
High-Precision Optimization of BIM-3D GIS Models for Digital Twins: A Case Study of Santun River Basin
by Zhengbing Yang, Mahemujiang Aihemaiti, Beilikezi Abudureheman and Hongfei Tao
Sensors 2025, 25(15), 4630; https://doi.org/10.3390/s25154630 - 26 Jul 2025
Viewed by 605
Abstract
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework [...] Read more.
The integration of Building Information Modeling (BIM) and 3D Geographic Information System (3D GIS) models provides high-precision spatial data for digital twin watersheds. To tackle the challenges of large data volumes and rendering latency in integrated models, this study proposes a three-step framework that uses Industry Foundation Classes (IFCs) as the base model and Open Scene Graph Binary (OSGB) as the target model: (1) geometric optimization through an angular weighting (AW)-controlled Quadric Error Metrics (QEM) algorithm; (2) Level of Detail (LOD) hierarchical mapping to establish associations between the IFC and OSGB models, and redesign scene paging logic; (3) coordinate registration by converting the IFC model’s local coordinate system to the global coordinate system and achieving spatial alignment via the seven-parameter method. Applied to the Santun River Basin digital twin project, experiments with 10 water gate models show that the AW-QEM algorithm reduces average loading time by 15% compared to traditional QEM, while maintaining 97% geometric accuracy, demonstrating the method’s efficiency in balancing precision and rendering performance. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 388
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

26 pages, 1025 KiB  
Review
A Review of Harmful Algal Blooms: Causes, Effects, Monitoring, and Prevention Methods
by Christina M. Brenckman, Meghana Parameswarappa Jayalakshmamma, William H. Pennock, Fahmidah Ashraf and Ashish D. Borgaonkar
Water 2025, 17(13), 1980; https://doi.org/10.3390/w17131980 - 1 Jul 2025
Cited by 1 | Viewed by 2215
Abstract
Harmful Algal Blooms (HABs) are a growing environmental concern due to their adverse impacts on aquatic ecosystems, human health, and economic activities. These blooms are driven by a combination of factors, including nutrient enrichment, environmental factors, and hydrological conditions, leading to the excessive [...] Read more.
Harmful Algal Blooms (HABs) are a growing environmental concern due to their adverse impacts on aquatic ecosystems, human health, and economic activities. These blooms are driven by a combination of factors, including nutrient enrichment, environmental factors, and hydrological conditions, leading to the excessive growth of algae. HABs produce toxins that threaten aquatic biodiversity, contaminate drinking water, and cause economic losses in fisheries and tourism. The causes of HABs are multifaceted, involving interactions between environmental factors such as temperature, light availability, and nutrient levels. Agricultural runoff, wastewater discharge, and industrial pollution introduce excessive nitrogen and phosphorus into water bodies, fueling bloom formation. Climate change further exacerbates the problem by altering precipitation patterns, increasing water temperatures, and intensifying coastal upwelling events, all of which create favorable conditions for HAB proliferation. This review explores the causes, ecological consequences, and potential mitigation strategies for HABs. Effective monitoring and detection methods, including satellite remote sensing, molecular biotechnology, and artificial intelligence-driven predictive models, offer promising avenues for early intervention. Sustainable management strategies such as nutrient load reductions, bioremediation, and regulatory policies can help mitigate the adverse effects of HABs. Public awareness and community involvement also play a crucial role in preventing and managing HAB events by promoting responsible agricultural practices, reducing waste discharge, and supporting conservation efforts. By examining existing literature and case studies, this study underscores the urgent need for comprehensive and interdisciplinary approaches to regulate HABs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

20 pages, 1495 KiB  
Article
Multi-Indicator Assessment of Heavy Metals Contamination and Ecological Risk Around the Landfills of the Boruta Zgierz Dye Industry Plant in Central Poland
by Wojciech Pietruszewski and Anna Podlasek
Sustainability 2025, 17(12), 5425; https://doi.org/10.3390/su17125425 - 12 Jun 2025
Viewed by 487
Abstract
This study assesses the extent of heavy metals (HMs) contamination and the associated ecological risks in soils surrounding waste landfills at the former Boruta Dye Industry Plant in Zgierz, Poland. Soil samples were collected during two sampling campaigns (summer 2023 and winter 2024) [...] Read more.
This study assesses the extent of heavy metals (HMs) contamination and the associated ecological risks in soils surrounding waste landfills at the former Boruta Dye Industry Plant in Zgierz, Poland. Soil samples were collected during two sampling campaigns (summer 2023 and winter 2024) from 13 locations. Concentrations of Cu, Ni, Zn, Pb, and Cd were measured, and contamination levels were evaluated using several indices: geoaccumulation index (Igeo), pollution index (PI), pollution load index (PLI), Nemerow integrated pollution index (NIPI), ecological risk factor for a single metal (Eri), index of potential ecological risk (ERI). The highest Igeo value (10.95) was recorded for Cu in the area of the old landfill, which had been in operation for 90 years. The average PI values were Cu—120.97, Pb—52.46, Cd—46.70, Zn—22.19, and Ni—5.38, indicating considerable (3 ≤ PI < 6) to high (PI ≥ 6) contamination levels. The NIPI values, in descending order, were Cu (2102.2) > Pb (270.7) > Zn (88.3) > Cd (62.8) > Ni (21.5), all reflecting high (NIPI >3) contamination levels. The highest PLI was 5.10, with all remaining values exceeding the contamination threshold (PLI >1). The Eri value for Cu reached 14,852.75, indicating an extremely high (Eri ≥ 320) ecological risk. The average ERI value across the study area was 1347.2, suggesting a severe (ERI ≥ 600) ecological threat. These findings confirm that the industrial landfills associated with the dye plant constitute a critical pollution hotspot. The results underscore the urgent need for ongoing environmental monitoring, risk mitigation, and site remediation to prevent further environmental degradation and potential contamination of nearby water bodies. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Interdisciplinary Approach as Basis for Enhancing Construction and Operation Safety of Industrial Hydraulic Structures
by Regina E. Dashko and Darya L. Kolosova
Sustainability 2025, 17(12), 5244; https://doi.org/10.3390/su17125244 - 6 Jun 2025
Viewed by 484
Abstract
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary [...] Read more.
This article analyses the necessity of employing an interdisciplinary approach in the geotechnical practice of designing, constructing, and operating industrial hydraulic structures—tailings dams of processing plants. Tailings dam failures often lead to irreversible consequences for the ecological state of the environment. The interdisciplinary approach involves treating the foundation soils of structures and anthropogenic tailings deposits as a multicomponent system. In this system, soil acts as a medium hosting groundwater of varying compositions and contamination levels, containing biotic components and their metabolic products, including the gaseous phase. It has been demonstrated that the justified application of this approach increases the operational safety of existing structures and the long-term stability of starter and tailings dikes built on weak clay foundation soils. Particular emphasis is placed on the biotic component and the dual role of subsurface microorganisms. These bacteria negatively impact the strength and load-bearing capacity of water- and water–gas-saturated clay soils in the foundation of the structures under consideration. The diverse biocenosis in groundwater simultaneously facilitates self-purification from petroleum hydrocarbons to undetectable levels. This aspect holds fundamental importance, as groundwater discharges into river systems. Full article
Show Figures

Figure 1

22 pages, 4120 KiB  
Article
Sustainable Phosphate Recovery Using Novel Ca–Mg Bimetallic Modified Biogas Residue-Based Biochar
by Qi Wang, Guanghui Zhuo, Dongxin Xue, Guangcan Zhu and Chu-Ya Wang
Sustainability 2025, 17(11), 5049; https://doi.org/10.3390/su17115049 - 30 May 2025
Viewed by 525
Abstract
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and [...] Read more.
Elevated phosphorus levels in aquatic ecosystems have been identified as a critical driver of eutrophication processes, necessitating resource-recovery remediation strategies. Adsorption techniques show particular promise for nutrient recovery due to their selective binding capacities and operational feasibility. In this study, the Mg- and Ca-modified biogas residue-based biochar (Ca-Mg/BC) was successfully prepared via a “bimetallic loading-pyrolysis” modification strategy. The optimum temperature for the calcination of the material and the salt solution impregnation concentrations were determined experimentally through optimization of the synthesis conditions. Structural and chemical analyses of Ca–Mg/BC demonstrated that the material contains MgO and CaO. The specific surface area of Ca–Mg/BC was 8.49 times higher than that of the unmodified biochar (BC). The optimized Ca–Mg/BC achieved 95% phosphate removal rate (157.13 mg/g adsorption capacity). FTIR and XPS characterization results indicated the importance of Ca/Mg loading in phosphate capture. MgO and CaO were mainly loaded on the surface of the material and adsorbed phosphate through a chemical reaction. Crucially, the phosphate-laden biochar exhibited potential as a nutrient-enriched soil amendment, opening the material loop from wastewater treatment to agricultural applications. This sustainable strategy simultaneously addresses water pollution control and sustainable development, providing environmentally benign solutions compatible with industrial effluent treatment and sustainable agriculture practices. Full article
Show Figures

Figure 1

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1886
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

23 pages, 720 KiB  
Article
Global Solutions for Sustainable Heating, Ventilation, Air Conditioning, and Refrigeration Systems and Their Suitability to the New Zealand Market
by Nicholas Andrew Harvey and Eziaku Onyeizu Rasheed
Energies 2025, 18(9), 2190; https://doi.org/10.3390/en18092190 - 25 Apr 2025
Viewed by 608
Abstract
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load [...] Read more.
This paper attempts to find alternative ways in which heating, ventilation, air conditioning and refrigeration systems can be made more energy efficient and sustainable at a global level. Eight technologies or solutions that either passively or supplementarily reduce the heating or cooling load required by a structure are detailed. These technologies or solutions were then presented to heating, ventilation, air conditioning and refrigeration industry professionals in New Zealand to determine their viability and further establish market readiness towards integrating new, innovative, and sustainable solutions in New Zealand. A literature review was conducted to establish the performance of the selected solutions and understand their operational principles and the efficiency they provided. Qualitative research and data collected via semi-structured interviews provided the data for assessing the viability of the selected technologies in the New Zealand market. Following a thematic and hybrid-thematic analysis of the data, the technologies were ranked, and suggestions were made to help improve innovation and energy efficiency in the heating, ventilation, air conditioning, and refrigeration industry in New Zealand. Of the technologies selected, airtightness, heat recovery ventilation retrofits, materials and design principles, and photovoltaic hot water heating were identified as the most viable. The New Zealand market was deemed not to be in a good position to adopt new or alternative solutions. The main issues affecting New Zealand’s market readiness to assimilate innovative and energy-efficient solutions are a lack of new technologies, poor standards of education throughout the industry, a lack of regulation, and a lack of government incentives. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Saving in Buildings)
Show Figures

Figure 1

31 pages, 4856 KiB  
Article
Influence of Geographical Locations on Drinking Water Quality in Rural Pavlodar Region, Kazakhstan
by Raikhan Beisenova, Jiquan Chen, Maira Kussainova, Kamshat Tussupova, Rumiya Tazitdinova, Nurul Mujahid and Zhanar Rakhymzhan
Water 2025, 17(7), 945; https://doi.org/10.3390/w17070945 - 24 Mar 2025
Viewed by 2352
Abstract
Drinking water quality in rural areas is impacted by industrial and agricultural runoff, water treatment infrastructure, and household economic conditions. This study explores the relationship between drinking water quality, water sources, and land cover types in northeastern Kazakhstan. The Water Quality Index (WQI) [...] Read more.
Drinking water quality in rural areas is impacted by industrial and agricultural runoff, water treatment infrastructure, and household economic conditions. This study explores the relationship between drinking water quality, water sources, and land cover types in northeastern Kazakhstan. The Water Quality Index (WQI) was calculated for each household and village using the Horton Equation. Land cover was mapped using Sentinel-2 Level-2A imagery. Statistical differences among villages were analyzed through one-way ANOVA and t-tests. A Structural Equation Model (SEM) was built using Maximum Likelihood estimators, with significance set at p < 0.05. Significant variations in manganese, hydrocarbonates, and chlorides were observed based on the distance from the Irtysh River and water sources. Grasslands had the greatest influence on water parameters (−14.89), followed by croplands (5.96), urban lands (2.15), and other land types (2), with forests having the least effect. Biological indicators, such as Actinomycetes sp., were significantly correlated with forests (2.32) and other land cover types. Grasslands reduce mineral content in groundwater, while croplands and forests contribute to mineral enrichment, particularly nitrates from croplands. Urban areas increase chemical loads in groundwater, and manganese levels decrease with distance from the Irtysh River. Chlorides and hydrocarbonates are highest near the river. Rural water treatment infrastructure should be improved, stricter pollution controls should be enforced, and sustainable land use practices should be promoted to reduce agricultural and urban runoff. Additionally, economic incentives for household filtration, regular water quality monitoring, and a coordinated watershed management approach can enhance long-term water security. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop