Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = less rare earth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 298
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

23 pages, 15718 KiB  
Article
Trace and Rare-Earth-Element Chemistry of Quartz from the Tuztaşı Low-Sulfidation Epithermal Au-Ag Deposit, Western Türkiye: Implications for Gold Exploration from Quartz Mineral Chemistry
by Fatih Özbaş, Essaid Bilal and Ahmed Touil
Minerals 2025, 15(7), 758; https://doi.org/10.3390/min15070758 - 19 Jul 2025
Viewed by 458
Abstract
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two [...] Read more.
The Tuztaşı low-sulfidation epithermal Au–Ag deposit (Biga Peninsula, Türkiye) records a multi-stage hydrothermal history that can be interpreted through the trace and rare-earth-element (REE) chemistry of quartz. High-precision LA-ICP-MS analyses of five representative quartz samples (23 ablation spots; 10 analytically robust) reveal two fluid stages. Early fluids were cold, dilute meteoric waters (δ18O₍H2O₎ ≈ −6.8 to +0.7‰), whereas later fluids circulated deeper, interacted with felsic basement rocks, and evolved in composition. Mineralized quartz displays marked enrichment in As (raw mean = 2854 ± 6821 ppm; filtered mean = 70 ± 93 ppm; one spot 16,775 ppm), K (498 ± 179 ppm), and Sb (57.8 ± 113 ppm), coupled with low Ti/Al (<0.005) and elevated Ge/Si (0.14–0.65 µmol mol−1). Chondrite-normalized REE patterns show pronounced but variable LREE enrichment ((La/Yb)n ≤ 45.3; ΣLREE/ΣHREE up to 10.8) and strongly positive Eu anomalies (δEu ≤ 9.3) with slightly negative Ce anomalies (δCe ≈ 0.29); negligible Ce–Eu covariance (r2 ≈ 0.05) indicates discrete redox pulses. These signatures indicate chemically evolved, reducing fluids conducive to Au–Ag deposition. By contrast, barren quartz is characterized by lower pathfinder-element contents, less fractionated REE profiles, higher Ti/Al, and weaker Eu anomalies. A composite exploration toolkit emerges: As > 700 ppm, As/Sb > 25, Ti/Al < 0.005, Ge/Si > 0.15 µmol mol−1, and δEu ≫ 1 reliably identify ore-bearing zones when integrated with δ18O data and fluid-inclusion microthermometry from earlier studies on the same vein system. This study provides one of the first systematic applications of integrated trace-element and REE analysis of quartz to a Turkish low-sulfidation epithermal system, offering an applicable model for vectoring mineralization in analogous settings worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

12 pages, 3862 KiB  
Article
Magnetic Properties and Corrosion Resistance of Sintered Nd-Fe-B Magnet Caused by Er69Fe31 Alloy Grain Boundary Addition
by Yongtao Dai, Kai Wang, Jing Xiang, Qingrong Yao, Zhao Lu and Jiang Wang
Materials 2025, 18(12), 2711; https://doi.org/10.3390/ma18122711 - 9 Jun 2025
Viewed by 359
Abstract
This work reports on the effect of the heavy rare earth element Er on Nd–Fe–B magnets by using a simple Er69Fe31 alloy additive, which is much less expensive than Dy and Tb elements. It was found that the corrosion resistance [...] Read more.
This work reports on the effect of the heavy rare earth element Er on Nd–Fe–B magnets by using a simple Er69Fe31 alloy additive, which is much less expensive than Dy and Tb elements. It was found that the corrosion resistance was improved with a minimal reduction in magnetic properties by rationally controlling the Er69Fe31 addition content. The main reason is that Er element partially replaces the Nd element at the edge of the main phase grain to form an (Er,Nd)2Fe14B shell with low HA, which leads to a decrease in coercivity. However, the improvement in the corrosion resistance is mainly due to the Er69Fe31 alloy addition, which slows down the corrosion rate. Simultaneously, an investigation was conducted into the different advantages that target magnets when subjected to diverse heat treatment methodologies. The above findings may lead to the development of applications for other rare earth elements, thereby accelerating the development of low-cost permanent magnets comparable to commercially available sintered Nd-Fe-B magnets. Full article
(This article belongs to the Special Issue Corrosion Resistance and Protection of Metal Alloys)
Show Figures

Figure 1

15 pages, 6505 KiB  
Article
A Less-Rare-Earth Permanent Magnet Machine with Hybrid Magnet Configuration for Electric Vehicles
by Hui Yang, Peng Wu, Dabin Liu, Yuehan Zhu, Shuhua Fang and Heyun Lin
Energies 2025, 18(12), 3051; https://doi.org/10.3390/en18123051 - 9 Jun 2025
Viewed by 412
Abstract
This paper proposes a novel hybrid less-rare-earth permanent magnet (HLEPM) machine, which is designed to meet the demands of electric vehicle (EV) traction machines for high torque output and wide-speed-range high-efficiency performance. The designed machine features a unique hybrid permanent magnet arrangement, consisting [...] Read more.
This paper proposes a novel hybrid less-rare-earth permanent magnet (HLEPM) machine, which is designed to meet the demands of electric vehicle (EV) traction machines for high torque output and wide-speed-range high-efficiency performance. The designed machine features a unique hybrid permanent magnet arrangement, consisting of V-shaped rare-earth PMs and arc-shaped less-rare-earth PMs, respectively. The V-shaped rare-earth magnets can perform the flux-focusing effect well, not only enhancing the torque output capability but also improving the demagnetization with the standability of the arc-shaped less-rare-earth PMs during active short-circuit (ASC) conditions. First, the proposed machine is thoroughly designed and optimized to balance the torque capability and iron loss. Subsequently, the electromagnetic performance of the proposed HLEPM machine is evaluated using finite-element (FE) analysis and compared with that of a conventional double-layer V-shaped PMSM. Finally, the anti-demagnetization characteristics of the two machines under ASC conditions are analyzed in detail. The results validate the rationality and reliability of the proposed design. Full article
Show Figures

Figure 1

17 pages, 16149 KiB  
Article
Source, Transport, and Fractionation of Rare Earth Elements in Fluvial Sediments from a Typical Small Urban Basin (East Tiaoxi River, Eastern China)
by Kunhua Yang, Qian Zhang, Bei Wang, Bin Liang, Qiang Lin and Weijiao Wang
Water 2025, 17(9), 1279; https://doi.org/10.3390/w17091279 - 25 Apr 2025
Viewed by 569
Abstract
As emerging contaminants, rare earth elements (REEs) have undergone significant anthropogenic enrichment in aquatic systems. This study investigates the REE concentrations, major metal elements, and grain size in surface sediments from the East Tiaoxi (ETX) River in eastern China, a small urban river [...] Read more.
As emerging contaminants, rare earth elements (REEs) have undergone significant anthropogenic enrichment in aquatic systems. This study investigates the REE concentrations, major metal elements, and grain size in surface sediments from the East Tiaoxi (ETX) River in eastern China, a small urban river subjected to substantial anthropogenic influences. Total REE concentrations of surface sediments ranged from 133.62 to 222.92 mg/kg with MREE enrichment and HREE depletion. REE concentration and fractionation were strongly correlated with Ca, Fe, Mg, and Mn, which may reflect the control of clay minerals, Fe-Mn oxides, and specific heavy minerals, and differences in REE behavior between riparian sediments and riverbed sediments highlighted the impact of hydrodynamic sorting and chemical weathering on REE distribution. Anthropogenic activities, particularly urbanization, were found to increase REE concentrations, especially at urban-adjacent sites (e.g., RBS2 and RS2), while natural processes such as soil transport and chemical weathering primarily contributed to REE variation at other sites. The enrichment factor and ecological risk assessment revealed that the enrichment and moderate risks associated with REEs occurred in river sediments adjacent to urbanized areas, though agricultural impacts were less pronounced. The findings emphasize the combined influence of urbanization and natural processes on REE distribution and ecological risks in the ETX River basin and underscore the need to prioritize urban-derived REE contamination in environmental management strategies. Full article
Show Figures

Figure 1

15 pages, 5550 KiB  
Article
Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation
by Ziyan Yang, Faxin Xiao, Shuchen Sun, Ganfeng Tu, Zhentao Zhou, Jingyi Chen, Xin Hong, Wei He, Chengfu Sui and Kuopei Yu
Materials 2025, 18(7), 1538; https://doi.org/10.3390/ma18071538 - 28 Mar 2025
Viewed by 532
Abstract
Spent rare earth molten salt electrolytic slag (REMES) needs to be recovered not only because of its economic value of rare earth elements (REEs), lithium, and fluorine, but also for the environmental benefits. Vacuum distillation has many advantages, such as a short process [...] Read more.
Spent rare earth molten salt electrolytic slag (REMES) needs to be recovered not only because of its economic value of rare earth elements (REEs), lithium, and fluorine, but also for the environmental benefits. Vacuum distillation has many advantages, such as a short process and less wastewater. Aiming to find an environmentally friendly method to recover REEs, this research studied the challenges in recovering REMES by vacuum distillation and the solutions to handle these obstacles. Distillation experiments for the raw material were initially implemented and XRD, XPS, DSC, and SEM methods were used to investigate the phase changes of REMES, thus discovering that oxide impurities could transform REF3 into REOF, which significantly affected the REEs recovery. Only 42.04% of the REEs could be evaporated at 1573 K and 0.1 Pa for 4 h with 99.99% of LiF. To tackle this issue, a fluorination pretreatment was proposed. NH4HF2 was utilized to transform oxide impurities, RE2O3, and REOF to fluorides with almost no waste gas released, significantly improving the recovery efficiency of the REEs, which was 86.23%. Therefore, this paper proposes this fluorination–vacuum distillation method, which has a short process to recover REF3 from REMES efficiently with almost no wastewater or gas released. Full article
Show Figures

Figure 1

14 pages, 6295 KiB  
Article
The Effect of Rare Earth Y on the Microstructure and Mechanical Properties of an As-Cast Body-Centered Cubic Mg-11Li-6Zn Alloy
by Honghui Lin, Xuetao Ke, Guangxin Xiong, Binqing Shi, Zhengrong Zhang and Chuanqiang Li
Metals 2025, 15(3), 321; https://doi.org/10.3390/met15030321 - 15 Mar 2025
Viewed by 646
Abstract
The body-centered cubic (BCC)-structured magnesium–lithium (Mg-Li) alloy is the lightest metal material, but its mechanical properties are poor, especially its strength. In this study, the effect of adding rare earth Y on the microstructure and mechanical properties of as-cast BCC Mg-11Li-6Zn-xY (x = [...] Read more.
The body-centered cubic (BCC)-structured magnesium–lithium (Mg-Li) alloy is the lightest metal material, but its mechanical properties are poor, especially its strength. In this study, the effect of adding rare earth Y on the microstructure and mechanical properties of as-cast BCC Mg-11Li-6Zn-xY (x = 0, 0.5, 1.2, and 2, in wt.%) alloys was investigated. The results revealed that massive amounts of nano-scale θ (MgLiZn) and/or θ’ (MgLi2Zn) precipitated inside the grains, and some θ phases precipitated at the grain boundaries in the Mg-11Li-6Zn alloy. With the addition of Y, W phases formed at the grain boundary, their content gradually increased with the Y concentration, and the grain size decreased simultaneously. The Mg-11Li-6Zn-0.5Y alloy exhibited higher ultimate tensile strength (190 MPa) and elongation (27%) at room temperature than those (170 MPa and 22%) of the Mg-11Li-6Zn alloy, presenting improvements of 11.8% and 22.7% in strength and ductility, respectively. The improvements in the mechanical properties of the Mg-11Li-6Zn alloy achieved by adding less Y could be attributed to the formation of moderate W phases and a reduction in grain size. However, once the addition of Y became excessive, the mechanical properties of the Mg-11Li-6Zn-1.2Y alloy were reduced due to the formation of too many reticular W phases. In addition, the Mg-11Li-6Zn-2Y alloy containing the highest Y content had the lowest ultimate tensile strength, 163 MPa, and highest ductility, 38%, due to the combined effect of the most reticular W phases and the smallest grains. Furthermore, the fracture morphology of the Mg-11Li-6Zn alloy displayed apparent necking, which became insignificant after the addition of Y, indicating that this addition could improve its uniform plastic deformation ability. Full article
Show Figures

Figure 1

76 pages, 4956 KiB  
Article
Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact?
by Armen Y. Mulkidjanian, Daria V. Dibrova and Andrey Y. Bychkov
Life 2025, 15(3), 399; https://doi.org/10.3390/life15030399 - 4 Mar 2025
Cited by 1 | Viewed by 2481
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and [...] Read more.
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth’s crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth’s protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

9 pages, 4649 KiB  
Technical Note
MAMA—Mandibular Advancement Magnetic Appliance: A Digital Workflow and a CAD–CAM Development of a New Mandibular Advancement Device for the Treatment of Obstructive Sleep Apnea Syndrome
by Riccardo Nucera, Enrico Nastro Siniscalchi, Giancarlo Consolo, Luigi Calabrese, Daniela Caccamo, Angela Mirea Bellocchio and Marco Portelli
Dent. J. 2025, 13(3), 104; https://doi.org/10.3390/dj13030104 - 27 Feb 2025
Viewed by 899
Abstract
Background/Objectives: Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). Methods: In this work, a [...] Read more.
Background/Objectives: Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). Methods: In this work, a new mandibular advancement device useful for mild-to-moderate OSAS patients is presented. It is developed through a CAD–CAM process and involves a passive propulsion of the mandible thanks to the attraction of rare-earth magnets positioned in the thickness of two thermally molded PET-G devices. The use of a PET-G device compared to traditional resin ones offers several clinical advantages related to the innovative characteristics of this polymer, which allows the fabrication of thinner devices, with high resistance to fluid corrosion, resulting in less bulk inside the oral cavity. Results: The innovative feature of the device proposed by the authors is that mandibular propulsion induced by the attraction of the magnetic jigs is not affected by a patient’s mandibular posture during sleep. Conclusions: The original apparatus proposed by the authors determines a mesializing movement of the jaw through a different mechanism to traditional MADs and presents the great advantage of a digital and CAD–CAD workflow that can be developed directly by the clinicians in the practice. Full article
(This article belongs to the Special Issue New Trends in Digital Dentistry)
Show Figures

Figure 1

17 pages, 5546 KiB  
Article
Sulfuric Acid Leaching of Ionic Rare Earth Magnesium Salt Enrichment and Removing Aluminum by MgO Precipitation
by Qiang Wang, Tao Qi, Yinliang Liu, Hongdong Yu, Limin Zhang and Wei Zhan
Minerals 2025, 15(2), 189; https://doi.org/10.3390/min15020189 - 18 Feb 2025
Cited by 1 | Viewed by 642
Abstract
Production of rare earth enrichment from the in situ leaching solution of ion-adsorbed rare earth ores greatly decreases the treatment scale and significantly reduces production energy consumption and cost. However, the generated rare earth enrichment has a high content of impurities. Further purification [...] Read more.
Production of rare earth enrichment from the in situ leaching solution of ion-adsorbed rare earth ores greatly decreases the treatment scale and significantly reduces production energy consumption and cost. However, the generated rare earth enrichment has a high content of impurities. Further purification of rare earth is necessary. Therefore, a process comprised of sulfuric acid leaching and removing aluminum by the neutralization precipitation method to obtain the purified rare earth solution was proposed. The results of acid leaching revealed that at a sulfuric acid concentration of 1.75 mol/L, a temperature of 60 °C, a liquid–solid ratio of 5:1 mL/g, a leaching time of 0.5 h, and a stirring rate of 300 r/min, leaching efficiency of rare earth and magnesium reached 99.11% and 97.39%, respectively, while the leaching efficiencies of aluminum and silicon reached 72.91% and 55.26%, respectively. The comparison of different precipitants during the neutralization precipitation process showed that MgO was the best precipitant for the efficient removal of aluminum and low loss of rare earth. The results of removing aluminum revealed that when the final pH of the rare earth leaching solution was controlled to be 4.7, the reaction temperature was 25 °C, the slurry concentration of MgO was 0.3 mol/L, and the feeding rate of the MgO slurry was 0.5 mL/min, the removal rate of aluminum was 99.49%, and the loss rate of rare earth was 13.93%. The obtained purified rare earth solution contained 19 g/L of rare earth and less than 0.01 g/L of aluminum. Kinetic studies showed that the apparent activation energy of the aluminum removal process was 6.8 kJ/mol, indicating that the precipitation process was controlled by a mass transfer diffusion reaction. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

11 pages, 2752 KiB  
Article
Comparative Study on Preparation of Aluminum-Rare Earth Master Alloy Fine Powders by Mechanical Pulverization and Gas Atomization Methods
by Huiyi Bai, Yunping Ji, Yiming Li, Haoqi Wang, Xueliang Kang, Huiping Ren and Wei Lv
Processes 2025, 13(2), 548; https://doi.org/10.3390/pr13020548 - 15 Feb 2025
Viewed by 632
Abstract
Aiming at the high-value application of rare earth elements lanthanum (La), an Al-50% La alloy was selected and prepared in a vacuum medium-frequency induction furnace. The geometric characteristics of the Al-50% La alloy powders were compared and studied, with the powders prepared by [...] Read more.
Aiming at the high-value application of rare earth elements lanthanum (La), an Al-50% La alloy was selected and prepared in a vacuum medium-frequency induction furnace. The geometric characteristics of the Al-50% La alloy powders were compared and studied, with the powders prepared by two different methods: mechanical pulverization and gas atomization. The results showed that an Al-49.09% La master alloy was obtained, and the only intermediate phase containing La in the experimental alloy was Al11La3. From the perspectives of chemical and phase composition, La has a high yield. Additionally, an Al-La alloy with controllable rare earth intermediate phases can be obtained. The Al-La alloy powders prepared by the mechanical pulverization method are irregular in shape, but the particle size is relatively small, ranging from 0.25 to 66.9 μm. Submicron powders were obtained, with 4.38% of the powders having an equivalent particle size of less than 1 μm. Considering the characteristic of the selective laser melting (SLM) process forming micro-melt pools, a small amount of submicron Al-La alloy powders prepared by the mechanical pulverization method can be used as a trace additive for SLM preparation of CP-Ti. The powders prepared by gas atomization have good sphericity, with a particle size range of 1.65 to 76.0 μm. Among them, the powders with a size of 2–10 μm account for 75.52%, and this part of the powders can be used for the powder metallurgy preparation of composite materials. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

14 pages, 4274 KiB  
Article
Dissolution Mechanism of YbOF in (LiF-CaF2)eut. Molten Salt
by Linsheng Luo, Kailei Sun and Xu Wang
Molecules 2025, 30(2), 425; https://doi.org/10.3390/molecules30020425 - 20 Jan 2025
Viewed by 758
Abstract
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF2)eut. molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze [...] Read more.
The dissolution mechanism of YbOF in a fluoride-containing (LiF-CaF2)eut. molten salt is the basis for analyzing the structure of the resulting medium and optimizing the electrolytic preparation of rare-earth Yb alloys. In this study, isothermal saturation was used to analyze solubility changes of YbOF in the (LiF-CaF2)eut. system. Quantum chemical and molecular dynamics ab initio methods were used to study the basic properties of the components of the (LiF-CaF2)eut.-YbOF system and the microscopic structural changes during the dissolution process. In addition, structural changes in the YbOF-saturated (LiF-CaF2)eut. system were analyzed by combining cryogenic-temperature Raman spectroscopy with experimental methods. The results show the solubility of YbOF increased linearly in the temperature range of 1073–1323 K. As the melting temperature exceeded 1073 K, LiF and CaF2 gradually dissociated into Li+, Ca2+, and F. In the initial stages of YbOF dissolution (1073–1173 K), the Yb–F bond was less stable than the Yb–O bond; YbOF dissociated into YbO+ and F in this temperature range. When the temperature was increased above 1173 K, YbO+ further dissociated into Yb3+ and O2−. Overall, the dissolution of YbOF did not affect the main structure of the (LiF-CaF2)eut. system. Full article
Show Figures

Figure 1

17 pages, 2379 KiB  
Article
New Insights on Quality, Safety, Nutritional, and Nutraceutical Properties of Honeydew Honeys from Italy
by Andrea Mara, Federica Mainente, Vasiliki Soursou, Yolanda Picó, Iratxe Perales, Asma Ghorab, Gavino Sanna, Isabel Borrás-Linares, Gianni Zoccatelli and Marco Ciulu
Molecules 2025, 30(2), 410; https://doi.org/10.3390/molecules30020410 - 19 Jan 2025
Cited by 4 | Viewed by 1462
Abstract
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, [...] Read more.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy. The honeydew elements, conductivity, color, antioxidant properties, total polyphenol content, hydroxymethylfurfural, major and trace elements, toxic and rare earth elements, and pesticide residues were measured in 59 samples of honeydew honey from forest, eucalyptus, fir, oak, and citrus sources. Physico-chemical and antioxidant properties were unable to differentiate the botanical origin of Italian honeydew honeys. Similarly, the mineral composition did not vary significantly, whereas rare earth elements appeared to be promising markers for classifying their origin. Multivariate analysis allowed discriminating fir honeydews from the other varieties. Concerning safety aspects, pesticide residues were detected in 90% of the samples, with fir honeydews exhibiting the lowest contamination levels, probably due to its production in less industrialized areas. Acetamiprid and imidacloprid were the most prevalent pesticide residues, but their concentrations were below the limit indicated by the EFSA. These findings suggest the need for a continuous monitoring program for contaminants to ensure safety and to assess risk. Full article
Show Figures

Graphical abstract

33 pages, 8053 KiB  
Article
Geochemical and Mineralogical Insights into Organic Matter Preservation in the Gondwana and Post-Gondwana Shale of the Lesser Himalayas, Nepal
by Kumar Khadka, Shuxun Sang, Sijie Han, Junjie He, Upendra Baral, Saunak Bhandari and Debashish Mondal
Minerals 2025, 15(1), 63; https://doi.org/10.3390/min15010063 - 9 Jan 2025
Viewed by 1617
Abstract
The depositional environments, weathering and provenance, organic matter enrichment, and preservation in the Gondwana and post-Gondwana units of the Lesser Himalayas, Nepal, are studied through geochemical and mineralogical analyses using petrography, X-ray diffraction, XRF, and ICP-MS. Mineralogical findings indicate that shales comprise 55% [...] Read more.
The depositional environments, weathering and provenance, organic matter enrichment, and preservation in the Gondwana and post-Gondwana units of the Lesser Himalayas, Nepal, are studied through geochemical and mineralogical analyses using petrography, X-ray diffraction, XRF, and ICP-MS. Mineralogical findings indicate that shales comprise 55% to 72% clay, 25% to 55% quartz, and less than 10% carbonate minerals, with a significant presence of illite, suggesting a transition from fluvial to shallow marine environments during post-Gondwana deposition. The thin sections of the post-Gondwana sandstone reveal an increase in quartz, feldspar, and plagioclase content, with rounded to sub-angular quartz grains indicating moderate transportation before lithification, resulting from the Indo-Asian collision. Geochemical data, including major, trace, and rare earth elements (REE), along with bivariate discrimination diagrams, reveal distinct environmental changes; Gondwana sediments exhibit oxic, arid conditions with continental provenance, while post-Gondwana deposits indicate humid environments favorable for organic matter enrichment, primarily sourced from felsic-intermediate igneous rocks. The TOC is less than 1 wt.% in the Gondwana and is 0.75 to 2 wt.% in the post-Gondwana shale, indicating better organic matter preservation. The existing geological structural data and the research findings highlight the pivotal role of Himalayan tectonism in enhancing the thermal maturity and hydrocarbon generation potential of organic-rich post-Gondwana shales, attributed to their substantial organic matter content. Full article
Show Figures

Figure 1

18 pages, 3743 KiB  
Article
Efficient Reuse of Rare Earth Carbonate Precipitation Mother Liquor for Rare Earth Leaching in Strong Acid-Restricted Area
by Jian Feng, Xiaoyan Wu, Fang Zhou and Ruan Chi
Minerals 2024, 14(11), 1179; https://doi.org/10.3390/min14111179 - 20 Nov 2024
Viewed by 910
Abstract
Due to the restrictions of strong acids in some regions, the reuse process of rare earth (RE) precipitation mother liquor is difficult to carry out. To achieve the straightforward and efficient reuse of precipitation mother liquor in such areas, the potential for directly [...] Read more.
Due to the restrictions of strong acids in some regions, the reuse process of rare earth (RE) precipitation mother liquor is difficult to carry out. To achieve the straightforward and efficient reuse of precipitation mother liquor in such areas, the potential for directly reusing this liquor for rare earth (RE) leaching was explored. The results showed that when the RE concentration in the leachate ranged from 0.1 to 1.5 g/dm3 and the RE precipitation rate exceeded 96%, the residual total carbonate content in precipitation mother liquor was less than 0.01 mol/L, and the solution pH was 7–8. Furthermore, when the total carbonate content in leaching liquor was lower than 0.01 mol/L, the presence of carbonate had a minimal impact on the RE leaching efficiency, which was observed to exceed 93%. Additionally, the process of mother liquor leaching was analyzed using dynamic models and chromatography tray theory. It was found that the leaching results were well fitted with the shrinking core model, and the apparent activation energy of RE was 5.77 kJ/mol, indicating that the reaction was controlled by diffusion, and the reaction order was 0.672 for RE. This confirms that a total carbonate content below 0.01 mol/L in the precipitation mother liquor can be directly used for the RE leaching process. Full article
(This article belongs to the Special Issue Green and Efficient Recovery/Extraction of Rare Earth Resources)
Show Figures

Figure 1

Back to TopTop