Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Analysis of Raw Material
3.2. The Distillation Experiments of REMES and the Phase Changes of REEs
3.2.1. The Distillation Experiments on the Distillation Time for the Phase Changes of REMES
3.2.2. The Distillation Experiments on the Temperature for the Phase Changes of REMES
3.2.3. Further Investigation on the Phase Transformation in the Distillation Process
3.3. The Effect of the Fluorination Process on the Recovery of REMES by Vacuum Distillation
3.3.1. The Volatility of Fluoride Impurities
3.3.2. Treatment for REMES by Fluorination and Vacuum Distillation
3.3.3. Comparison with Other Literature
4. Conclusions
- (1)
- The distillation experimental results showed that 42.04% of the rare earth fluorides and 99.99% of the lithium fluoride in the rare earth molten salt electrolytic slag could be evaporated at 1573 K and 0.1 Pa for 4 h, and the rare earth oxides as well as the rare earth oxyfluorides would be generated simultaneously.
- (2)
- The phase transition analysis elucidated that the oxide impurities could react with rare earth fluorides under high-temperature and -vacuum conditions, capturing the fluorine element and generating rare earth oxides as well as oxyfluorides. This phenomenon significantly affected the recovery efficiency of REEs.
- (3)
- The fluorination experiments indicated that the fluorination process could fluorinate both rare earth compounds and oxide impurities, and after fluorinating the slag by 20 g NH4HF2 at 773 K for 6 h, the recovery efficiency of the rare earth elements could increase to 86.23% at 1573 K and 0.1 Pa for 6 h, while some problems, such as the fluorination of Fe2O3, still existed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Xu, Y.; Qi, Y.; Feng, Z.; Dong, B. Microenvironment regulation of the electronic structure of bismuth oxychloride via rare-earth element samarium doping for remarkable visible-light-responsive oxygen evolution. Appl. Surf. Sci. 2025, 683, 161740. [Google Scholar]
- Lee, S.; Kim, G.; Lee, K.; Kim, S.; Kim, T.; Lee, S.; Kim, D.; Lee, W.; Lee, J. A novel two-step grain boundary diffusion process using TaF5 and Pr70Cu15Al10Ga5 for realizing high-coercivity in Nd-Fe-B-sintered magnets without use of heavy rare-earth. Acta Mater. 2025, 285, 120660. [Google Scholar]
- Asadullayeva, S.G.; Ismayilova, N.A. Effect of rare earth ions on the optical and electronic properties of defect chalcopyrite: Experimental and theoretical investigation. Solid. State Commun. 2024, 394, 115725. [Google Scholar]
- Navarro-Espinoza, S.; Meza-Figueroa, D.; Meléndrez-Amavizca, R.; Barboza-Flores, M.; Soto-Puebla, D.; Ruiz-Torres, R.; Silva-Campa, E.; Paz-Moreno, F. The role of rare earth elements in three-way catalysts: Implications for automobile emission control. Ceram. Int. 2025, in press. [Google Scholar]
- Patil, A.; Thalmann, N.; Torrent, L.; Tarik, M.; Struis, R.; Ludwig, C. Surfactant-based enrichment of rare earth elements from NdFeB magnet e-waste: Optimisation of cloud formation and rare earths extraction. J. Mol. Liq. 2023, 382, 121905. [Google Scholar]
- Ghorbani, Y.; Ilankoon, I.; Dushyantha, N.; Nwaila, G. Rare earth permanent magnets for the green energy transition: Bottlenecks, current developments and cleaner production solutions. Resour. Conserv. Recycl. 2025, 212, 107966. [Google Scholar]
- Gad, S.; Jin, Z.; Emad, S.; Vergara, J.; Yawas, D.; Dagwa, I.; Omiogbemi, I. Potential of rare-earth compounds as anticorrosion pigment for protection of aerospace AA2198-T851 alloy. Heliyon 2023, 9, e14693. [Google Scholar] [CrossRef]
- US Geological Survey. P Mineral Commodity Summaries 2024; US Geological Survey: Reston, VA, USA, 2024; pp. 144–145. [Google Scholar]
- US Geological Survey. P Mineral Commodity Summaries 2020; US Geological Survey: Reston, VA, USA, 2020; pp. 132–133. [Google Scholar]
- Omodara, L.; Pitkaaho, S.; Turpeinen, E.; Saavalainen, P.; Oravisjarvi, K.; Keiski, R. Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications—A review. J. Clean. Prod. 2019, 236, 117573. [Google Scholar]
- Liang, B.; Gu, J.; Zeng, X.; Yuan, W.; Rao, M.; Xiao, B.; Hu, H. A Review of the Occurrence and Recovery of Rare Earth Elements from Electronic Waste. Molecules 2024, 29, 4624. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Hu, W.; Zhao, J.; Zhu, H. Technologies of Recycling REEs and Iron from NdFeB Scrap. Metals 2023, 13, 779. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Tso, Y.; Sheng, C.; Ponou, J.; Kou, M.; Zhou, H.; Chen, W. Separation of Cerium Oxide Abrasive and Glass Powder in an Abrasive-Glass Polishing Waste by Means of Liquid–Liquid–Powder Extraction Method for Recovery: A Comparison of Using a Cationic and an Anionic Surfactant Collector. Sustainability 2020, 12, 4662. [Google Scholar] [CrossRef]
- Borra, C.R.; Vlugt, T.H.; Yang, Y.; Offerman, S.E. Recovery of Cerium from Glass Polishing Waste: A Critical Review. Metals 2018, 8, 801. [Google Scholar] [CrossRef]
- Daminescu, D.; Duteanu, N.; Ciopec, M.; Negrea, A.; Negrea, P.; Nemeş, N.S.; Pascu, B.; Lazău, R.; Berbecea, A. Kinetic Modelling the Solid–Liquid Extraction Process of Scandium from Red Mud: Influence of Acid Composition, Contact Time and Temperature. Materials 2023, 16, 6998. [Google Scholar] [CrossRef]
- Panda, S.; Costa, R.; Shah, S.; Mishra, S.; Bevilaqua, D.; Akcil, A. Biotechnological trends and market impact on the recovery of rare earth elements from bauxite residue (red mud)—A review. Resour. Conserv. Recycl. 2021, 171, 105645. [Google Scholar]
- Pérez-Cardona, J.; Huang, T.; Zhao, F.; Sutherland, J.; Atifi, A.; Fox, R.; Baek, D. Molten salt electrolysis and room temperature ionic liquid electrochemical processes for refining rare earth metals: Environmental and economic performance comparison. Sustain. Energy Technol. Assess. 2022, 54, 102840. [Google Scholar]
- Chen, L.; Li, Z.; Gong, A.; Tian, L.; Xu, Z. Research Progress of Rare Earth Recovery from Rare Earth Waste. J. Chin. Rare Earth Soc. 2019, 37, 259–272. [Google Scholar]
- Tong, Z.; Hu, X.; Wen, H. Effect of roasting activation of rare earth molten salt slag on extraction of rare earth, lithium and fluorine. J. Rare Earth 2023, 41, 300–308. [Google Scholar]
- Liang, Y.; Li, Y.; Xue, L.; Zou, Y. Extraction of rare earth elements from fluoride molten salt electrolytic slag by mineral phase reconstruction. J. Clean. Prod. 2018, 177, 567–572. [Google Scholar]
- Mubula, Y.; Yu, M.; Yang, D.; Niu, H.; Qiu, T.; Mei, G. Recovery of Rare Earths from Rare-Earth Melt Electrolysis Slag by Mineral Phase Reconstruction. JOM 2024, 76, 4732–4748. [Google Scholar]
- Xing, P.; Li, H.; Ye, C.; Zhong, L. Recovery of Rare-Earth Elements from Molten Salt Electrolytic Slag by Fluorine Fixation Roasting and Leaching. J. Sustain. Metall. 2022, 8, 522–531. [Google Scholar]
- Hu, H.; Wang, J. Selective extraction of rare earths and lithium from rare earth fluoride molten-salt electrolytic slag by nitration. Hydrometallurgy 2021, 200, 10552. [Google Scholar] [CrossRef]
- Wu, H.; Yan, H.; Liang, Y.; Qiu, S.; Zhou, X.; Zhu, D.; Qiu, T. Rare earth recovery from fluoride molten-salt electrolytic slag by sodium carbonate roasting-hydrochloric acid leaching. J. Rare Earth 2023, 41, 1242–1249. [Google Scholar] [CrossRef]
- Yang, D.; Yu, M.; Mubula, Y.; Yuan, W.; Huang, Z.; Lin, B.; Mei, G.; Qiu, T. Recovering rare earths, lithium and fluorine from rare earth molten salt electrolytic slag using sub-molten salt method. J. Rare Earth 2024, 42, 1774–1781. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, T.; Xiao, M.; Niu, F.; Shen, L. Rare Earth Recovery from Fluoride Molten-Salt Electrolytic Slag by Borax Roasting-Hydrochloric Acid Leaching. JOM 2019, 72, 939–945. [Google Scholar] [CrossRef]
- Tian, L.; Chen, L.; Gong, A.; Wu, X.; Cao, C.; Xu, Z. Recovery of rare earths, lithium and fluorine from rare earth molten salt electrolytic slag via fluoride sulfate conversion and mineral phase reconstruction. Miner. Eng. 2021, 170, 106956. [Google Scholar] [CrossRef]
- Mubula, Y.; Yu, M.; Gu, H.; Wang, L.; Chen, M.; Qiu, T.; Mei, G. Recovery of rare earths from rare earth molten salt electrolytic slag using alkali phase reconstruction method with the aid of external electric field. J. Rare Earth 2024, in press. [Google Scholar] [CrossRef]
- Mubula, Y.; Yu, M.; Yang, D.; Niu, H.; Gu, H.; Qiu, T.; Mei, G. Microwave-assisted atmospheric alkaline leaching process and leaching kinetics of rare earth melt electrolysis slag. Heliyon 2024, 10, e32278. [Google Scholar] [CrossRef]
- Zhang, M.; He, B.; Liu, Y.; Xu, L.; Liang, Y. Recovery of rare earth elements from rare earth molten salt electrolytic slag via fluorine fixation by MgCl2 roasting. J. Rare Earth 2024, 42, 1979–1987. [Google Scholar] [CrossRef]
- Lai, Y.; Li, J.; Zhu, S.; Liu, K.; Xia, Q.; Huang, M.; Hu, G.; Zhang, H.; Qi, T. Recovery of rare earths, lithium, and fluorine from rare earth molten salt electrolytic slag by mineral phase reconstruction combined with vacuum distillation. Sep. Purif. 2023, 310, 123105. [Google Scholar] [CrossRef]
- Xu, G. Rare Earths; Metallurgical Industry Press: Beijing, China, 1995; p. 26. [Google Scholar]
- Yaws, C. The Yaws Handbook of Yapor Pressure Antoine Coefficients, 2nd ed.; Gulf Professional Publishing: Houston, TX, USA, 2015; p. 318. [Google Scholar]
- Yang, Z.; Xiao, F.; Sun, S.; Zhong, H.; Tu, G. REEs recovery from molten salt electrolytic slag: Challenges and opportunities for environmentally friendly techniques. J. Rare Earth 2024, 42, 1009–1019. [Google Scholar]
- Ji, C.; Xi, Z. Standard Gibbs Free Energy of Formation of Neodymium Oxyfluoride and Borates. J. Less-Common. Met. 1990, 158, 191–198. [Google Scholar] [CrossRef]
- Turdogan, E.T. Physical Chemistry of High Temperature Technology, 1st ed.; Metallurgy Industry Press: Beijing, China, 1988; pp. 1–70. [Google Scholar]
Composition | REEs (Calculated as Oxides) | F | Li | TFe | Al2O3 | SiO2 | CaO | MgO | C |
---|---|---|---|---|---|---|---|---|---|
Weight percent/% | 50.67 | 19.52 | 3.05 | 4.67 | 3.31 | 5.15 | 0.63 | 0.58 | 15.10 |
Composition (Calculated as Oxides) | Nd | Pr | Gd | Ce | La | Dy |
---|---|---|---|---|---|---|
Weight percent/% | 69.07 | 14.19 | 14.33 | 0.31 | 0.89 | 1.21 |
Elements | REEs (%) | Li (%) |
---|---|---|
Recovery efficiency | 86.23 | 99.99 |
Method | Procedures | Advantage | Disadvantages | Reference |
---|---|---|---|---|
Fluorination–Vacuum Distillation Method | (1) Fluorination roasting; (2) Vacuum distillation. | (1) Short process; (2) Clean process; (3) High resource utilization. | (1) High energy consumption; (2) High cost of NH4HF2. | |
Fluoride Sulfate Conversion Method | (1) Magnetic separation; (2) Roasting with sulfuric acid; (3) Absorbing HF; (4) Fluorination precipitation. | (1) Low energy consumption; (2) Low production cost; (3) High resource utilization. | (1) Wastewater problem; (2) The corrosion effect of HF. | Tian et al. [27] |
Roasting Activation Method | (1) Activation roasting; (2) Sulfuric acid leaching; (3) Hierarchical extraction. | (1) Low energy consumption; (2) Low production cost; (3) High resource utilization; | (1) Long process of solvent extraction procedure; (2) Wastewater problem. | Tong et al. [19] |
Sub-molten salt Method | (1) NaOH sub-molten salt decomposition; (2) Hydrochloric acid leaching; (3) Oxalate precipitation; (4) Roasting to recover RE2O3; (5) Heating to recover Li and F and recycle NaOH and Na2CO3. | (1) Low energy consumption; (2) Low production cost. | (1) Long process; (2) Wastewater problem; (3) Impurity enrichment. | Yang et al. [25] |
Borax Roasting–Hydrochloric Acid Leaching Method | (1) Roasting with borax; (2) Washing in the NaOH solution; (3) Hydrochloric acid leaching; (4) Recycling of NaOH and F; (5) Solvent extraction to recover REEs. | (1) Low energy consumption; (2) Low production cost. | (1) Long process of solvent extraction procedure; (2) Wastewater problem; (3) Low resource recovery efficiency of lithium. | Yang et al. [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Xiao, F.; Sun, S.; Tu, G.; Zhou, Z.; Chen, J.; Hong, X.; He, W.; Sui, C.; Yu, K. Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation. Materials 2025, 18, 1538. https://doi.org/10.3390/ma18071538
Yang Z, Xiao F, Sun S, Tu G, Zhou Z, Chen J, Hong X, He W, Sui C, Yu K. Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation. Materials. 2025; 18(7):1538. https://doi.org/10.3390/ma18071538
Chicago/Turabian StyleYang, Ziyan, Faxin Xiao, Shuchen Sun, Ganfeng Tu, Zhentao Zhou, Jingyi Chen, Xin Hong, Wei He, Chengfu Sui, and Kuopei Yu. 2025. "Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation" Materials 18, no. 7: 1538. https://doi.org/10.3390/ma18071538
APA StyleYang, Z., Xiao, F., Sun, S., Tu, G., Zhou, Z., Chen, J., Hong, X., He, W., Sui, C., & Yu, K. (2025). Investigation on the Recovery of Rare Earth Fluorides from Spent Rare Earth Molten Electrolytic Slag by Vacuum Distillation. Materials, 18(7), 1538. https://doi.org/10.3390/ma18071538