Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,485)

Search Parameters:
Keywords = less invasive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 342 KiB  
Review
The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review
by Dario Giani, Michele Cosimo Santoro, Maurizio Gabrielli, Roberta Di Luca, Martina Malaspina, Maria Lumare, Licia Antonella Scatà, Martina Pala, Alberto Manno, Marcello Candelli, Marcello Covino, Antonio Gasbarrini and Francesco Franceschi
Medicina 2025, 61(8), 1337; https://doi.org/10.3390/medicina61081337 - 24 Jul 2025
Abstract
ABG analysis is the gold standard for assessing acid–base balance, oxygenation, and ventilation in critically ill patients, but it is invasive and associated with patient discomfort and potential complications. Venous blood gas (VBG) analysis offers a less invasive alternative, although its clinical utility [...] Read more.
ABG analysis is the gold standard for assessing acid–base balance, oxygenation, and ventilation in critically ill patients, but it is invasive and associated with patient discomfort and potential complications. Venous blood gas (VBG) analysis offers a less invasive alternative, although its clinical utility remains debated. This review evaluates the current evidence on VBG analysis, exploring its correlation with ABG, clinical applications, and limitations. Studies show a strong correlation between ABG and VBG for pH and a good correlation for bicarbonate and base excess in most cases, while the correlation for pCO2 remains controversial. Predictably, pO2 values differ significantly due to oxygen consumption gradients between the arterial and venous blood. VBG analysis is especially valuable for initial assessments, monitoring therapeutic responses, and guiding resuscitation in intensive care settings. It is not merely an alternative to ABG but a complementary tool that can provide unique insights, such as mixed venous oxygen saturation (SvO2) or indices that require combined ABG and VBG data, like the pCO2 gap. This review highlights the diagnostic equivalence of VBG in appropriate contexts and advocates for its use when arterial sampling is unnecessary or impractical. Furthermore, VBG analysis could enhance patient care by enabling the timely, less invasive assessment of hemodynamic and metabolic conditions. Future research should focus on refining interpretation algorithms and expanding the clinical applications of VBG to fully realize its potential in critical care practice. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
13 pages, 1401 KiB  
Article
Cost-Effectiveness of Endoscopic Stricturotomy Versus Resection Surgery for Crohn’s Disease Strictures
by Kate Lee Karlin, Grace Kim, Francesca Lim, Adam S. Faye, Chin Hur and Bo Shen
Healthcare 2025, 13(15), 1801; https://doi.org/10.3390/healthcare13151801 - 24 Jul 2025
Abstract
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it [...] Read more.
Background: Endoscopic therapies for Crohn’s disease (CD) strictures, including endoscopic balloon dilation (EBD) and endoscopic stricturotomy (ESt), are less invasive interventions compared to surgery. ESt is advantageous for strictures that are longer, more fibrotic, or adjacent to anatomic structures requiring precision, and it has shown a high rate of surgery-free survival. Methods: We designed a microsimulation state-transition model comparing ESt to surgical resection for CD strictures. We calculated quality-adjusted life years (QALYs) over a 10-year time horizon; secondary outcomes included costs (in 2022 USD) and incremental cost-effectiveness ratios (ICERs). We used a societal perspective to compare our strategies at a willingness-to-pay (WTP) threshold of 100,000 USD/QALY. Sensitivity analyses, both deterministic and probabilistic, were performed. Results: The surgery strategy cost more than 2.5 times the ESt strategy, but resulted in nine more QALYs per 100 persons. The ICER for the surgery strategy was 308,787 USD/QALY; thus, the ESt strategy was determined more cost-effective. One-way sensitivity analyses showed that quality of life after ESt as compared to that after surgery, the likelihood of repeat intervention, and surgical mortality and cost were the most influential parameters shifting cost-effectiveness. Probabilistic sensitivity analyses favored ESt in most (65.5%) iterations. Conclusions: Our study finds endoscopic stricturotomy to be a cost-effective strategy to manage primary or anastomotic Crohn’s disease strictures. Post-intervention quality of life and probabilities of requiring repeated interventions exert most influence on cost-effectiveness. The decision between ESt and surgery should be made considering patient and stricture characteristics, preferences, and cost-effectiveness. Full article
(This article belongs to the Section Healthcare Quality and Patient Safety)
11 pages, 222 KiB  
Review
The Role of Serotoninomics in Neuropsychiatric Disorders: Anthranilic Acid in Schizophrenia
by Katia L. Jiménez-García, José L. Cervantes-Escárcega, Gustavo Canul-Medina, Telma Lisboa-Nascimento and Francisco Jiménez-Trejo
Int. J. Mol. Sci. 2025, 26(15), 7124; https://doi.org/10.3390/ijms26157124 - 24 Jul 2025
Abstract
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential [...] Read more.
Serotoninomics is an expanding field that focuses on the comprehensive study of the serotoninergic system, including serotonin’s biosynthesis, metabolism, and regulation, as well as related scientific methodologies 5-hydroxytryptamine (5-HT). This field explores serotonin’s complex roles in various physiological and pathological contexts. The essential amino acid tryptophan (Trp) is a precursor for several metabolic and catabolic pathways, with the kynurenine (KYN) pathway being particularly significant, representing about 95% of Trp metabolism. In contrast, only a small portion (1–2%) of dietary Trp enters the serotonin pathway. Anthranilic acid (AA), a metabolite in the KYN pathway, has emerged as a potential biomarker and therapeutic target for schizophrenia. Elevated serum AA levels in patients with schizophrenia have been associated with neurotoxic effects and disruptions in neurotransmission, suggesting AA’s critical role in the disorder’s pathophysiology. Furthermore, the 5-HT2A receptor’s involvement is particularly noteworthy, especially in relation to schizophrenia’s positive symptoms. Recent findings indicate that 5-HT2A receptor hyperactivity is linked to positive symptoms of schizophrenia, such as hallucinations and delusions. This study investigates serotoninomics’ implications for neuropsychiatric disorders, focusing on AA in schizophrenia and analysing recent research on serotonin signalling pathways and AA’s neurochemical effects. Understanding the roles of the 5-HT2A receptor and AA in neuropsychiatric disorders could lead to the development of more precise and less invasive diagnostic tools, specific therapeutic strategies, and improved clinical outcomes. Ongoing research is essential to uncover these pathways’ exact mechanisms and therapeutic potential, thereby advancing personalised medicine and innovative treatments in neuropsychiatry. Full article
15 pages, 1231 KiB  
Review
Endoscopic Ultrasound (EUS) in Gastric Cancer: Current Applications and Future Perspectives
by Dimitrios I. Ziogas, Nikolaos Kalakos, Anastasios Manolakis, Theodoros Voulgaris, Ioannis Vezakis, Mario Tadic and Ioannis S. Papanikolaou
Diseases 2025, 13(8), 234; https://doi.org/10.3390/diseases13080234 - 24 Jul 2025
Abstract
Gastric cancer remains the fourth leading cause of cancer-related mortality worldwide. Advanced disease is associated with a poor prognosis, emphasizing the critical importance of early diagnosis through endoscopy. In addition to prognosis, disease extent also plays a pivotal role in guiding management strategies. [...] Read more.
Gastric cancer remains the fourth leading cause of cancer-related mortality worldwide. Advanced disease is associated with a poor prognosis, emphasizing the critical importance of early diagnosis through endoscopy. In addition to prognosis, disease extent also plays a pivotal role in guiding management strategies. Therefore, accurate locoregional staging (T and N staging) is vital for optimal prognostic and therapeutic planning. Endoscopic ultrasound (EUS) has long been an essential tool in this regard, with computed tomography (CT) and, more recently, positron emission tomography–computed tomography (PET–CT) serving as alternative imaging modalities. EUS is particularly valuable in the assessment of early gastric cancer, defined as tumor invasion confined to the mucosa or submucosa. These tumors are increasingly managed by endoscopic resection techniques offering improved post-treatment quality of life. EUS has also recently been utilized in the restaging process after neoadjuvant chemotherapy, aiding in the evaluation of tumor resectability and prognosis. Its performance may be further enhanced through the application of emerging techniques such as contrast-enhanced endosonography, EUS elastography, and artificial intelligence systems. In advanced, unresectable disease, complications such as gastric outlet obstruction (GOO) severely impact patient quality of life. In this setting, EUS-guided gastroenterostomy (EUS-GE) offers a less invasive alternative to surgical gastrojejunostomy. This review summarizes and critically analyzes the role of EUS in the context of gastric cancer, highlighting its applications across different stages of the disease and evaluating its performance relative to other diagnostic modalities. Full article
(This article belongs to the Section Gastroenterology)
Show Figures

Figure 1

35 pages, 1902 KiB  
Review
From Amyloid to Synaptic Dysfunction: Biomarker-Driven Insights into Alzheimer’s Disease
by Luisa Agnello, Caterina Maria Gambino, Anna Maria Ciaccio, Francesco Cacciabaudo, Davide Massa, Anna Masucci, Martina Tamburello, Roberta Vassallo, Mauro Midiri, Concetta Scazzone and Marcello Ciaccio
Curr. Issues Mol. Biol. 2025, 47(8), 580; https://doi.org/10.3390/cimb47080580 - 22 Jul 2025
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and represents a major public health challenge. With increasing life expectancy, the incidence of AD has also increased, highlighting the need for early diagnosis and improved monitoring. Traditionally, diagnosis has relied on clinical symptoms [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and represents a major public health challenge. With increasing life expectancy, the incidence of AD has also increased, highlighting the need for early diagnosis and improved monitoring. Traditionally, diagnosis has relied on clinical symptoms and neuroimaging; however, the introduction of biomarkers has revolutionized disease assessment. Traditional biomarkers, including the Aβ42/Aβ40 ratio, phosphorylated tau (p-Tau181, p-Tau217, and p-Tau231), total tau (t-tau), and neurofilament light chain (NfL), are fundamental for staging AD progression. Updated guidelines introduced the ATX(N) model, which extends biomarker classification to include additional promising biomarkers, such as SNAP-25, YKL-40, GAP-43, VILIP-1, progranulin (PGRN), TREM2, IGF-1, hFABP, MCP-1, TDP-43, and BDNF. Recent advancements have allowed for the detection of these biomarkers not only in CSF but also in plasma and neuron-derived exosomes, offering less invasive and more accessible diagnostic options. This review explores established and emerging biomarkers and emphasizes their roles in early diagnosis, patient stratification, and precision medicine. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

10 pages, 3728 KiB  
Technical Note
Cervical Lateral Mass and Pedicle Fracture Reduced with a Herbert Screw: A Technical Note
by Antonio Colamaria, Francesco Carbone, Augusto Leone, Giuseppe Palmieri, Savino Iodice, Bianca Maria Baldassarre, Giovanni Cirrottola, Valeria Ble, Uwe Spetzger and Giuseppe Di Perna
Med. Sci. 2025, 13(3), 92; https://doi.org/10.3390/medsci13030092 - 19 Jul 2025
Viewed by 168
Abstract
Background: Traumatic fractures of the cervical spine pose significant challenges in management, particularly in young patients, where preserving mobility is crucial. Patient Characteristics: A 30-year-old woman presented with a C3 lateral mass and pedicle fracture following a motor vehicle collision. Initial conservative management [...] Read more.
Background: Traumatic fractures of the cervical spine pose significant challenges in management, particularly in young patients, where preserving mobility is crucial. Patient Characteristics: A 30-year-old woman presented with a C3 lateral mass and pedicle fracture following a motor vehicle collision. Initial conservative management with a rigid cervical collar for three months failed to reduce the diastasis, and the debilitating neck pain worsened. Preoperative imaging confirmed fracture instability without spinal cord compression. Intervention and Outcome: Preoperative screw trajectory planning was conducted with the My Spine MC system (Medacta), and fine-tuning was achieved on a 3D-printed model of the vertebra. A posterior midline approach was employed to expose the C3 vertebra, and a Herbert screw was inserted under fluoroscopic guidance. Imaging at three months demonstrated significant fracture reduction and early bone fusion. The patient achieved substantial improvement in functional mobility without complications. Conclusion: Herbert screw fixation holds potential as a less-invasive alternative to conventional posterior stabilization for selected cervical fractures. This technical note provides the reader with the required information to support surgical planning and execution. Full article
Show Figures

Figure 1

14 pages, 1778 KiB  
Article
PET/CT Volumetric Parameters as Predictors of the Peritoneal Cancer Index in Advanced Ovarian Cancer Patients
by Ariel Glickman, Blanca Gil-Ibáñez, Aida Niñerola-Baizán, Marta Tormo, Núria Carreras-Dieguez, Pere Fusté, Marta Del Pino, Eduardo González-Bosquet, Inmaculada Romero-Zayas, Cristina Celada-Castro, Tiermes Marina, Lydia Gaba, Adela Rodriguez Hernández, Adela Saco, Laura Buñesch, Josep Lluís Carrasco, Katherine Quintero, David Fuster, Berta Díaz-Feijóo, Aureli Torné and Pilar Paredesadd Show full author list remove Hide full author list
Diagnostics 2025, 15(14), 1818; https://doi.org/10.3390/diagnostics15141818 - 19 Jul 2025
Viewed by 226
Abstract
Background: Assessment of the peritoneal cancer burden is crucial for determining the optimal treatment in advanced ovarian cancer (AOC). Effective non-invasive methods to predict tumour load remain limited. This study aimed to assess the applicability of 2-[18F]FDG PET/CT volumetric parameters, metabolic [...] Read more.
Background: Assessment of the peritoneal cancer burden is crucial for determining the optimal treatment in advanced ovarian cancer (AOC). Effective non-invasive methods to predict tumour load remain limited. This study aimed to assess the applicability of 2-[18F]FDG PET/CT volumetric parameters, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) for predicting the surgical peritoneal cancer index (PCI) in AOC before primary treatment. Methods: Patients with high-grade serous or undifferentiated AOC who underwent surgical PCI evaluation and 2-[18F]FDG PET/CT between 01/2013 and 12/2018 were included. MTV and TLG were calculated using thresholds of 40% and 50% (MTV40, MTV50, TLG40, and TLG50). Correlations between the peritoneal carcinomatosis MTV (car_MTV) and TLG (car_TLG) were analysed. The capacity of volumetric parameters to estimate PCIs above or below 14 and 20 was assessed for the whole abdominal cavity and in per-quadrant analysis, specifically for upper-abdomen areas 1, 2, and 3 (MTV40_1, 2, 3 and TLG40_1, 2, 3). Results: MTV40, MTV50, TLG40, and TLG50 significantly correlated with the PCI in the final study population (n = 45). MTV40 showed a Pearson coefficient of 0.41 (p = 0.003). MTV3_40 (AUC 0.79) and TLG3_40 (AUC 0.81) presented the highest AUCs for predicting a PCI above or below 14. The volumetric parameters allowed the prediction of a PCI greater or less than 20, with an AUC of 0.77 for MTV40_1 and 0.78 for TLG40_1. Conclusions: 2-[18F]FDG PET/CT MTV and TLG correlate significantly with the surgical PCI when assessing peritoneal carcinomatosis or quadrant-specific disease. This approach offers a reliable non-invasive method for evaluating tumour burden in AOC. Full article
(This article belongs to the Special Issue Exploring Gynecological Pathology and Imaging)
Show Figures

Figure 1

23 pages, 43055 KiB  
Article
Tumor-Associated Macrophages and Collagen Remodeling in Mammary Carcinomas: A Comparative Analysis in Dogs and Humans
by Ana Paula Vargas Garcia, Marisa Salvi, Luana Aparecida Reis, Bárbara Regina Melo Ribeiro, Cristiana Buzelin Nunes, Ana Maria de Paula and Geovanni Dantas Cassali
Int. J. Mol. Sci. 2025, 26(14), 6928; https://doi.org/10.3390/ijms26146928 - 18 Jul 2025
Viewed by 177
Abstract
The tumor microenvironment (TME) plays a central role in cancer progression, with tumor-associated macrophages (TAMs) and extracellular matrix (ECM) components such as collagen being key modulators of invasiveness and immune regulation. Although macrophage infiltration and ECM remodeling are well-documented individually, their coordinated contribution [...] Read more.
The tumor microenvironment (TME) plays a central role in cancer progression, with tumor-associated macrophages (TAMs) and extracellular matrix (ECM) components such as collagen being key modulators of invasiveness and immune regulation. Although macrophage infiltration and ECM remodeling are well-documented individually, their coordinated contribution to mammary carcinoma aggressiveness remains underexplored, particularly in comparative oncology models. This study analyzed 117 mammary carcinoma samples—59 from dogs and 58 from women—using immunohistochemistry, immunofluorescence, and second-harmonic-generation (SHG) microscopy. We quantified TAM density and phenotype (CD206, iNOS, and S100A8/A9), assessed collagen fiber organization, and examined correlations with clinical–pathological variables and overall survival. Increased TAM infiltration was associated with a higher histological grade, aggressive molecular subtypes, enhanced cell proliferation, and shortened survival in dogs. High TAM density also correlated with decreased collagen fiber length and increased alignment, suggesting active immune–matrix remodeling in aggressive tumors. Macrophage phenotyping revealed heterogeneous populations, with CD206+ cells predominating in high-grade tumors, while S100A8/A9+/iNOS+ phenotypes were enriched in less aggressive subtypes. The findings were consistent across species, reinforcing the relevance of canine models. Our results identify macrophage–collagen interactions as critical determinants of tumor aggressiveness in mammary carcinomas. This study bridges comparative oncology and translational research by proposing immune–ECM signatures as potential prognostic biomarkers and therapeutic targets. These insights contribute to the advancement of molecular oncology in Brazil by supporting innovative strategies that integrate immune modulation and matrix-targeted interventions in breast cancer. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Brazil, 3rd Edition)
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Polymeric Nanoparticle-Mediated Photodynamic Therapy: A Synergistic Approach for Glioblastoma Treatment
by Bandar Aldhubiab and Rashed M. Almuqbil
Pharmaceuticals 2025, 18(7), 1057; https://doi.org/10.3390/ph18071057 - 18 Jul 2025
Viewed by 294
Abstract
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) [...] Read more.
Glioblastoma is the most common and aggressive malignant primary brain tumour. Patients with glioblastoma have a median survival of only around 14.6 months after diagnosis, despite the availability of various conventional multimodal treatments including chemotherapy, radiation therapy, and surgery. Therefore, photodynamic therapy (PDT) has emerged as an advanced, selective and more controlled therapeutic approach, which has minimal systemic toxicity and fewer side effects. PDT is a less invasive therapy that targets all cells or tissues that possess the photosensitizer (PS) itself, without affecting the surrounding healthy tissues. Polymeric NPs (PNPs) as carriers can improve the targeting ability and stability of PSs and co-deliver various anticancer agents to achieve combined cancer therapy. Because of their versatile tuneable features, these PNPs have the capacity to open tight junctions of the blood–brain barrier (BBB), easily transport drugs across the BBB, protect against enzymatic degradation, prolong the systemic circulation, and sustainably release the drug. Conjugated polymer NPs, poly(lactic-co-glycolic acid)-based NPs, lipid–polymer hybrid NPs, and polyethylene-glycolated PNPs have demonstrated great potential in PDT owing to their unique biocompatibility and optical properties. Although the combination of PDT and PNPs has great potential and can provide several benefits over conventional cancer therapies, there are several limitations that are hindering its translation into clinical use. This review aims to summarize the recent advances in the combined use of PNPs and PDT in the case of glioblastoma treatment. By evaluating various types of PDT and PNPs, this review emphasizes how these innovative approaches can play an important role in overcoming glioblastoma-associated critical challenges, including BBB and tumour heterogeneity. Furthermore, this review also discusses the challenges and future directions for PNPs and PDT, which provides insight into the potential solutions to various problems that are hindering their clinical translation in glioblastoma treatment. Full article
(This article belongs to the Special Issue Tumor Therapy and Drug Delivery)
Show Figures

Graphical abstract

19 pages, 4194 KiB  
Article
3D-Printed PLA Hollow Microneedles Loaded with Chitosan Nanoparticles for Colorimetric Glucose Detection in Sweat Using Machine Learning
by Anastasia Skonta, Myrto G. Bellou and Haralambos Stamatis
Biosensors 2025, 15(7), 461; https://doi.org/10.3390/bios15070461 - 18 Jul 2025
Viewed by 214
Abstract
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat [...] Read more.
Biosensors play a central role in the early detection of abnormal glucose levels in individuals with diabetes; therefore, the development of less invasive systems is essential. Herein, a 3D-printed colorimetric biosensor combining microneedles and chitosan nanoparticles was developed for glucose detection in sweat using machine learning. Briefly, hollow 3D-printed polylactic acid microneedles were constructed and loaded with chitosan nanoparticles encapsulating glucose oxidase, horseradish peroxidase, and the chromogenic substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), resulting in the formation of the chitosan nanoparticle−microneedle patches. Glucose detection was performed colorimetrically by first incubating the chitosan nanoparticle−microneedle patches with glucose samples of varying concentrations and then by using photographs of the top side of each microneedle and a color recognition application on a smartphone. The Random Sample Consensus algorithm was used to train a simple linear regression model to predict glucose concentrations in unknown samples. The developed biosensor system exhibited a good linear response range toward glucose (0.025−0.375 mM), a low limit of detection (0.023 mM), a limit of quantification (0.078 mM), high specificity, and recovery rates ranging between 86–112%. Lastly, the biosensor was applied to glucose detection in spiked artificial sweat samples, confirming the potential of the proposed methodology for glucose detection in real samples. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 355
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

23 pages, 6991 KiB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 181
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

8 pages, 878 KiB  
Study Protocol
Gait Analysis After Anterior Cruciate Ligament Surgery Comparing Primary Repair and Reconstruction Techniques
by Filip Hušek, Jiří Vitvar, Roman Mizera, Zdeněk Horák and Lukáš Čapek
J. Clin. Med. 2025, 14(14), 5026; https://doi.org/10.3390/jcm14145026 - 16 Jul 2025
Viewed by 174
Abstract
Background: ACL graft reconstruction is considered the gold standard for ACL injury treatment. Recently developed primary repair techniques such as InternalBrace ligament augmentation (Arthrex©) look like promising alternatives. The aim of our study is to compare functional results of two different surgical [...] Read more.
Background: ACL graft reconstruction is considered the gold standard for ACL injury treatment. Recently developed primary repair techniques such as InternalBrace ligament augmentation (Arthrex©) look like promising alternatives. The aim of our study is to compare functional results of two different surgical techniques using a gait analysis. Methods: A total of 42 patients who underwent surgical treatment for ACL rupture were included in this study. The first group was represented by patients who were surgically treated with ACL reconstruction. The second group included patients with acute ACL injury, who underwent primary repair with InternalBrace augmentation. Gait data were measured in the Human Motion Analysis Lab at our institution. The time interval for data collection was 6 weeks after surgery and 6 months after surgery. Results: There was no significant improvement in maximal and peak flexion for both group 1 and group 2 in the 6-week and 6-month intervals. Also, no significant improvement of maximal extension was found in group 1. In contrast, the study showed a reduction in maximal extension for group 2 in the 6-week and 6-month intervals. When comparing peak extension for the graft or InternalBrace techniques, no significant difference was found between both groups in the 6-week evaluation. However, results differed significantly in the 6-month evaluation. Conclusions: Considering the faster gain of extension, less invasiveness of the procedure, and shorter operating time, primary repair with InternalBrace augmentation seems to be a suitable option for treatment of proximal avulsions and Sherman I ACL ruptures. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 983 KiB  
Review
Double Crush Syndrome of the L5 Nerve Root and Common Peroneal Nerve at the Fibular Head: A Case Series and Review of the Literature
by Hugo F. den Boogert, Janneke Schuuring and Godard C. W. de Ruiter
J. Clin. Med. 2025, 14(14), 5023; https://doi.org/10.3390/jcm14145023 - 16 Jul 2025
Viewed by 153
Abstract
Background/Objectives: The co-existence of multiple compression sites on the same nerve can pose a clinical and diagnostic challenge, warranting a different treatment strategy. This so-called double crush syndrome (DCS) has mainly been investigated in the upper limb. Only a few studies have [...] Read more.
Background/Objectives: The co-existence of multiple compression sites on the same nerve can pose a clinical and diagnostic challenge, warranting a different treatment strategy. This so-called double crush syndrome (DCS) has mainly been investigated in the upper limb. Only a few studies have investigated DCS for the lower limb. In this article, a single-center illustrative clinical case series is presented, and current literature on L5 nerve root (NR) and concomitant common peroneal nerve (CPN) is reviewed. Methods: All patients presenting between 2019 and 2022 with L5 nerve root (NR) compression and, along their clinical courses, concomitant compression of the common peroneal nerve (CPN) at the fibular head were included. Information on clinical features, diagnostics and surgeries was obtained. The outcome was assessed at the last outpatient follow-up appointment. In addition, an extensive literature review has been conducted. Results: Fourteen patients were included with a mean follow-up of 6.8 months. The majority had pain (71%) or motor deficits (71%). Seven patients were referred for clinical and radiological L5 NR compression but were also found to have CPN compression; the other seven patients had persisting or recurrent symptoms after surgically or conservatively treated L5 NR compression, suggestive of additional peroneal neuropathy. All patients had CPN decompression at the fibular head, with successful results obtained in 93% of the patients. Pain of the lower leg improved in all patients, and dorsiflexion function improved in 78%. Conclusions: Concomitant L5 NR and CPN appear to occur more frequently than expected. Peroneal neuropathy can present simultaneously with L5 nerve radiculopathy or after surgically or conservatively treated L5 NR compression. Overlapping symptoms and variation in clinical presentations make it difficult to diagnose and, therefore, underrecognized. More awareness among treating physicians of this specific double crush syndrome is important to prevent any delay in treatment, in this case, a less invasive common peroneal nerve release at the fibular head, and to avoid unnecessary (additional) spinal surgery. Full article
(This article belongs to the Special Issue Neuropathic Pain: From Prevention to Diagnosis and Management)
Show Figures

Figure 1

16 pages, 4529 KiB  
Article
Inhibition of FOXM1 Leads to Suppression of Cell Proliferation, Migration, and Invasion Through AXL/eEF2 Kinase Signaling and Induces Apoptosis and Ferroptosis in GBM Cells
by Ezgi Biltekin, Nermin Kahraman, Ogun Ali Gul, Yasemin M. Akay, Metin Akay and Bulent Ozpolat
Int. J. Mol. Sci. 2025, 26(14), 6792; https://doi.org/10.3390/ijms26146792 - 15 Jul 2025
Viewed by 265
Abstract
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We [...] Read more.
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We and others have demonstrated that FOXM1 is a critical oncogenic driver of GBM cell proliferation. However, the role of FOXM1 and its interaction with other oncogenic signaling pathways in GBM remains incompletely understood. In this study, we identified FOXM1, AXL, and eEF2K as highly upregulated oncogenes in GBM patient tumors. We demonstrated, for the first time, that FOXM1 directly interacts with AXL and eEF2K, regulating their expression and promoting GBM cell proliferation, migration, and invasion. Knockdown of these genes disrupted cell proliferation, spheroid formation, migration, and invasion, and induced apoptosis and ferroptosis. Additionally, inhibiting the FOXM1–AXL/eEF2K signaling axis sensitized GBM cells to TMZ, further enhancing apoptotic and ferroptotic responses. These findings highlight the critical role of the FOXM1–AXL/eEF2K signaling pathway in GBM progression and suggest that targeting this axis may offer a novel multitargeted therapeutic strategy in GBM. Full article
Show Figures

Figure 1

Back to TopTop