The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review
Abstract
1. Introduction
2. The Literature Research
- ‘Venous blood gas analysis’ AND ‘Emergency Department’;
- ‘Venous blood gas analysis’ AND ‘Critical Care’;
- ‘Venous blood gas analysis’ AND ‘ICU (Intensive Care Unit)’.
3. Differences in the Main Gas Analysis Parameters of Arterial and Venous Blood
4. Mixed, Central, and Peripheral Venous Blood
4.1. Central Mixed Venous Blood
4.2. Central Venous Blood
4.3. Peripheral Venous Blood
5. Other Hemodynamic Blood Gas Analytical Indices
5.1. Venous Oxygen Saturation
- CaO2 = 1.34 × Hb × SaO2;
- CvO2 = 1.34 × Hb × SvO2;
- VO2 = CO × (CaO2 − CvO2).
5.2. Relationship Between Lactate and Venous Oxygen Saturation
5.3. The pCO2 Gap: Pathophysiological Basis
- Lactic fermentation: Pyruvate is converted into lactate with ATP hydrolysis and CO2 production. Lactate may accumulate or be reconverted to pyruvate once aerobic conditions are restored.
- Alcoholic fermentation: Pyruvate is transformed into ethanol and CO2.
- Bicarbonate ion (HCO3−): Accounts for 90% of total CO2 in arterial blood, formed via the reaction CO2 + H2O → H2CO3 → H+ + HCO3−, catalyzed by carbonic anhydrase.
- Dissolved in plasma: Represented by the partial pressure of CO2 (PaCO2), approximately 5% of the total CO2 in arterial blood.
- Carbamino compounds: CO2 bound to hemoglobin (carbaminohemoglobin), constituting around 1–5% of the total CO2 in arterial blood.
- VCO2 = CO × (CaCO2 − CvCO2);
- PaCO2 − PvCO2 = K × (CaCO2 − CvCO2);
- Then:
- VCO2 = CO × K × (PaCO2 − PvCO2);
- Therefore: (PaCO2 − PvCO2) = VCO2/(CO × K).
5.3.1. The pCO2 Gap in Clinical Practice
5.3.2. Limitations of the pCO2 Gap
5.4. Ratio of the pCO2 Gap to the Arteriovenous O2 Content Difference (pCO2 Gap/Ca-vO2 Gap)
6. Conclusions
- Central venous blood can be used to evaluate ScvO2 as a surrogate for SvO2 measured from mixed venous blood, with a reasonable agreement of approximately 85–90%, and to assess the pCO2 gap in conjunction with the arterial blood gas analysis.
- Peripheral venous blood is suitable for assessing hemoglobin and electrolytes and for evaluating pH and bicarbonate levels, but only in the absence of respiratory disorders.
- Arterial blood gas analysis remains the gold standard in critically ill patients for evaluating hemoglobin, electrolytes, lactate, and the acid–base balance, particularly in the presence of respiratory dysfunction.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABG | arterial blood gas |
CaO2 | arterial content of oxygen |
CvO2 | venous content of oxygen |
CaO2 − CvO2 (or Ca–vO2 gap) | arterial-venous O2 content difference |
CCO2 | total content of CO2 |
CO | cardiac output |
CO2 | carbon dioxide |
CVC | central venous catheter |
DO2 | delivery of oxygen |
MODS | multiple organ dysfunction |
MOF | multiple organ failure |
O2 | oxygen |
O2ER | oxygen extraction rate |
pCO2 | partial CO2 pressure (not specified whether arterial or venous) |
PaCO2 | arterial partial CO2 pressure |
PvCO2 | venous partial CO2 pressure |
pO2 | partial O2 pressure (not specified whether arterial or venous) |
PaO2 | arterial partial O2 pressure |
pCO2 gap or Pv–aCO2 | venous-arterial CO2 pressure difference |
RQ | respiratory quotient |
SO2 | oxygen saturation (not specified whether arterial or venous) |
SaO2 | arterial O2 saturation |
SvO2 | venous O2 saturation (generic term) |
ScvO2 | central venous O2 saturation |
SfvO2 | femoral venous O2 saturation |
SmvO2 | mixed venous O2 saturation |
SpvO2 | peripheral venous O2 saturation |
VBG | venous blood gas |
VO2 | O2 consumption |
References
- Korpi-Steiner, N.; Horowitz, G.; Tesfazghi, M.; Suh-Lailam, B.B. Current Issues in Blood Gas Analysis. J. Appl. Lab. Med. 2023, 8, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.K.; Grant, M.E. Blood analysis at the point of care: Issues in application for use in critically ill patients. AACN Clin. Issues 2002, 13, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Bijapur, M.B.; Kudligi, N.A.; Asma, S. Central Venous Blood Gas Analysis: An Alternative to Arterial Blood Gas Analysis for pH, PCO2, Bicarbonate, Sodium, Potassium and Chloride in the Intensive Care Unit Patients. Indian J. Crit. Care Med. 2019, 23, 258–262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tahvanainen, J.; Meretoja, O.; Nikki, P. Can central venous blood replace mixed venous blood samples? Crit. Care Med. 1982, 10, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Rang, L.C.; Murray, H.E.; Wells, G.A.; Macgougan, C.K. Can peripheral venous blood gases replace arterial blood gases in emergency department patients? CJEM 2002, 4, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Janotka, M.; Ostadal, P. Biochemical markers for clinical monitoring of tissue perfusion. Mol. Cell Biochem. 2021, 476, 1313–1326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marti, Y.N.; de Freitas, F.G.; de Azevedo, R.P.; Leão, M.; Bafi, A.T.; Machado, F.R. Is venous blood drawn from femoral access adequate to estimate the central venous oxygen saturation and arterial lactate levels in critically ill patients? Rev. Bras. Ter. Intensive 2015, 27, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Byrne, A.L.; Bennett, M.; Chatterji, R.; Symons, R.; Pace, N.L.; Thomas, P.S. Peripheral venous and arterial blood gas analysis in adults: Are they comparable? A systematic review and meta-analysis. Respirology 2014, 19, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, M.A.; Dire, D.J. Comparison of arterial and venous blood gas values in the emergency department and evaluation of patients with diabetic ketoacidosis. Ann. Emerg. Med. 1998, 31, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Razi, E.; Moosavi, G. Comparison of arterial and venous blood gas analysis in patients with exacerbation of chronic obstructive pulmonary disease. Saudi Med. J. 2007, 28, 862–865. [Google Scholar] [PubMed]
- van Beest, P.A.; van der Schors, A.; Liefers, H.; Coenen, L.G.; Braam, R.L.; Habib, N.; Braber, A.; Scheeren, T.W.; Kuiper, M.A.; Spronk, P.E. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation. Crit. Care Med. 2012, 40, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Davison, D.L.; Chawla, L.S.; Selassie, L.; Jones, E.M.; McHone, K.C.; Vota, A.R.; Junker, C.; Sateri, S.; Seneff, M.G. Femoral-based central venous oxygen saturation is not a reliable substitute for subclavian/internal jugular-based central venous oxygen saturation in patients who are critically ill. Chest 2010, 138, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Zeserson, E.; Goodgame, B.; Hess, J.D.; Schultz, K.; Hoon, C.; Lamb, K.; Maheshwari, V.; Johnson, S.; Papas, M.; Reed, J.; et al. Correlation of venous blood gas and pulsi oximetry with arterial blood gas in undifferentiated critical ill patient. J. Intensive Care Med. 2018, 33, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ak, A.; Ogun, C.; Bayir, A.; Kayis, S.; Koylu, R. Prediction of arterial blood gas values in patients with acute exacerbation of chronic obstructive pulmonary disease. Tohoku J. Exp. Med. 2006, 210, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Razi, E.; Nasiri, O.; Akbari, H.; Razi, A. Correlation of arterial blood gas measurements with venous blood gas values in mechanically ventilated patients. Tanaffos 2012, 11, 30–35. [Google Scholar] [PubMed] [PubMed Central]
- Gennis, P.R.; Skoron, M.L.; Gallagher, E.J. The usefulness of peripheral venous blood in estimating acid-base status in acutely ill patients. Ann. Emerg. Med. 1985, 14, 845–849. [Google Scholar] [CrossRef] [PubMed]
- Toftegaard, M.; Rees, S.; Andreassen, S. Correlation between acid-base parameters measured in arterial blood and venous blood sampled peripherally, from vena cavae superior and from the pulmonary artery. Eur. J. Emerg. Med. 2008, 15, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Bloom, B.M.; Grundlingh, J.; Bestwick, J.P.; Harris, T. The role of venous blood gas in the Emergency Department: A systematic review and meta-analysis. Eur. J. Emerg. Med. 2014, 21, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Theerawit, P.; Na Petvicharn, C.; Tangsujaritvijit, V.; Sutherasan, Y. The Correlation Between Arterial Lactate and Venous Lactate in Patients With Sepsis and Septic Shock. J. Intensive Care Med. 2018, 33, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Oi, Y.; Mori, K.; Yamagata, H.; Nogaki, A.; Takeda, T.; Watanabe, C.; Sakaguchi, Y.; Ogawa, F.; Abe, T.; Imaki, S.; et al. Peripheral venous lactate levels substitute arterial lactate levels in the emergency department. Int. J. Emerg. Med. 2022, 15, 7. [Google Scholar] [CrossRef]
- Browning, R.; Datta, D.; Gray, A.J.; Graham, C. Peripheral venous and arterial lactate agreement in septic patients in the emergency department: A pilot study. Eur. J. Emerg. Med. 2014, 21, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Grahamslaw, J.; Gray, A.J.; Graham, C.; Walker, C.A. Lactate—Arterial and Venous Agreement in Sepsis: A prospective observational study. Eur. J. Emerg. Med. 2018, 25, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Lemoël, F.; Govciyan, S.; El Omri, M.; Marquette, C.H.; Levraut, J. Improving the validity of peripheral venous blood gas analysis as an estimate of arterial blood gas by correcting the venous values with SvO2. J. Emerg. Med. 2013, 44, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, K.; Rudolph, T.; Bredle, D.L.; Hannemann, L.; Cain, S.M. Comparison of central-venous to mixed-venous oxygen saturation during changes in oxygen supply/demand. Chest 1989, 95, 1216–1221. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, M.N.; Hegde, D.P.; Kumaraswamy, G.N.; Gupta, R.; Girish, T.N. Correlation of mixed venous and central venous oxygen saturation and its relation to cardiac index. Indian J. Crit. Care Med. 2006, 10, 230–234. [Google Scholar] [CrossRef]
- Dueck, M.H.; Klimek, M.; Appenrodt, S.; Weigand, C.; Boerner, U. Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 2005, 103, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Bloos, F.; Reinhart, K. Venous oximetry. Intensive Care Med. 2005, 31, 911–913. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.P. Cytopathic hypoxia. Is oxygen use impaired in sepsis as a result of an acquired intrinsic derangement in cellular respiration? Crit. Care Clin. 2002, 18, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Sepsis-associated hyperlactatemia. Crit. Care 2014, 18, 503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Stress hyperlactatemia: Present understanding and controversy. Lancet Diabetes Endocrinol. 2014, 2, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Dres, M.; Monnet, X.; Teboul, J.L. Hemodynamic management of cardiovascular failure by using PCO(2) venous-arterial difference. J. Clin. Monitor Comput. 2012, 26, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yin, M.; Kong, J.; Wang, B.; Dai, K.; Zuo, T.; Yu, G.; Bao, Y. Relationship Analysis of Central Venous-to-arterial Carbon Dioxide Difference and Cardiac Index for Septic Shock. Sci. Rep. 2019, 9, 8822. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ospina-Tascón, G.A.; Umaña, M.; Bermúdez, W.F.; Bautista-Rincón, D.F.; Valencia, J.D.; Madriñán, H.J.; Hernandez, G.; Bruhn, A.; Arango-Dávila, C.; De Backer, D. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016, 42, 211–221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mallat, J.; Lemyze, M.; Tronchon, L.; Vallet, B.; Thevenin, D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J. Crit. Care Med. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed]
- van Beest, P.A.; Lont, M.C.; Holman, N.D.; Loef, B.; Kuiper, M.A.; Boerma, E.C. Central venous-arterial pCO(2) difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013, 39, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, M.R.; Cecconi, M.; Chew, M.S.; De Backer, D.; Douglas, I.; Edwards, M.; Hamzaoui, O.; Hernandez, G.; Martin, G.; Monnet, X.; et al. Effective hemodynamic monitoring. Crit. Care 2022, 26, 294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuriditsky, E.; Zhang, R.S.; Bakker, J.; Horowitz, J.M.; Zhang, P.; Bernard, S.; Greco, A.A.; Postelnicu, R.; Mukherjee, V.; Hena, K.; et al. Relationship between the mixed venous-to-arterial carbon dioxide gradient and the cardiac index in acute pulmonary embolism. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Vincent, J.L. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am. Rev. Respir. Dis. 1993, 148 Pt 1, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascón, G.A.; Bautista-Rincón, D.F.; Umaña, M.; Tafur, J.D.; Gutiérrez, A.; García, A.F.; Bermúdez, W.; Granados, M.; Arango-Dávila, C.; Hernández, G. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit. Care 2013, 17, R294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, L.; Wang, Z.; Wang, L.; Liu, Y.; Chen, D.; Zhang, D.; Shi, X.; Xiao, D. Predictive value of the serum anion gap for 28-day in-hospital all-cause mortality in sepsis patients with acute kidney injury: A retrospective analysis of the MIMIC-IV database. Ann. Transl. Med. 2022, 10, 1373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nassar, B.; Badr, M.; Van Grunderbeeck, N.; Temime, J.; Pepy, F.; Gasan, G.; Tronchon, L.; Thevenin, D.; Mallat, J. Central venous-to-arterial PCO2 difference as a marker to identify fluid responsiveness in septic shock. Sci. Rep. 2021, 11, 17256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Du, W.; Liu, D.W.; Wang, X.T.; Long, Y.; Chai, W.Z.; Zhou, X.; Rui, X. Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J. Crit. Care 2013, 28, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Ltaief, Z.; Schneider, A.G.; Liaudet, L. Pathophysiology and clinical implications of the veno-arterial PCO2gap. Crit Care 2021, 25, 318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukai, A.; Suehiro, K.; Kimura, A.; Funai, Y.; Matsuura, T.; Tanaka, K.; Yamada, T.; Mori, T.; Nishikawa, K. Comparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery. J. Clin. Monit. Comput. 2020, 34, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Huette, P.; Beyls, C.; Mallat, J.; Martineau, L.; Besserve, P.; Haye, G.; Guilbart, M.; Dupont, H.; Guinot, P.-G.; Diouf, M.; et al. Central venous-to-arterial CO2 difference is a poor tool to predict adverse outcomes after cardiac surgery: A retrospective study. Can. J. Anaesth. 2021, 68, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Vincent, J.-L.; Gris, P.; Leon, M.; Coffernils, M.; Kahn, R.J. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992, 101, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Molinari, C.; Bacchetti, G.; Zanini, V.; Montanar, V.; Copetti, R.; Guglielmo, N.; Bove, T. Correlation and Agreement Between the CO2 Gap Obtained From Peripheral Venous Blood and From Mixed Venous Blood in Mechanically Ventilated Septic Patients. Semin. Cardiothorac. Vasc. Anesth. 2024, 28, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Tascón, G.A.; Hernández, G.; Cecconi, M. Understanding the venous-arterial CO2 to arterial-venous O2 content difference ratio. Intensive Care Med. 2016, 42, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Mallat, J.; Lemyze, M.; Meddour, M.; Pepy, F.; Gasan, G.; Barrailler, S.; Durville, E.; Temime, J.; Vangrunderbeeck, N.; Tronchon, L.; et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann. Intensive Care 2016, 6, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, H.; Long, Y.; Liu, D.; Wang, X.; Tang, B. The Prognostic Value of Central Venous-to-Arterial CO2 Difference/Arterial-Central Venous O2 Difference Ratio in Septic Shock Patients with Central Venous O2 Saturation ≥80. Shock 2017, 48, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Saberian, L.; Sharif, M.; Aarabi, M.; Broumand, B.; Shafiee, M.A. Arterial Versus Venous Blood Gas Analysis Comparisons, Appropriateness, and Alternatives in Different Acid/Base Clinical Settings: A Systematic Review. Cureus 2023, 15, e41707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, W.; Zhang, Y.; Ni, H.; Zhang, J.; Zhou, D.; Yin, L.; Zhang, F.; Chen, H.; Zhang, B.; Li, W. Prognostic value of difference between peripheral venous and arterial partial pressure of carbon dioxide in patients with septic shock: A pilot study. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 1312–1317. (In Chinese) [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, W.; Zhu, Q.; Ni, H.; Zhang, J.; Zhou, D.; Yin, L.; Zhang, F.; Chen, H.; Zhang, B.; Li, W. Prognostic value of differences between peripheral arterial and venous blood gas analysis in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2018, 30, 722–726. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
VBG and ED | VBG and CRITICAL CARE | VBG and ICU | |
---|---|---|---|
Abstract | 180 | 308 | 112 |
Review | 7 | 28 | 5 |
Systematic review | 0 | 2 | 0 |
Systematic review and meta-analysis | 2 | 2 | 0 |
Clinical trial | 11 | 23 | 9 |
Δ(a-v) pH | ~0.04 units |
Δ(a-v) pCO2 | ~6 mm Hg |
Δ(a-v) HCO3− | ~1 mEq/L |
Δ(a-v) pO2 | ~55 mmHg |
Parameter | Arterial | Mixed Venous | Central Venous | Peripheral Venous |
---|---|---|---|---|
pH | 7.40 (7.35–7.45) | 7.36 (7.35–7.45) | 7.35–7.37 | 7.36 (7.29–7.45) |
pO2 | 80–100 mmHg | 35–40 mmHg | 35–40 mmHg | 35–40 mmHg |
SO2 | 95–100% | ~75% | 70–75% (lower due to cardiac and cerebral oxygen consumption) | 65–75% (variable) |
pCO2 | 35–45 mmHg | 41–51 mmHg | 44–45 mmHg (range: 35–48) | 43–48 mmHg |
HCO3− | 22–26 mmol/L | 23–29 mmol/L | 25 mmol/L (range: 22–27) | 25–26 mmol/L |
Electrolytes, Hemoglobin | Identical values | Identical values | Identical values | Identical values |
Lactate | 0.5–1.8 mmol/L | Comparable under normal conditions; agreement is controversial in pathological states | Similar to mixed venous | Similar to mixed venous |
Arterial Blood | Mixed Venous Blood | Central Venous Blood | Peripheral Venous Blood | |
---|---|---|---|---|
pH | ✔ | ✔ | ✔ | ✔ |
pO2 | ✔ | ✖ | ✖ | ✖ |
SO2 | ✔ | ✔ (useful for venous oxygen saturation) | ✔ (useful for venous oxygen saturation) | ✖ |
pCO2 | ✔ | ✖ (but useful for pCO2 gap) | ✖ (but useful for pCO2 gap) | ✖ |
HCO3− | ✔ | ✔ | ✔ | ✔ |
Electrolytes, Hemoglobin | ✔ | ✔ | ✔ | ✔ |
Lactate | ✔ | ✔ (only in normal conditions) | ✔ (only in normal conditions) | ✔ (only in normal conditions) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giani, D.; Santoro, M.C.; Gabrielli, M.; Di Luca, R.; Malaspina, M.; Lumare, M.; Scatà, L.A.; Pala, M.; Manno, A.; Candelli, M.; et al. The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review. Medicina 2025, 61, 1337. https://doi.org/10.3390/medicina61081337
Giani D, Santoro MC, Gabrielli M, Di Luca R, Malaspina M, Lumare M, Scatà LA, Pala M, Manno A, Candelli M, et al. The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review. Medicina. 2025; 61(8):1337. https://doi.org/10.3390/medicina61081337
Chicago/Turabian StyleGiani, Dario, Michele Cosimo Santoro, Maurizio Gabrielli, Roberta Di Luca, Martina Malaspina, Maria Lumare, Licia Antonella Scatà, Martina Pala, Alberto Manno, Marcello Candelli, and et al. 2025. "The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review" Medicina 61, no. 8: 1337. https://doi.org/10.3390/medicina61081337
APA StyleGiani, D., Santoro, M. C., Gabrielli, M., Di Luca, R., Malaspina, M., Lumare, M., Scatà, L. A., Pala, M., Manno, A., Candelli, M., Covino, M., Gasbarrini, A., & Franceschi, F. (2025). The Role of Venous Blood Gas Analysis in Critical Care: A Narrative Review. Medicina, 61(8), 1337. https://doi.org/10.3390/medicina61081337