Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (771)

Search Parameters:
Keywords = length of storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 925 KB  
Article
Effect of Hot Water Extraction of Lignocellulosic Biomass on Fuel Pellet Properties
by Autumn Elniski and Biljana M. Bujanovic
Fuels 2025, 6(4), 74; https://doi.org/10.3390/fuels6040074 - 23 Sep 2025
Viewed by 152
Abstract
Pelletizing enhances competitiveness of lignocellulosic biomass (LCB) as a fuel by increasing its bulk and energy density. However, LCB pellets are prone to degradation from moisture, have high ash, and pose safety risks due to carbon monoxide (CO) emissions during storage. Hot water [...] Read more.
Pelletizing enhances competitiveness of lignocellulosic biomass (LCB) as a fuel by increasing its bulk and energy density. However, LCB pellets are prone to degradation from moisture, have high ash, and pose safety risks due to carbon monoxide (CO) emissions during storage. Hot water extraction (HWE), a mild hydrothermal treatment particularly effective for angiosperms, removes most hemicelluloses (xylans), reduces ash, and increases lignin content in remaining HWE-LCB. Based on the current understanding of CO formation, these changes suggested that HWE could reduce CO emissions. In this study, we evaluated the effects of HWE on pellets made from shrub willow, miscanthus, and wheat straw. A statistical analysis was conducted on ash, energy content, bulk density, durability, pellet length and density, moisture absorption, and CO emissions. All HWE-LCB pellets demonstrated significant increases in energy content (up to 3.54%) and reductions in moisture absorption (up to 23.84%). Although not all effects reached statistical significance, HWE generally had positive effects on ash content, bulk density, durability, and average pellet length and density. Contrary to expectations, HWE-LCB pellets emitted significantly more CO under both ambient and isothermal temperature conditions (up to 4.25 times overall increase), although still less than commercial hardwood/softwood blend pellets (<200 ppm in HWE-LCB vs. >300 ppm). Full article
Show Figures

Figure 1

15 pages, 1366 KB  
Article
Biostimulants as an Alternative to Synthetic Growth Regulators in the Micropropagation of Hippeastrum
by Przemysław Marciniak and Dariusz Sochacki
Agronomy 2025, 15(9), 2223; https://doi.org/10.3390/agronomy15092223 - 20 Sep 2025
Viewed by 231
Abstract
The genus Hippeastrum (Amaryllidaceae) is very popular worldwide for its attractive, colourful flowers. The aim of the research was to evaluate the possibility of replacing synthetic growth regulators added to the media with biostimulants of natural origin on the micropropagation and [...] Read more.
The genus Hippeastrum (Amaryllidaceae) is very popular worldwide for its attractive, colourful flowers. The aim of the research was to evaluate the possibility of replacing synthetic growth regulators added to the media with biostimulants of natural origin on the micropropagation and acclimatisation efficiency of several Hippeastrum genotypes. The effect of the biostimulants on the starch and fructan content of the bulbils after a 10-week in vitro culture was also investigated. The addition of biostimulant Goteo to the MS medium in vitro resulted in increased plantlet weight, leaf length and root number for most of the genotypes tested. The Folium biostimulant, not previously used in in vitro plant culture media showed positive effects, especially on leaf length. The use of Goteo during plant acclimatisation significantly improved root growth parameters, indicating its potential in minimising stress associated with the change from in vitro to ex vitro conditions. Higher starch content was detected in the bulbils of clone 0017-01 and the highest fructan content in the bulbils of clone 18 H. × chmielii. The use of the Folium biostimulant, consisting mainly of amino acids, reduced sugar accumulation, which may have been due to a shift in carbon allocation from storage processes to photosynthesis. The results confirm that biostimulants based on natural ingredients can be an alternative to synthetic growth regulators in the micropropagation of Hippeastrum and possibly other ornamental plants, what will be an input to further development of sustainable horticulture production. Full article
(This article belongs to the Special Issue Application of In Vitro Culture for Horticultural Crops)
Show Figures

Figure 1

9 pages, 742 KB  
Article
Experimental Search for Neutron–Antineutron Oscillation with the Use of Ultra-Cold Neutrons Revisited
by Tatsushi Shima
Symmetry 2025, 17(9), 1524; https://doi.org/10.3390/sym17091524 - 12 Sep 2025
Viewed by 289
Abstract
Neutron–antineutron oscillation (nnbar-osc) is a baryon number-violating process and a sensitive probe for physics beyond the standard model. Ultra-cold neutrons (UCNs) are attractive for nnbar-osc searches because of their long storage time, but earlier analyses indicated that phase shifts on wall reflection differ [...] Read more.
Neutron–antineutron oscillation (nnbar-osc) is a baryon number-violating process and a sensitive probe for physics beyond the standard model. Ultra-cold neutrons (UCNs) are attractive for nnbar-osc searches because of their long storage time, but earlier analyses indicated that phase shifts on wall reflection differ for neutrons and antineutrons, leading to severe decoherence and a loss of sensitivity. Herein, we revisit this problem by numerically solving the time-dependent Schrödinger equation for the two-component n/nbar wave function, explicitly including wall interactions. We show that decoherence can be strongly suppressed by selecting a wall material whose neutron and antineutron optical potentials are nearly equal. Using coherent scattering length data and estimates for antineutrons, we identify a Ni–Al alloy composition that matches the potentials within a few percent while providing a high absolute value, enabling long UCN storage. With such a bottle and an improved UCN source, the sensitivity could reach an oscillation period τnnbar of the order 1010 s, covering most of the range predicted with certain grand unified models. This approach revives the feasibility of high-sensitivity nnbar-osc searches using stored UCNs and offers a clear path to probe baryon number violation far beyond existing limits. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

14 pages, 2797 KB  
Article
MoO3 Nanobelts Synthesized from Recycled Industrial Powder and Applied as Electrodes for Energy Storage Applications
by Angelo Di Mauro, Federico Ursino, Giacometta Mineo, Antonio Terrasi and Salvo Mirabella
Nanomaterials 2025, 15(17), 1380; https://doi.org/10.3390/nano15171380 - 8 Sep 2025
Viewed by 528
Abstract
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed [...] Read more.
The sustainable development of our society faces significant challenges, including the need for environmentally friendly energy storage devices. Our work is concerned with the conversion of Mo-based recycled industrial waste into active nanocatalysts for energy storage applications. To reach this goal, we employed hydrothermal synthesis, a low-cost and temperature-scalable method. The proposed synthesis produces MoO3 nanobelts (50–200 nm in width and 2–5 µm in length) with a high yield, about 74%. The synthesized nanostructures were characterized in 1 M KOH and 1 M NH4OH, as alkaline environments are a promising choice for the development of eco-friendly devices. To investigate the material’s behaviour cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) measurements were carried out. From CV curves, it was possible to evaluate the specific capacitance values of 290 and 100 Fg−1 at 5 mVs−1 in 1 M KOH and 1 M NH4OH, respectively. Also, GCD was employed to evaluate the specific capacitance of the material, resulting in 75 and 60 Fg−1 in 1 M KOH and 1 M NH4OH, respectively. CV and GCD analyses revealed that MoO3 nanobelts act as two different types of energy storage devices: supercapacitors and pseudocapacitors. Additionally, EIS allowed us to distinguish between the resistive and capacitive behaviour contributions depending on the electrolyte. Furthermore, it provided a comprehensive electrochemical characterization in different alkaline electrolytes, with the intention of conjugating waste management and sustainable energy storage device production. Full article
Show Figures

Figure 1

12 pages, 1813 KB  
Proceeding Paper
An Efficient Approach for Mining High Average-Utility Itemsets in Incremental Database
by Ye-In Chang, Chen-Chang Wu and Hsiang-En Kuo
Eng. Proc. 2025, 108(1), 32; https://doi.org/10.3390/engproc2025108032 - 5 Sep 2025
Viewed by 4607
Abstract
Traditional high-utility itemset (HUI) mining methods tend to overestimate utility for long itemsets, leading to biased results. High average-utility itemset (HAUI) mining addresses this problem by normalizing utility with itemset length. However, uniform utility thresholds fail to account for varying item importance. Recently, [...] Read more.
Traditional high-utility itemset (HUI) mining methods tend to overestimate utility for long itemsets, leading to biased results. High average-utility itemset (HAUI) mining addresses this problem by normalizing utility with itemset length. However, uniform utility thresholds fail to account for varying item importance. Recently, HAUI mining with multiple minimum utility thresholds (MMU) has been used for flexible utility evaluation. While the generalized HAUIM (GHAUIM) algorithm performs well, it requires two database scans and is limited to static datasets. Therefore, we developed a novel tree-based method that scans the database only once to improve efficiency by reducing storage and eliminating costly join operations. Additionally, pruning strategies and incremental updates were introduced to enhance scalability. The developed method outperformed GHAIM in efficiency. Full article
Show Figures

Figure 1

11 pages, 795 KB  
Article
The Impact of Weather Conditions and Storage Duration on the Germination of Croatian Winter Wheat (Triticum aestivum L.) Varieties
by Vedran Orkić, Sunčica Kujundžić, Sanja Grubišić Šestanj, Boris Ravnjak, Sonja Petrović, Sonja Vila, Andrijana Rebekić, Darko Kiš, Jurica Jović, Antun Jozinović, Drago Šubarić, Nicolae Marinel Horablaga, Emilian Onișan and Vlado Guberac
Agronomy 2025, 15(9), 2115; https://doi.org/10.3390/agronomy15092115 - 2 Sep 2025
Viewed by 516
Abstract
Seed germination is a key determinant of wheat seed quality, strongly affected by genetic potential, weather conditions during production, and storage duration. Although numerous studies have investigated seed viability, little is known about how the interaction between annual climatic variability and storage length [...] Read more.
Seed germination is a key determinant of wheat seed quality, strongly affected by genetic potential, weather conditions during production, and storage duration. Although numerous studies have investigated seed viability, little is known about how the interaction between annual climatic variability and storage length affects long-term germination performance of winter wheat. The objective of this study was therefore to assess the influence of weather conditions and storage period on germination energy and germination of 50 Croatian winter wheat (Triticum aestivum L.) cultivars released between 1947 and 2010. The experiment was conducted over five consecutive production years (2013/2014–2017/2018). Seeds of each cultivar were reproduced under standardized field conditions, harvested annually, and stored under identical controlled conditions (5 °C, 30–35% RH). Germination energy (first count, day 4) and total germination (final count, day 8) were evaluated according to ISTA protocols. The results revealed significant effects of both production year and cultivar on germination performance. Seeds produced in 2016/2017 exhibited the highest germination (96.21%), which was ~15% higher than the lowest rate observed in 2013/2014 (80.48%). Germination energy of 2013/2014 seeds was 23% lower compared to 2015/2016 and 2016/2017. Unexpectedly, seeds stored for only one year (2017/2018 production) showed lower germination (90.92%) than those stored for two (96.21%) or three years (95.01%), likely due to excessive rainfall (>100% above average) during seed maturation in 2018 that impaired seed quality. Several cultivars, including Una, Tonka, Žitarka, and Kuna, consistently maintained high germination rates (>94%) even after five years of storage, demonstrating strong physiological stability and long-term viability. These findings underline the combined importance of weather conditions during seed production and storage duration for seed longevity. In practical terms, cultivars with proven stability may be recommended for long-term storage and reliable field performance. Future research should extend germination assessment to additional vigor indices (e.g., germination synchrony, vigor index, abnormal seedlings) and explore genetic mechanisms underlying superior seed longevity in modern wheat breeding. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 640 KB  
Article
Distance-Based Compression Method for Large Language Models
by Hongxin Shen and Baokun Hu
Appl. Sci. 2025, 15(17), 9482; https://doi.org/10.3390/app15179482 - 29 Aug 2025
Viewed by 600
Abstract
The computational cost of the Transformer architecture is highly dependent on the length of the input sequence, with a computational complexity of O(n2) due to the self-attention mechanism. As a result, Transformer-based models, such as Large Language Models, incur [...] Read more.
The computational cost of the Transformer architecture is highly dependent on the length of the input sequence, with a computational complexity of O(n2) due to the self-attention mechanism. As a result, Transformer-based models, such as Large Language Models, incur significant computational and storage overhead when processing tasks involving long input sequences. To mitigate these challenges, we propose a compression method that allows users to manually adjust the trade-off between compression efficiency and model performance. The method employs a trainable model to minimize information loss, ensuring that the impact on accuracy remains minimal. The method demonstrated an accuracy degradation within acceptable limits on LongBench v2. Full article
Show Figures

Figure 1

23 pages, 3386 KB  
Article
Combined Effect of Antifungal Coating and Polyethylene Packaging on the Quality of Banana During Storage
by Maritza D. Ruiz Medina, Yadira Quimbita Yupangui, Francisco Artés-Hernández and Jenny Ruales
Agronomy 2025, 15(9), 2028; https://doi.org/10.3390/agronomy15092028 - 25 Aug 2025
Viewed by 609
Abstract
Banana (Musa paradisiaca) is among Ecuador’s most important export commodities, globally recognized for its high nutritional value. To extend shelf life and reduce physiological and microbiological deterioration, bananas are typically harvested at the green stage and stored under controlled conditions using [...] Read more.
Banana (Musa paradisiaca) is among Ecuador’s most important export commodities, globally recognized for its high nutritional value. To extend shelf life and reduce physiological and microbiological deterioration, bananas are typically harvested at the green stage and stored under controlled conditions using plastic packaging. This study evaluated the combined effect of an antifungal coating based on cinnamon essential oil and polyethylene bags of different densities (LDPE and HDPE) over a 28-day storage period. Eight treatments were tested, including various coating–packaging combinations from three producers, as well as plastic-only and unpackaged controls. Physicochemical results showed that the antifungal coating combined with LDPE significantly reduced weight loss, peel and length shrinkage, and firmness decline. Color retention (ΔL*, Δa*, Δb*) and soluble solids were better preserved in samples coated with antifungal agent. Sensory evaluation revealed the highest acceptance scores for coated and packaged fruit. Microbiological analyses confirmed that coated bananas had the lowest counts of mesophilic aerobes and yeasts and molds, while total coliforms remained below detection limits in all treatments. These results highlight the effectiveness of integrating antifungal coatings with polyethylene packaging to enhance banana quality during postharvest storage. Full article
(This article belongs to the Special Issue Fruit Quality Improvement and Postharvest Biotechnology)
Show Figures

Figure 1

22 pages, 1020 KB  
Article
BIM-Based Approach for Low-Voltage Line Design and Further Operation
by Sergey Pogorelskiy, Erik Grigoryan and Imre Kocsis
Appl. Sci. 2025, 15(17), 9296; https://doi.org/10.3390/app15179296 - 24 Aug 2025
Viewed by 604
Abstract
In the area of structured cabling systems, optimization, i.e., reducing design errors, mini-mizing the need for rework, and increasing overall design productivity, is a critical factor in both design and maintenance. Traditional CAD methods exhibit 12% cable length miscalculations, which our script methodology [...] Read more.
In the area of structured cabling systems, optimization, i.e., reducing design errors, mini-mizing the need for rework, and increasing overall design productivity, is a critical factor in both design and maintenance. Traditional CAD methods exhibit 12% cable length miscalculations, which our script methodology mitigates. This paper presents a novel approach to the use of scripts in low voltage cabling systems, with a particular focus on the automatic routing of cables based on modeled cable paths. The proposed approach enables the automated construction and calculation of individual cable routes, as well as the comprehensive storage of associated parameter data. The methodology is discussed at conceptual level, with ideas presented at code and user levels. The effectiveness of this methodology is demonstrated through a case study conducted in the context of a real-world project. Full article
Show Figures

Figure 1

22 pages, 8522 KB  
Article
Effect of Bend Spacing Configuration on the Vented Explosion Characteristics of Premixed Methane/Hydrogen in Pipelines with a Large Length-to-Diameter Ratio
by Yulin Yang, Jianfeng Gao, Bin Hao, Yanan Han, Xiaojun Shao, Yang Wu, Xiao Wu and Meng Li
Fire 2025, 8(8), 328; https://doi.org/10.3390/fire8080328 - 15 Aug 2025
Viewed by 692
Abstract
Mixing hydrogen into natural gas pipelines for transportation is an effective solution to the imbalance between the supply and demand of hydrogen energy. Studying the influence of bent pipes in hydrogen-mixed natural gas explosion accidents can enhance the safety of hydrogen energy storage [...] Read more.
Mixing hydrogen into natural gas pipelines for transportation is an effective solution to the imbalance between the supply and demand of hydrogen energy. Studying the influence of bent pipes in hydrogen-mixed natural gas explosion accidents can enhance the safety of hydrogen energy storage and transportation. Through experiments and LES, the influence of pipe spacing configuration on the vented explosion of this mixed gas in pipes with a large length-to-diameter ratio was analyzed. The maximum explosion pressure (Pmax) of the straight pipe is 21.7 kPa and the maximum pressure rise rate ((dp/dt)max) is 1.8 MPa/s. After adding the double elbow, Pmax increased to 65.2 kPa and (dp/dt)max increased to 3.7 MPa/s. By increasing the distance (D1) from bent pipe-1 to the ignition source, the flame shape changes from “finger-shaped” to “concave-shaped” to “wrinkled-shaped.” When D1 is at its minimum, the explosion reaction is the most intense. However, as D1 increases, each characteristic parameter decreases linearly and the flame propagation speed significantly reduces, the flame area decays more severely, and the flame acceleration effect is also suppressed. When the distance between the two bent pipes (D2) was gradually increased, the flame transformed from “finger-shaped” to “tongue-shaped” to “wrinkled-shaped”. The flame area curve exhibited a unique evolutionary process of “hitting bottom” to “rebounding” to “large-scale flame backflow”. This paper explores the development process of various characteristic parameters, which is of great reference value for preventing explosions in hydrogen-blended natural gas pipelines in underground pipe galleries. Full article
Show Figures

Figure 1

16 pages, 1583 KB  
Article
The Influence of Ultraviolet-C Light Pretreatment on Blackcurrant (Ribes nigrum) Quality During Storage
by Zhuoyu Wang, Andrej Svyantek, Zachariah Miller, Haydon Davis and Ashley Kapus
Appl. Sci. 2025, 15(15), 8452; https://doi.org/10.3390/app15158452 - 30 Jul 2025
Viewed by 469
Abstract
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 [...] Read more.
Blackcurrant is a notable superfruit in Europe, and its vitamin C content surpasses the well-known blueberry superfruit. However, due to its short shelf life during storage, consumption is mainly accounted by frozen berries, extracts, and concentrates. This study applied an intensity of 1.2 W/m2 UVC with different durations, including control (non-treated), UVC irradiation for 0.5 h (0.5 h treatment), UVC irradiation for 1 h (1 h treatment), and UVC pretreatment for 2 h (2 h treatment) to blackcurrant berries before storage. Fundamental physical (firmness and weight loss) and physicochemical characteristics (SSC, pH, and acids), microbial population changes, total phenolic content, antioxidant capacity, and specific phenolic compound changes were evaluated every five days over a twenty-day storage period. The results indicated that the longer the UVC pretreatment, the lower the water weight losses during storage. Meanwhile, the UVC pretreatment significantly affected the blackcurrant soluble solid content, resulting in higher soluble solid contents detected in the blackcurrants with the higher doses of UVC. For the mold population control, UVC effects were highly correlated with the pretreatment duration. However, UVC did not have a significant influence on the berry pH and acid contents, but the storage length slightly increased the pH and decreased the acids. At the same time, UVC pretreatment did not affect the berry firmness, polyphenols, ascorbic acid content, or antioxidant capacities, which were primarily influenced by the storage duration. The monophenolic compounds detected before and after storage indicated that more than one hour of UVC radiation influenced most of the phenolic contents largely before storage. The UVC pretreatment has also influenced some phenolic compounds. After storage, half an hour of UVC pretreatment increased cyanidin levels, and two hours of UVC pretreatment increased catechin and epicatechin levels. However, most of the compounds remained at similar amounts during storage in each treatment. Further research is needed to improve the UVC radiation time length or intensity or explore other technology combinations to optimize UVC pretreatments for blackcurrant storage. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

14 pages, 2837 KB  
Article
A Starch Molecular Explanation for Effects of Ageing Temperature on Pasting Property, Digestibility, and Texture of Rice Grains
by Enpeng Li, Xue Xiao, Yifei Huang, Yi Ji, Changquan Zhang and Cheng Li
Foods 2025, 14(15), 2661; https://doi.org/10.3390/foods14152661 - 29 Jul 2025
Viewed by 512
Abstract
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A [...] Read more.
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A small but significant variation was observed for starch chain lengths, and this variation depended on both rice varieties and storage temperatures. Rice grains aged at higher temperatures had much higher peak (~25% larger) and setback viscosities (~50% larger) compared to those stored at lower temperatures. The digestion rate constant was lowered (~10%) most significantly at 40 °C. However, the maximum starch digested percentage increased after ageing. All rice varieties showed the lowest hardness at 4 °C and the highest hardness at 40 °C (~20% larger) after ageing. The changes in starch molecular structures were consistent with altered rice properties according to the established structure–property correlations. These results could improve our understanding of the complex rice ageing process. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

24 pages, 4861 KB  
Article
Impact of Abiotic Stress-Reducing Cultivation Technologies and Long-Term Storage on the Oxidative Potential of Edible Potato Tubers (Solanum tuberosum L.)
by Jarosław Pobereżny, Elżbieta Wszelaczyńska, Jarosław Chmielewski, Barbara Gworek, Wiesław Szulc, Beata Rutkowska and Joanna Korczyk-Szabó
Agriculture 2025, 15(15), 1629; https://doi.org/10.3390/agriculture15151629 - 27 Jul 2025
Viewed by 502
Abstract
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This [...] Read more.
Currently, in the context of the emphasis on introducing a reduction in mineral fertilization and the increase in pressure on sustainable agriculture, magnesium fertilization and the use of biostimulants are becoming an alternative tool to increase the quality of potato tuber yield. This study aimed to assess the impact of potato genotype, cultivation technology, and long-term storage on the susceptibility of tubers to enzymatic browning. Two edible potato varieties were examined: the early ‘Wega’ and the mid-early ‘Soraya’. It was demonstrated that the varieties maintained their characteristic browning susceptibility consistent with their breeding descriptions. The ‘Wega’ variety exhibited decreasing browning susceptibility immediately after harvest; however, after 6 months of storage, its susceptibility significantly increased, exceeding that of the ‘Soraya’ variety. Additionally, the application of magnesium fertilization (90 kg ha−1) and biostimulant treatment (3 L ha−1) most effectively reduced the oxidative potential of the tubers, thereby decreasing browning susceptibility. This is due to a significant change in the concentration of organic acids responsible for enzymatic browning processes. A decrease in the content of chlorogenic acid by 9.4% and 8.4% and an increase in the content of citric and ascorbic acid by 11.1%, 5.3%, and 13.6% were achieved. Storage significantly affected the chemical composition of the tubers. An increase in chlorogenic (7.3%) and citric (5.8%) acids and a decrease in ascorbic (34%) acid content were observed. These changes correlated with the intensification of browning, with the increase in chlorogenic acid and the decrease in ascorbic acid having the greatest influence. The results indicate that the technology based on supplementary fertilization and biostimulation improves the quality of potato raw material without a significant increase in production costs. Further research on varieties with different vegetation lengths and those intended for food processing and starch production is advised. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

13 pages, 1599 KB  
Article
Differential Expression of Hsp100 Gene in Scrippsiella acuminata: Potential Involvement in Life Cycle Transition and Dormancy Maintenance
by Fengting Li, Lixia Shang, Hanying Zou, Chengxing Sun, Zhangxi Hu, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(8), 519; https://doi.org/10.3390/d17080519 - 26 Jul 2025
Viewed by 355
Abstract
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from [...] Read more.
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from aggregated states in an ATP-dependent manner. To date, they are primarily known to mediate heat stress adaptation and enhance cellular survival under extreme conditions in higher plants and algae. Resting cyst formation in dinoflagellates is widely recognized as a response to adverse conditions, which offers an adaptive advantage to endure harsh environmental extremes that are unsuitable for vegetative cell growth and survival. In this study, based on a full-length cDNA sequence, we characterized an Hsp100 gene (SaHsp100) from the cosmopolitan bloom-forming dinoflagellate Scrippsiella acuminata, aiming to examine its life stage-specific expression patterns and preliminarily explore its potential functions. The qPCR results revealed that Hsp100 transcript levels were significantly elevated in newly formed resting cysts compared to vegetative cells and continued to increase during storage under simulated marine sediment conditions (darkness, low temperature, and anoxia). Parallel reaction monitoring (PRM)-based quantification further confirmed that Hsp100 protein levels were significantly higher in resting cysts than in vegetative cells and increased after three months of storage. These findings collectively highlighted the fundamental role of Hsp100 in the alteration of the life cycle and dormancy maintenance of S. acuminata, likely by enhancing stress adaptation and promoting cell survival through participation in proteostasis maintenance, particularly under natural sediment-like conditions that trigger severe abiotic stress. Our work deepens the current understanding of Hsp family members in dinoflagellates, paving the way for future investigations into their ecological relevance within this ecologically significant group. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

14 pages, 9007 KB  
Article
A High-Resolution Spectral Analysis Method Based on Fast Iterative Least Squares Constraints
by Yanyan Ma, Haixia Kang, Weifeng Luo, Yunxiao Zhang and Lintao Luo
Appl. Sci. 2025, 15(14), 8034; https://doi.org/10.3390/app15148034 - 18 Jul 2025
Viewed by 447
Abstract
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. [...] Read more.
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. Based on this, we propose a least squares constrained spectral analysis method using a greedy fast shrinkage algorithm. This method replaces the traditional Tikhonov regularization objective function with an L1-norm regularized objective function and employs a greedy fast shrinkage algorithm. By utilizing shorter window lengths to segment the data into more precise series, the method significantly improves the computational efficiency of spectral analysis while also enhancing its accuracy to a certain extent. Numerical models demonstrate that compared to the time–frequency spectra obtained using traditional methods such as wavelet transform, short-time Fourier transform, and generalized S-transform, the proposed method can achieve high-resolution extraction of the dominant frequencies of seismic waves, with superior noise resistance. Furthermore, its application in a research area in southern China shows that the method can effectively predict thicker sedimentary layers in low-frequency ranges and accurately identify thinner sedimentary layers in high-frequency ranges. Full article
Show Figures

Figure 1

Back to TopTop