Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,008)

Search Parameters:
Keywords = lead hazard risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 10877 KiB  
Article
Analysis of Mechanical Properties of Crumb Rubber Tires Mixed with Silty Sand of Various Sizes and Percentages
by Sindambiwe Theogene, Jianxiu Sun, Yanzi Wang, Run Xu, Jie Sun, Yuchen Tao, Changyong Zhang, Qingshuo Sun, Jiandong Wu, Hongya Yue and Hongbo Zhang
Polymers 2025, 17(15), 2144; https://doi.org/10.3390/polym17152144 - 5 Aug 2025
Abstract
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, [...] Read more.
Every year, a billion tires are discarded worldwide, with only a small percentage being recycled. This leads to significant environmental hazards, such as fire risks and improper disposal. Silty sand also presents technical challenges due to its poor shear strength, susceptibility to erosion, and low permeability. This study explores the incorporation of crumb rubber derived from waste tires into silty sand to enhance its mechanical properties. Crumb rubber particles of varying sizes (3–6 mm, 5–10 mm, and 10–20 mm) were mixed with silty sand at 0%, 3%, 6%, and 9% percentages, respectively. Triaxial compression tests of unconsolidated and consolidated undrained tests with cell pressures of 100, 300, and 500 kPa were conducted. The deviatoric stress, shear stress, and stiffness modulus were investigated. The results revealed that the addition of crumb rubber significantly increased the deviatoric and shear stresses, especially at particle sizes of 5–10 mm, with contents of 3%, 6%, and 9%. Additionally, the stiffness modulus was notably reduced in the mixture containing 6% crumb rubber tire. These findings suggest that incorporating crumb rubber tires into silty sand not only improves silty sand performance but also offers an environmentally sustainable approach to tire waste recycling, making it a viable strategy for silty sand stabilization in construction and geotechnical engineering performance. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

24 pages, 3139 KiB  
Review
Social, Economic and Ecological Drivers of Tuberculosis Disparities in Bangladesh: Implications for Health Equity and Sustainable Development Policy
by Ishaan Rahman and Chris Willott
Challenges 2025, 16(3), 37; https://doi.org/10.3390/challe16030037 - 4 Aug 2025
Viewed by 100
Abstract
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to [...] Read more.
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to TB burden. The first literature search identified 28 articles focused on SES-TB relationships in Bangladesh. A second search through snowballing and conceptual mapping yielded 55 more papers of diverse source types and disciplines. Low-SES groups face elevated TB risk due to smoking, biomass fuel use, malnutrition, limited education, stigma, financial barriers, and hazardous housing or workplaces. These factors delay care-seeking, worsen outcomes, and fuel transmission, especially among women. High-SES groups more often face comorbidities like diabetes, which increase TB risk. Broader contextual drivers include urbanisation, weak labour protections, cultural norms, and poor governance. Recommendations include housing and labour reform, gender parity in education, and integrating private providers into TB programmes. These align with the WHO End TB Strategy, UN SDGs and Planetary Health Quadruple Aims, which expand the traditional Triple Aim for health system design by integrating environmental sustainability alongside improved patient outcomes, population health, and cost efficiency. Future research should explore trust in frontline workers, reasons for consulting informal carers, links between makeshift housing and TB, and integrating ecological determinants into existing frameworks. Full article
(This article belongs to the Section Human Health and Well-Being)
Show Figures

Graphical abstract

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 232
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

22 pages, 1054 KiB  
Review
Sustainable Nutrition and Food Allergy: A State-of-the-Art Review
by Caterina Anania, Barbara Cuomo, Enza D’Auria, Fabio Decimo, Giuliana Giannì, Giovanni Cosimo Indirli, Enrica Manca, Filippo Mondì, Erica Pendezza, Marco Ugo Andrea Sartorio and Mauro Calvani
Nutrients 2025, 17(15), 2448; https://doi.org/10.3390/nu17152448 - 27 Jul 2025
Viewed by 278
Abstract
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and [...] Read more.
Alternative proteins denote non-traditional, high-protein foods. These innovative sources aim to compete with conventional animal products by providing protein-rich, sustainable, nutritious, and flavorful options. Currently, five main categories of alternative proteins are being developed: plant-based proteins, cultured meat, single-cell proteins, edible insects, and seaweed. Nonetheless, several chemical and microbiological food safety hazards are associated with these alternatives Incorporating novel protein sources into food products may heighten the prevalence of existing food allergies. This could arise from extracting proteins from their natural matrices and utilizing them at significantly higher concentrations. Additionally, the introduction of new proteins may lead to the development of novel food allergies. Proteins that are currently seldom or never consumed may cause primary sensitisation or trigger cross-reactivity with known allergens. To date, alternative proteins have not been thoroughly studied for their allergenic potential, and there is no standardised method for assessing this risk. This review aims to explore non-traditional protein sources, discussing their nutritional and functional properties, as well as their potential allergenicity based on available research. We conducted a literature search in PubMed and Embase databases. We used specific keywords and MESH terms. A total of 157 studies were included in the review. The studies reviewed in our analysis reveal significant limitations, such as inconsistent methodologies, limited participant numbers, and a lack of long-term data, which hinder the ability to make clear conclusions regarding the safety of these new proteins for individuals with allergies. To address current challenge, future research should integrate food science, regulatory perspectives and advanced technologies. Full article
(This article belongs to the Special Issue Relationship Between Food Allergy and Human Health)
Show Figures

Figure 1

17 pages, 14890 KiB  
Article
Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization
by Jinijn Xuan, Shun Li, Chao Huang, Xueling Zhang and Rong Mao
Land 2025, 14(8), 1541; https://doi.org/10.3390/land14081541 - 27 Jul 2025
Viewed by 243
Abstract
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. [...] Read more.
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. This study aims to investigate the spatiotemporal distribution patterns of heat-related health risks among the elderly in Nanchang City and to identify their key driving factors within the context of rapid urbanization. This study employs Crichton’s risk triangle framework to the heat-related health risks for the elderly in Nanchang, China, from 2002 to 2020 by integrating meteorological records, land surface temperature, land cover data, and socioeconomic indicators. The model captures the spatiotemporal dynamics of heat hazards, exposure, and vulnerability and identifies the key drivers shaping these patterns. The results show that the heat health risk index has increased significantly over time, with notably higher levels in the urban core compared to those in suburban areas. A 1% rise in impervious surface area corresponds to a 0.31–1.19 increase in the risk index, while a 1% increase in green space leads to a 0.21–1.39 reduction. Vulnerability is particularly high in economically disadvantaged, medically under-served peripheral zones. These findings highlight the need to optimize the spatial distribution of urban green space and control the expansion of impervious surfaces to mitigate urban heat risks. In high-vulnerability areas, improving infrastructure, expanding medical resources, and establishing targeted heat health monitoring and early warning systems are essential to protecting elderly populations. Overall, this study provides a comprehensive framework for assessing urban heat health risks and offers actionable insights into enhancing climate resilience and health risk management in rapidly urbanizing regions. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 408
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
19 pages, 8978 KiB  
Article
Integration of Space and Hydrological Data into System of Monitoring Natural Emergencies (Flood Hazards)
by Natalya Denissova, Ruslan Chettykbayev, Irina Dyomina, Olga Petrova and Nurbek Saparkhojayev
Appl. Sci. 2025, 15(14), 8050; https://doi.org/10.3390/app15148050 - 19 Jul 2025
Viewed by 307
Abstract
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of [...] Read more.
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of the small Kurchum River in the East Kazakhstan region. The main objective of this study was to evaluate the numerical performance of the flood hazard model by comparing simulated flood extents with observed flood data. Two types of data were used as initial data: topographic data (digital elevation models and topographic maps) and hydrological data, including streamflow time series from stream gauges (hourly time steps) and lateral inflows along the river course. Spatially distributed rainfall forcing was not applied. To build the model, we used the software packages of HEC-RAS version 5.0.5 and MIKE version 11. Using retrospective data for 3 years (2019–2021), modeling was performed, the calculated boundaries of possible flooding were obtained, and the highest risk zones were identified. A dynamic map of depth changes in the river system is presented, showing the process of flood wave propagation, the dynamics of depth changes, and the expansion of the flood zone. Temporal flood inundation mapping and performance metrics were evaluated for each individual flood event (2019, 2020, and 2021). The simulation outcomes closely correlate with actual flood events. The assessment showed that the model data coincide with the real ones by 91.89% (2019), 89.09% (2020), and 95.91% (2021). The obtained results allow for a clarification of potential flood zones and can be used in planning measures to reduce flood risks. This study demonstrates the importance of an integrated approach to modeling, combining various software packages and data sources. Full article
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 228
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

13 pages, 793 KiB  
Article
Environmental Risk and Management of Iron Tailings in Road Subgrade
by Xiaowei Xu, Dapeng Zhang, Jie Cao, Chaoyue Wu, Yi Wang, Jing Hua, Zehua Zhao, Jun Zhang and Qi Yu
Toxics 2025, 13(7), 603; https://doi.org/10.3390/toxics13070603 - 17 Jul 2025
Viewed by 266
Abstract
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess [...] Read more.
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess risks and regional characteristics. Results show high Potential Hazard Indices (PHIs) for arsenic, manganese, barium, nickel, and lead, with PHI values between 4.2 and 22.7. Simulations indicate that manganese and nickel concentrations may exceed groundwater standards, particularly in humid areas. The study recommends controlling the iron tailings mixing ratio based on climate, suggesting limits of 35% in humid, 60% in semi-humid, and more lenient ratios in arid and semi-arid regions. It also underscores the need for improved risk assessment methodologies and region-specific management strategies at the national level. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Human Health)
Show Figures

Figure 1

13 pages, 985 KiB  
Article
Prognostic Value of the AST/ALT Ratio in Patients with Septic Shock: A Prospective, Multicenter, Registry-Based Observational Study
by Sungwoo Choi, Sangun Nah, Gil Joon Suh, Sung-Hyuk Choi, Sung Phil Chung, Won Young Kim, Tae Ho Lim, Sangchun Choi, Tae Gun Shin and Sangsoo Han
Diagnostics 2025, 15(14), 1773; https://doi.org/10.3390/diagnostics15141773 - 14 Jul 2025
Viewed by 481
Abstract
Background/Objectives: Sepsis is a leading cause of mortality. The AST/ALT ratio may serve as a valuable marker for prediction in patients with various diseases. This study analyzed the prognostic value of this ratio in patients with sepsis. Methods: A retrospective analysis [...] Read more.
Background/Objectives: Sepsis is a leading cause of mortality. The AST/ALT ratio may serve as a valuable marker for prediction in patients with various diseases. This study analyzed the prognostic value of this ratio in patients with sepsis. Methods: A retrospective analysis was performed on data from a prospective registry of septic shock patients, collected across multiple centers from October 2015 to December 2022. The main outcome of interest was mortality within 28 days. We evaluated the predictive accuracy of 28-day mortality for variables with the Sequential Organ Failure Assessment (SOFA) score, aspartate transaminase (AST) levels, alanine transaminase (ALT) levels, the AST/ALT ratio, and the combination of the SOFA + AST/ALT ratio using the area under the receiver operating characteristics curve (AUROC). A Kaplan–Meier curve was used to compare the 28-day mortality between the AST/ALT subgroups (≥1.84 and <1.84). Stepwise multivariable Cox proportional hazards analyses were performed to determine the association between 28-day mortality and an AST/ALT ratio ≥ 1.84. Results: The AST/ALT ratio had a significantly higher discriminatory ability for predicting 28-day mortality compared to either AST or ALT. In addition, combining the AST/ALT ratio with the SOFA score improved the predictive accuracy compared to the SOFA alone. A multivariable Cox regression analysis demonstrated that an AST/ALT ratio ≥ 1.84 was associated with a higher risk of death within 28 days. Conclusions: The AST/ALT ratio at emergency department admission in sepsis patients is associated with 28-day mortality and, when combined with the SOFA score, provides additional prognostic information with moderate accuracy. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Figure 1

22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 592
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

18 pages, 313 KiB  
Article
Comparative Analysis of Phenolic, Carotenoid, and Elemental Profiles in Three Crataegus Species from Şebinkarahisar, Türkiye: Implications for Nutritional Value and Safety
by Mehmet Emin Şeker, Ayşegül Erdoğan and Emriye Ay
Molecules 2025, 30(14), 2934; https://doi.org/10.3390/molecules30142934 - 11 Jul 2025
Viewed by 305
Abstract
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, [...] Read more.
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, notably epicatechin, gallic acid, and quercetin. It also showed the highest levels of β-carotene and lutein, highlighting its nutraceutical potential. C. orientalis was rich in rutin and taxifolin. Inductively coupled plasma mass spectrometry (ICP-MS) results showed significant mineral content, including Fe, Mn, Ca, and Se. About 60 g of dried hawthorn could meet 7–8% of daily selenium needs. In C. tanacetifolia, toxicological tests showed no substantial health hazards, with target hazard quotient (THQ) values below 1 and carcinogenic risk (CR) values within tolerable levels (e.g., Ni-CR: 4.68 × 10−5). Lead (Pb) and arsenic (As) levels were below detection thresholds in all samples, indicating that hawthorn fruits from this location are safe. The study also shows how species-specific and geographical factors affect hawthorn fruit nutrition and safety. Full article
16 pages, 2671 KiB  
Article
Experimental Study on Cavity Formation and Ground Subsidence Behavior Based on Ground Conditions
by Sungyeol Lee, Jaemo Kang, Jinyoung Kim, Myeongsik Kong and Wonjin Baek
Appl. Sci. 2025, 15(14), 7744; https://doi.org/10.3390/app15147744 - 10 Jul 2025
Viewed by 220
Abstract
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled [...] Read more.
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled conditions. A transparent soil box apparatus was fabricated to simulate sewer pipe damage, with model grounds prepared at various relative densities, groundwater levels, and fines contents. The progression of cavity formation and surface collapse was observed and quantitatively analyzed by measuring the time to cavity formation and ground subsidence, as well as the mass of discharged soil. Results indicate that lower relative density accelerates ground subsidence, whereas higher density increases cavity volume due to greater frictional resistance. Notably, as the fines content increased, a tendency was observed for ground subsidence to be increasingly suppressed, suggesting that cohesive clay particles can limit soil loss under seepage conditions. These findings provide valuable insights for selecting backfill materials and managing subsurface conditions to mitigate ground subsidence risks in urban infrastructure. Full article
Show Figures

Figure 1

14 pages, 3592 KiB  
Article
Novel Machine Learning-Based Smart City Pedestrian Road Crossing Alerts
by Song-Kyoo Kim and I Cheng Chan
Smart Cities 2025, 8(4), 114; https://doi.org/10.3390/smartcities8040114 - 8 Jul 2025
Viewed by 491
Abstract
This paper presents a novel system designed to enhance pedestrian safety in urban environments by utilizing real-time video analysis and machine learning techniques. With a focus on the bustling streets of Macao, known for its high pedestrian traffic and complex road conditions, the [...] Read more.
This paper presents a novel system designed to enhance pedestrian safety in urban environments by utilizing real-time video analysis and machine learning techniques. With a focus on the bustling streets of Macao, known for its high pedestrian traffic and complex road conditions, the proposed model alerts drivers to the presence of pedestrians, significantly reducing the risk of accidents. Leveraging the You Only Look Once algorithm, this research demonstrates how timely alerts can be generated based on risk assessments derived from video footage. The model is rigorously tested against diverse driving scenarios, providing robust accuracy in detecting potential hazards. A comparative analysis of various machine learning algorithms, including Gradient Boosting and Logistic Regression, underscores the effectiveness and reliability of the system. The key finding of this research indicates that dataset refinement and enhanced feature differentiation could lead to improved model performance. Ultimately, this work seeks to contribute to the development of smart city initiatives that prioritize safety through advanced technological solutions. This approach exemplifies a vision for more responsive and responsible urban transport systems. Full article
Show Figures

Figure 1

17 pages, 7452 KiB  
Article
A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas
by Francesco Rouhana and Dima Jawad
ISPRS Int. J. Geo-Inf. 2025, 14(7), 261; https://doi.org/10.3390/ijgi14070261 - 3 Jul 2025
Viewed by 467
Abstract
Critical transportation networks in developing countries often lack structural robustness and functional redundancy due to insufficient planning and preparedness. These deficiencies increase vulnerability to disruptions and impede effective post-disaster response and recovery. Understanding how such networks perform under stress is essential to improving [...] Read more.
Critical transportation networks in developing countries often lack structural robustness and functional redundancy due to insufficient planning and preparedness. These deficiencies increase vulnerability to disruptions and impede effective post-disaster response and recovery. Understanding how such networks perform under stress is essential to improving resilience in hazard-prone urban environments. This paper presents an integrated predictive methodology for assessing the operational resilience of urban transportation networks under extreme events, specifically tailored to data-scarce and high-risk contexts. By combining Geographic Information Systems (GISs) with complex network theory, the framework captures both spatial and topological dependencies. The methodology is applied to Beirut, the capital of Lebanon, a densely populated and disaster-prone Mediterranean city, through scenario-based simulations that account for interdependent stressors such as traffic dynamics, structural fragility, and geophysical hazards. Results reveal that the network exhibits low redundancy and high sensitivity to even minor disruptions, leading to rapid performance degradation. These findings indicate that the network should be classified as highly vulnerable. The study offers a robust framework for assessing infrastructure resilience and supporting evidence-based decision-making in critical urban network management. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation)
Show Figures

Figure 1

Back to TopTop