A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas
Abstract
1. Introduction
2. Literature Review
2.1. Resilience Quantification Concept
2.2. Graph Theory and Transportation Networks
2.3. Graph Theory and Resilience of Complex Networks
3. Materials and Methods
4. Case Study
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mottahedi, A.; Sereshki, F.; Ataei, M.; Qarahasanlou, A.N.; Barabadi, A. The Resilience of Critical Infrastructure Systems: A Systematic Literature Review. Energies 2021, 14, 1517. [Google Scholar] [CrossRef]
- Chowdhury, S.; Ren, Z.; Rouhana, F.; Wang, J.; Zhu, J. Exploring Sustainability in Resource Management: Implementation of a Water–Energy–Human Nexus Framework at a University Campus. J. Constr. Eng. Manag. 2024, 150, 10. [Google Scholar] [CrossRef]
- Rouhana, F.; Zhu, J.; Bagtzoglou, A.C.; Burton, C.G. Analyzing Structural Inequalities in Natural Hazard-Induced Power Outages: A Spatial-Statistical Approach. Int. J. Disaster Risk Reduct. 2025, 105, 105184. [Google Scholar] [CrossRef]
- Valencia Londoño, P.A.; Valencia Londoño, D. Persistent Vulnerability after Disaster Risk Reduction (DRR) Response: The Case of Salgar, Colombia. Sustainability 2024, 16, 4394. [Google Scholar] [CrossRef]
- Cutter, S.L. Urban Risks and Resilience. In Urban Informatics; Shi, W., Goodchild, M.F., Batty, M., Kwan, M.P., Zhang, A., Eds.; The Urban Book Series; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Rouhana, F.; Zhu, J. Examining Rural-Urban Disparity in Disaster Impact and Recovery: Case of Tropical Storm Isaias. In Computing in Civil Engineering 2023: Resilience, Safety, and Sustainability—Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2023; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2024; pp. 219–227. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction (UNDRR). Forensic Insights for Future Resilience: Learning from Past Disasters; UNDRR: Geneva, Switzerland, 2024; Available online: https://www.undrr.org/gar/gar2024-special-report (accessed on 28 April 2025).
- Rouhana, F.; Zhu, J.; Bagtzoglou, A.C.; Burton, C.G. Examining Rural–Urban Vulnerability Inequality in Extreme Weather-Related Power Outages: Case of Tropical Storm Isaias. Nat. Hazards Rev. 2025, 26, 03024003. [Google Scholar] [CrossRef]
- Park, H.J.; Song, S.M.; Kim, D.H.; Lee, S.O. Socioeconomic Impact on Urban Resilience against Flood Damage. Appl. Sci. 2024, 14, 7882. [Google Scholar] [CrossRef]
- UNDRR. Sendai Framework for Disaster Risk Reduction 2015–2030. 2015. Available online: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 25 April 2025).
- United Nations Department of Economic and Social Affairs (UN DESA). The Sustainable Development Goals Report 2024; UN DESA: New York, NY, USA, 2024; Available online: https://unstats.un.org/sdgs/report/2024/ (accessed on 16 April 2025).
- Farooq, A.; Xie, M.; Stoilova, S.; Ahmad, F.; Guo, M.; Williams, E.J.; Issa, A.M. Transportation Planning through GIS and Multicriteria Analysis: Case Study of Beijing and Xiongan. J. Adv. Transp. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Ntafloukas, K.; Pasquale, L.; Martinez-Pastor, B.; McCrum, D.P. A Vulnerability Assessment Approach for Transportation Networks Subjected to Cyber–Physical Attacks. Future Internet 2023, 15, 100. [Google Scholar] [CrossRef]
- Wassmer, J.; Merz, B.; Marwan, N. Resilience of Transportation Infrastructure Networks to Road Failures. Chaos 2024, 34, 1. [Google Scholar] [CrossRef]
- Aydin, N.Y.; Duzgun, H.S.; Wenzel, F.; Heinimann, H.R. Integration of Stress Testing with Graph Theory to Assess the Resilience of Urban Road Networks under Seismic Hazards. Nat. Hazards 2018, 91, 37–68. [Google Scholar] [CrossRef]
- Ding, J.; Wang, Y.; Li, C. A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems. Land 2024, 13, 753. [Google Scholar] [CrossRef]
- Rezvani, S.M.H.S.; Silva, M.J.F.; de Almeida, N.M. Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks. Sustainability 2024, 16, 4143. [Google Scholar] [CrossRef]
- Huijer, C.; Harajli, M.; Sadek, S. Re-Evaluation and Updating of the Seismic Hazard of Lebanon. J. Seismol. 2016, 20, 233–250. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; von Winterfeldt, D. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Poulin, C.; Kane, M.B. Infrastructure Resilience Curves: Performance Measures and Summary Metrics. Reliab. Eng. Syst. Saf. 2021, 219, 107926. [Google Scholar] [CrossRef]
- Mentges, A.; Halekotte, L.; Schneider, M.; Demmer, T.; Lichte, D. A Resilience Glossary Shaped by Context: Reviewing Resilience-Related Terms for Critical Infrastructures. Int. J. Disaster Risk Reduct. 2023, 94, 103893. [Google Scholar] [CrossRef]
- Najarian, M.; Lim, G.J. Design and Assessment Methodology for System Resilience Metrics. Risk Anal. 2019, 39, 1885–1898. [Google Scholar] [CrossRef]
- Ayyub, B.M. Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making. Risk Anal. 2014, 34, 340–355. [Google Scholar] [CrossRef]
- Bruneau, M.; Reinhorn, A. Exploring the Concept of Seismic Resilience for Acute Care Facilities. Earthq. Spectra 2007, 23, 41–62. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for Analytical Quantification of Disaster Resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Liu, Y.; McNeil, S.; Hackl, J.; Adey, B.T. Prioritizing Transportation Network Recovery Using a Resilience Measure. Sustain. Resil. Infrastruct. 2022, 7, 70–81. [Google Scholar] [CrossRef]
- Nicolosi, V.; Augeri, M.; D’Apuzzo, M.; Evangelisti, A.; Santilli, D. A Probabilistic Approach to the Evaluation of Seismic Resilience in Road Asset Management. Int. J. Disaster Risk Sci. 2022, 13, 114–124. [Google Scholar] [CrossRef]
- Akbarzadeh, M.; Memarmontazerin, S.; Derrible, S.; Salehi Reihani, S.F. The Role of Travel Demand and Network Centrality on the Connectivity and Resilience of an Urban Street System. Transportation 2019, 46, 1127–1141. [Google Scholar] [CrossRef]
- Wang, D.; Xue, Y.; Zhang, Q.; Niu, M. Scale-Free and Small-World Properties of a Special Hierarchical Network. Fractals 2019, 27, 1950010. [Google Scholar] [CrossRef]
- Zhenwu, S.; Xianyu, T.; Huiyu, L.; Hui, L.; Jie, L.; Xunguo, L. Quantitative Study on the Waterlogging Resilience of Road Transportation System Based on the Validity View of System Functions. J. Eng. Sci. Technol. Rev. 2019, 12, 117–125. [Google Scholar] [CrossRef]
- Ganin, A.A.; Kitsak, M.; Marchese, D.; Keisler, J.M.; Seager, T.; Linkov, I. Resilience and Efficiency in Transportation Networks. Sci. Adv. 2017, 3, e1701079. [Google Scholar] [CrossRef]
- Janić, M. Modelling the Resilience of Rail Passenger Transport Networks Affected by Large-Scale Disruptive Events: The Case of HSR (High-Speed Rail). Transportation 2018, 45, 1101–1137. [Google Scholar] [CrossRef]
- Cerqueti, R.; Ferraro, G.; Iovanella, A. Measuring Network Resilience through Connection Patterns. Reliab. Eng. Syst. Saf. 2019, 188, 320–329. [Google Scholar] [CrossRef]
- Garrison, W.L.; Marble, D.F. Factor-Analytic Study of the Connectivity of a Transportation Network. Pap. Reg. Sci. 1964, 12, 231–238. [Google Scholar] [CrossRef]
- Testa, A.C.; Furtado, M.N.; Alipour, A. Resilience of Coastal Transportation Networks Faced with Extreme Climatic Events. Transp. Res. Rec. 2015, 2532, 29–36. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.L. Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Dueñas-Osorio, L.; Craig, J.I.; Goodno, B.J.; Bostrom, A. Interdependent Response of Networked Systems. J. Infrastruct. Syst. 2007, 13, 185–194. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Liu, T.; Liu, B. Approximating Betweenness Centrality to Identify Key Nodes in a Weighted Urban Complex Transportation Network. J. Adv. Transp. 2019, 2019, 9024745. [Google Scholar] [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Reggiani, A.; Nijkamp, P.; Lanzi, D. Transport Resilience and Vulnerability: The Role of Connectivity. Transp. Res. Part A Policy Pract. 2015, 81, 4–15. [Google Scholar] [CrossRef]
- Allen, E.; Costello, S.B.; Henning, T.F.P.; Chamorro, A.; Echaveguren, T. Integration of Resilience and Risk to Natural Hazards into Transportation Asset Management of Road Networks: A Systematic Review. Struct. Infrastruct. Eng. 2023, 19, 2238281. [Google Scholar] [CrossRef]
- Serdar, M.Z.; Koç, M.; Al-Ghamdi, S.G. Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustain. Cities Soc. 2022, 76, 103452. [Google Scholar] [CrossRef]
- Ahmadzai, F.; Rao, K.M.L.; Ulfat, S. Assessment and Modelling of Urban Road Networks Using Integrated Graph of Natural Road Network (a GIS-Based Approach). J. Urban Manag. 2019, 8, 109–125. [Google Scholar] [CrossRef]
- Candelieri, A.; Galuzzi, B.G.; Giordani, I.; Archetti, F. Vulnerability of Public Transportation Networks Against Directed Attacks and Cascading Failures. Public Transp. 2019, 11, 27–49. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Sadri, A.M.; Mehrabi, A.; Azizinamini, A. Identifying Topological Credentials of Physical Infrastructure Components to Enhance Transportation Network Resilience: Case of Florida Bridges. J. Transp. Eng. Part A Syst. 2022, 148, 04022071. [Google Scholar] [CrossRef]
- Chatterjee, A.; Manohar, M.; Ramadurai, G. Statistical Analysis of Bus Networks in India. PLoS ONE 2016, 11, e0168478. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Han, J. Complex Network Theory in Urban Traffic Network. Atlantis Press 2017, 175, 860–864. [Google Scholar] [CrossRef]
- De Bona, A.A.; de Oliveira Rosa, M.; Ono Fonseca, K.V.; Lüders, R. A Reduced Model for Complex Network Analysis of Public Transportation Systems. Phys. A Stat. Mech. Appl. 2021, 567, 125715. [Google Scholar] [CrossRef]
- Zhang, D.-M.; Du, F.; Huang, H.; Zhang, F.; Ayyub, B.M.; Beer, M. Resiliency Assessment of Urban Rail Transit Networks: Shanghai Metro as an Example. Saf. Sci. 2018, 106, 230–243. [Google Scholar] [CrossRef]
- Wu, C.; Kim, I. Analyzing the Structural Properties of Bike-Sharing Networks: Evidence from the United States, Canada, and China. Transp. Res. Part A Policy Pract. 2020, 140, 52–71. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Mekonnen, M. Urban Network Analysis: A New Toolbox for ArcGIS. Rev. Int. Géomatique 2012, 22, 287–305. [Google Scholar] [CrossRef]
- Porta, S.; Crucitti, P.; Latora, V. The Network Analysis of Urban Streets: A Dual Approach. Phys. A Stat. Mech. Appl. 2006, 369, 853–866. [Google Scholar] [CrossRef]
- Salameh, C.; Guillier, B.; Harb, J.; Cornou, C.; Bard, P.Y.; Voisin, C.; Mariscal, A. Seismic Response of Beirut (Lebanon) Buildings: Instrumental Results from Ambient Vibrations. Bull. Earthq. Eng. 2016, 14, 2705–2730. [Google Scholar] [CrossRef]
- Du, Y.; Xie, M.; Jia, J. Stepped Settlement: A Possible Mechanism for Translational Landslides. Catena 2020, 187, 104365. [Google Scholar] [CrossRef]
- Chen, D.; Yin, S.; Long, W.; Zhang, Y.; Yang, Y. Heterogeneous Information Phase Space Reconstruction and Stability Prediction of Filling Body-Surrounding Rock Combination. Int. J. Miner. Metall. Mater. 2024, 31, 1500–1511. [Google Scholar] [CrossRef]
- Lai, X.P.; Shan, P.F.; Cai, M.F.; Liu, J.; Zhang, Y. Comprehensive Evaluation of High-Steep Slope Stability and Optimal High-Steep Slope Design by 3D Physical Modeling. Int. J. Miner. Metall. Mater. 2015, 22, 1–11. [Google Scholar] [CrossRef]
- Barthélemy, M. Spatial Networks. Phys. Rep. 2011, 499, 1–101. [Google Scholar] [CrossRef]
- Rouhana, F.; Jawad, D. Transportation Network Resilience against Failures: GIS-Based Assessment of Network Topology Role. Int. J. Disaster Resil. Built Environ. 2021, 12, 357–370. [Google Scholar] [CrossRef]
- Salameh, C.; Bard, P.Y.; Guillier, B.; Harb, J.; Cornou, C.; Gérard, J.; Almakari, M. Using Ambient Vibration Measurements for Risk Assessment at an Urban Scale: From Numerical Proof of Concept to Beirut Case Study (Lebanon). Earth Planets Space 2017, 69, 1. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective Dynamics of ‘Small-World’ Networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Holme, P.; Kim, B.J.; Yoon, C.N.; Han, S.K. Attack vulnerability of complex networks. Phys. Rev. E 2002, 65, 056109. [Google Scholar] [CrossRef]
Equation | Indicator | Description |
---|---|---|
(2) d(v) = |E(v)| | Nodal Degree | Represents the number of edges E(v) directly connected to node v. It quantifies the local connectivity of a node within the network. |
(3) d(G) = | Average Network Degree | Represents the mean of all node degrees in the graph, where is the set of all nodes. It indicates the overall level of connectivity in the network. |
Clustering Coefficient | Measures the extent to which the neighbors of node v are connected to each other. is the number of edges among those neighbors. This index reflects the degree of local cohesion or transitivity in the network. | |
Shortest Path | Represents the mean of the shortest path distances between all pairs of nodes i and j in a network of n nodes. It represents the network’s overall efficiency in terms of communication or flow. | |
Betweenness Centrality | Measures how often node v appears on the shortest paths between other node pairs i and j. is the number of shortest paths from i to j that pass through v, and n(i,j) is the total number of shortest paths between i and j. This metric identifies nodes that serve as critical bridges or bottlenecks in the network. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouhana, F.; Jawad, D. A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas. ISPRS Int. J. Geo-Inf. 2025, 14, 261. https://doi.org/10.3390/ijgi14070261
Rouhana F, Jawad D. A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas. ISPRS International Journal of Geo-Information. 2025; 14(7):261. https://doi.org/10.3390/ijgi14070261
Chicago/Turabian StyleRouhana, Francesco, and Dima Jawad. 2025. "A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas" ISPRS International Journal of Geo-Information 14, no. 7: 261. https://doi.org/10.3390/ijgi14070261
APA StyleRouhana, F., & Jawad, D. (2025). A Spatial-Network Approach to Assessing Transportation Resilience in Disaster-Prone Urban Areas. ISPRS International Journal of Geo-Information, 14(7), 261. https://doi.org/10.3390/ijgi14070261