Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (728)

Search Parameters:
Keywords = lattice constant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2265 KB  
Proceeding Paper
Single-Source Facile Synthesis of Phase-Pure Na+- and Sr2+-Modified Bismuth Titanate—Structural, Optical, and Electrical Properties for Energy Storage Application
by Anitha Gnanasekar, Pavithra Gurusamy and Geetha Deivasigamani
Mater. Proc. 2025, 25(1), 18; https://doi.org/10.3390/materproc2025025018 - 7 Jan 2026
Abstract
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H [...] Read more.
In this present study, sodium- and strontium-modified bismuth titanate—Bi0.5Na0.5TiO3 (BNT) and Bi0.5Sr0.5TiO3 (BST)—were synthesized using the auto-combustion technique with citric acid (C6H8O7) and glycine (C2H5NO2) as fuels in an optimized ratio of 1.5:1. The resulting powders were characterized using X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, UV–Visible diffuse reflectance spectroscopy (DRS), and Fourier-transform infrared (FT-IR) spectroscopy. The electrical behavior of the samples was studied using an LCR meter. XRD analysis confirmed the formation of a single-phase perovskite structure with average crystallite sizes of 18.60 nm for BNT and 22.03 nm for BST, attributed to the difference in ionic radii between Na+ and Sr2+. An increase in crystallite size was accompanied by a corresponding increase in lattice parameters and unit-cell volume. The Williamson–Hall analysis further validated the strain-size contributions. EDX (Energy-Dispersive X-ray analysis) results confirmed successful incorporation of Na+ and Sr2+ without detectable impurity phases. Optical studies revealed distinct absorption peaks at 341 nm for BNT and 374 nm for BST, and the optical bandgap (Eg), calculated using Tauc’s relation, was found to be 2.6 eV and 2.0 eV, respectively. FT-IR spectra exhibited characteristic Ti-O vibrational bands in the range of 420–720 cm−1, consistent with the perovskite structure. For electrical characterization, the powders were pelletized under 3-ton pressure and sintered at 1000 °C for 3 h. The dielectric constant (εr), dielectric loss (tan δ), and ac conductivity (σ) of both samples increased with frequency. The combined structural, optical, and electrical results indicate that the optimized compositions of BNT and BST possess properties suitable for use in capacitors and other energy-storage applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

24 pages, 12079 KB  
Article
Microstructure and Properties of 316L Lattice/Al Composites Fabricated by Infiltration with Different Aspect Ratios of Lattice
by Liqiang Liu, Yue Liu, Yi Liu, Junfa Wang, Longquan Wang and Jiacheng Wei
Coatings 2026, 16(1), 50; https://doi.org/10.3390/coatings16010050 - 2 Jan 2026
Viewed by 274
Abstract
The interfacial behavior between lattice reinforcement and aluminum matrix plays an important role in determining the mechanical and tribological properties of lattice-reinforced aluminum matrix composites. In this study, 316L lattices with different aspect ratios were prepared by laser powder bed elting (LPBF) technology, [...] Read more.
The interfacial behavior between lattice reinforcement and aluminum matrix plays an important role in determining the mechanical and tribological properties of lattice-reinforced aluminum matrix composites. In this study, 316L lattices with different aspect ratios were prepared by laser powder bed elting (LPBF) technology, and LY12 aluminum alloy was infiltrated under vacuum conditions. The effects of lattice aspect ratio on the interfacial reaction, microstructure, hardness, compressive strength, and wear resistance of the composites were systematically studied. First-principles calculations show that FeAl2 and FeAl3 intermetallic compounds are preferentially formed at the interface, showing good thermodynamic stability and mechanical properties. The microstructure analysis shows that the increase in aspect ratio promotes the formation of coarse FeAl3 phase and network AlCu, while a too-large aspect ratio leads to the instability of microstructure and the generation of microcracks. When the lattice constant is 10 mm and the diameter of the support is 1 mm (BCC-10-1), the composite material has the best wear resistance, and the specific wear rate is 3.07 × 10−4 mm3/(N·m). These findings provide valuable insights into the design of high-performance lattice-reinforced aluminum matrix composites with customized interface properties. Full article
(This article belongs to the Special Issue Surface Modification Techniques Utilizing Plasma and Photonic Methods)
Show Figures

Figure 1

11 pages, 4932 KB  
Article
Enhanced Electron–Phonon Coupling of Superconductivity in Indium-Doped Topological Crystalline Insulator SnTe
by Kwan-Young Lee, Gareoung Kim, Jae Hyun Yun, Jin Hee Kim and Jong-Soo Rhyee
Materials 2026, 19(1), 73; https://doi.org/10.3390/ma19010073 - 24 Dec 2025
Viewed by 384
Abstract
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x [...] Read more.
Indium-doped SnTe (Sn1−xInxTe) provides a model platform for exploring the emergence of superconductivity within a topological crystalline insulator. Here, we present a systematic investigation of the structural, transport, and thermodynamic properties of high-quality single crystals with 0.0 ≤ x ≤ 0.5. All compositions up to x = 0.4 form a single-phase cubic structure, enabling a controlled study of the superconducting state. Electrical resistivity and specific heat measurements reveal a bulk, fully gapped s-wave superconducting phase whose transition temperature increases monotonically with In concentration, reaching Tc ≈ 4.7 K at x = 0.5. Analysis of the electronic specific heat and McMillan formalism shows that the electron–phonon coupling constant λel-ph systematically increases with doping, while the Debye temperature systematically decreases, resulting in the lattice softening. This behavior, together with the observed evolution of the normal-state resistivity exponent from Fermi-liquid (n ≈ 2.04) toward non-Fermi-liquid values (n ≈ 1.72), demonstrates a clear crossover from weak to strong interaction with increasing In content. These results establish Sn1−xInxTe as a tunable superconducting system in which coupling strength can be continuously controlled, offering a promising platform for future studies on the interplay between phonon-mediated superconductivity and crystalline topological band structure. Full article
Show Figures

Figure 1

16 pages, 3407 KB  
Article
Unraveling the Hf4+ Site Occupation Transition in Dy: LiNbO3: A Combined Experimental and Theoretical Study on the Concentration Threshold Mechanism
by Shunxiang Yang, Li Dai, Jingchao Wang and Binyu Dai
Appl. Sci. 2026, 16(1), 165; https://doi.org/10.3390/app16010165 - 23 Dec 2025
Viewed by 251
Abstract
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, [...] Read more.
Precise control over defect structures is essential for tuning the functional properties of lithium niobate (LiNbO3) crystals. Although the threshold effect of Hf4+ doping is well recognized, its underlying atomic-scale mechanism, especially in systems co-doped with luminescent rare earth ions, remains unclear. In this study, we combine experimental and theoretical approaches to elucidate the Hf4+ concentration-driven threshold behavior in Dy: LiNbO3 crystals. A series of crystals with Hf4+ concentrations of 2, 4, 6, and 8 mol% were grown using the Czochralski method. Characterization through XRD and IR spectroscopy identified a threshold near 4 mol%, evidenced by an inflection in lattice constants and a pronounced blue shift of the OH absorption peak. UV–Vis–NIR absorption spectra revealed a systematic enhancement of Dy3+f–f transition intensities, linking the global defect structure to the local crystal field of the optical activator. First-principles calculations showed that Hf4+ ions preferentially occupy Li sites, repairing antisite Nb defects (NbLi4+) below the threshold, and incorporate into Nb sites beyond it, inducing structural reorganization. Electron Localization Function analysis visualized strengthened Hf-O covalent bonding in the post-threshold regime. This work establishes a complete atomic-scale picture connecting dopant site preference, chemical bonding, and macroscopic properties, providing a foundational framework for the rational design of advanced LiNbO3-based materials. Full article
Show Figures

Figure 1

19 pages, 6201 KB  
Article
First-Principles Investigation of Structural, Electronic, and Elastic Properties of Cu(In,Ga)Se2 Chalcopyrite Alloys Using GGA+U
by Mohamed Gandouzi, Owaid H. Alshammari, Fekhra Hedhili, Hissah Saedoon Albaqawi, Nwuyer A. Al-Shammari, Manal F. Alshammari and Takuo Tanaka
Symmetry 2026, 18(1), 25; https://doi.org/10.3390/sym18010025 - 23 Dec 2025
Viewed by 267
Abstract
This paper presents a theoretical study of the structural, electronic, and elastic properties of gallium-doped CuInSe2 using the GGA exchange-correlation functional with the Hubbard correction for five Ga compositions: 0, 0.25, 0.5, 0.75, and 1. The found lattice parameters decrease with gallium [...] Read more.
This paper presents a theoretical study of the structural, electronic, and elastic properties of gallium-doped CuInSe2 using the GGA exchange-correlation functional with the Hubbard correction for five Ga compositions: 0, 0.25, 0.5, 0.75, and 1. The found lattice parameters decrease with gallium composition and obey Vegard’s law. Traditional DFT calculations fail to explain the band structure of Copper Indium Gallium Selenide compounds (CIGS). The use of Hubbard corrections of d-electrons of copper, indium, gallium, and p-electrons of selenium opens the gap, showing a semiconductor’s behavior of CuInGaSe2 alloys in the range 1.04 eV to 1.88 eV, which are in good agreement with available experimental data and current theory using an expensive hybrid exchange-correlation functional. The obtained formation energies for the different gallium compositions are close to −1 eV/atom, and the phonon spectra indicate the thermodynamic stability of these alloys. The values of the elastic constant satisfy the Born elastic stability conditions, suggesting that these compounds are mechanically stable. Moreover, we compute the bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson ratio (p), Pugh’s ratio (r), and average Debye speed (v), and the Debye temperature (ΘD) with the Ga composition. There is a symmetry between our results and the experimental data, as well as earlier simulation results. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

23 pages, 361 KB  
Article
BiHom–Lie Brackets and the Toda Equation
by Botong Gai, Chuanzhong Li, Jiacheng Sun, Shuanhong Wang and Haoran Zhu
Symmetry 2025, 17(12), 2176; https://doi.org/10.3390/sym17122176 - 17 Dec 2025
Viewed by 316
Abstract
We introduce a BiHom-type skew-symmetric bracket on general linear Lie algebra GL(V) built from two commuting inner automorphisms α=Adψ and β=Adϕ, with [...] Read more.
We introduce a BiHom-type skew-symmetric bracket on general linear Lie algebra GL(V) built from two commuting inner automorphisms α=Adψ and β=Adϕ, with ψ,ϕGL(V) and integers i,j. We prove that (GL(V),[·,·](ψ,ϕ)(i,j),α,β) is a BiHom–Lie algebra, and we study the Lax equation obtained by replacing the commutator in the finite nonperiodic Toda lattice by this bracket. For the symmetric choice ϕ=ψ with (i,j)=(0,0), the deformed flow is equivariant under conjugation and becomes gauge-equivalent, via L˜=ψ1Lψ, to a Toda-type Lax equation with a conjugated triangular projection. In particular, scalar deformations amount to a constant rescaling of time. On embedded 2×2 blocks, we derive explicit trigonometric and hyperbolic formulae that make symmetry constraints (e.g., tracelessness) transparent. In the asymmetric hyperbolic case, we exhibit a trace obstruction showing that the right-hand side is generically not a commutator, which amounts to symmetry breaking of the isospectral property. We further extend the construction to the weakly coupled Toda lattice with an indefinite metric and provide explicit 2×2 solutions via an inverse-scattering calculation, clarifying and correcting certain formulas in the literature. The classical Toda dynamics are recovered at special parameter values. Full article
(This article belongs to the Special Issue Symmetry in Integrable Systems and Soliton Theories)
13 pages, 2705 KB  
Article
Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4
by Yih-Chien Chen, Chun-Hsu Shen, Chung-Long Pan and Chun-Hao Tai
Materials 2025, 18(24), 5557; https://doi.org/10.3390/ma18245557 - 11 Dec 2025
Viewed by 236
Abstract
The effects of Ge4+ substitution on the microwave dielectric properties of inverse spinel Mg2SnO4 ceramics were systematically investigated. A series of Mg2(Sn1−xGex)O4 (x = 0.00–0.05) ceramics were synthesized via solid-state reaction and [...] Read more.
The effects of Ge4+ substitution on the microwave dielectric properties of inverse spinel Mg2SnO4 ceramics were systematically investigated. A series of Mg2(Sn1−xGex)O4 (x = 0.00–0.05) ceramics were synthesized via solid-state reaction and sintered at 1450–1600 °C. X-ray diffraction confirmed single-phase inverse spinel structures (Fd-3 m) for compositions up to x = 0.03, while minor MgSnO3 secondary phases appeared at x = 0.05. Rietveld refinement revealed a linear decrease in lattice parameter from 8.6579 Å (x = 0) to 8.6325 Å (x = 0.05), consistent with Vegard’s law for the substitution of smaller Ge4+ (0.53 Å, Shannon ionic radius, octahedral coordination) for Sn4+ (0.69 Å, Shannon ionic radius, octahedral coordination) in octahedral sites. Optimal dielectric properties were achieved at x = 0.03 sintered at 1550 °C; the dielectric constant (εr) increased from 7.6 to 8.0, while the quality factor (Qf) improved by 19% from 56,200 to 67,000 GHz, which is attributed to reduced phonon scattering from Ge-induced lattice contraction. The temperature coefficient of resonant frequency (τf) remained stable (−64 to −68 ppm/°C) across all compositions. Property degradation at x = 0.05 correlated with the onset of Ge4+ solubility limit and MgSnO3 formation. These results demonstrate that controlled Ge4+ substitution effectively enhances the microwave dielectric performance of Mg2SnO4 ceramics for communication applications. Full article
Show Figures

Figure 1

15 pages, 2534 KB  
Article
Broadband Plasmonic In-Fiber Polarization Filter Based on Gold-Deposited Silicon Photonic Crystal Fiber Operating in Mid-Infrared Regime
by Nan Chen, Qiuyue Qin, Chenxun Liu, Leilei Gao, Fan Yang, Hui Chen, Xin Ding and Xingjian Sun
Photonics 2025, 12(12), 1197; https://doi.org/10.3390/photonics12121197 - 5 Dec 2025
Viewed by 375
Abstract
To explore the potential of new information transmission windows, this work presents a broadband plasmonic filter based on gold-deposited silicon photonic crystal fiber (PCF) operating in mid-infrared regime numerically, using the finite element method (FEM). The simulation results indicate that the interaction between [...] Read more.
To explore the potential of new information transmission windows, this work presents a broadband plasmonic filter based on gold-deposited silicon photonic crystal fiber (PCF) operating in mid-infrared regime numerically, using the finite element method (FEM). The simulation results indicate that the interaction between the high-refractive-index pure silicon material and the gold layer can cause a shift of the resonance central point to the mid-infrared band, which provides the prerequisite for mid-infrared filtering. When the cladding holes’ diameter is 1.3 µm, the inner holes’ diameter is 1.04 µm, the diameter of the holes located on both sides of the core region is 2.08 µm, the gold-coated holes’ diameter is 2.08 µm, the lattice constant is 2 µm, and the gold thickness is 50 nm, this PCF can operate in the mid-infrared band near the central wavelength of 3 µm. The 1 mm long PCF polarizer exhibits a maximum extinction ratio (ER) of −43.5 dB at 3 µm and a broad operating bandwidth of greater than 820 nm with ER better than −20 dB. Additionally, it also possesses high fabrication feasibility. This in-fiber polarization filter, characterized by its comprehensive performance and ease of fabrication, aids in exploring the development potential of high-speed and large-capacity modern communication networks within new optical bands and contributes to new photonic computing and sensing. Full article
(This article belongs to the Special Issue Mid-IR Active Optical Fiber: Technology and Applications)
Show Figures

Figure 1

19 pages, 4988 KB  
Article
Vibration Energy Harvesting Characteristics of Pyramid Sandwich Beams Under Periodic Elastic Constraints
by Weimin Xiao, Junjuan Zhao, Jingkai Nie, Shuai Jiang, Zhenkun Guo and Lei Shi
J. Compos. Sci. 2025, 9(12), 659; https://doi.org/10.3390/jcs9120659 - 1 Dec 2025
Viewed by 390
Abstract
Vibration energy harvesting from ambient mechanical sources offers a sustainable alternative to batteries for powering low-power electronics in remote environments, yet challenges persist in achieving broadband efficiency, low-frequency operation, and concurrent vibration suppression. Here, we introduce a pyramidal piezoelectric sandwich beam (PPSB) with [...] Read more.
Vibration energy harvesting from ambient mechanical sources offers a sustainable alternative to batteries for powering low-power electronics in remote environments, yet challenges persist in achieving broadband efficiency, low-frequency operation, and concurrent vibration suppression. Here, we introduce a pyramidal piezoelectric sandwich beam (PPSB) with periodic elastic constraints, leveraging homogenized lattice truss cores for enhanced electromechanical coupling. Using Lagrange equations, we derive the coupled dynamics, validated against finite element simulations with resonant frequency errors below 3%. Compared to equivalent-stiffness uniform beams, the PPSB exhibits 3.42-fold higher voltage and 11.68-fold greater power output, attributed to optimized strain distribution and resonance amplification. Parametric analyses reveal trade-offs: increasing core thickness or spring stiffness elevates resonant frequencies but reduces voltage peaks due to stiffness–strain imbalances; conversely, a larger beam length, truss radius or tilt angle will reduce the natural frequency while increasing the output through inertia and shear enhancement. Piezoelectric constants and load resistance minimally affect mechanics but optimize electrical impedance matching. This single-phase, geometrically tunable design bridges gaps in multifunctional metamaterials, enabling self-powered sensors with vibration attenuation for aerospace, civil infrastructure, and biomedical applications, paving the way for energy-autonomous systems. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

17 pages, 2613 KB  
Article
Twisted and Coiled Artificial Muscle-Based Dynamic Fixing System for Wearable Robotics Applications
by Simone Leone, Salvatore Garofalo, Chiara Morano, Michele Perrelli, Luigi Bruno and Giuseppe Carbone
Actuators 2025, 14(12), 581; https://doi.org/10.3390/act14120581 - 1 Dec 2025
Viewed by 536
Abstract
Wearable robotic devices for rehabilitation and assistive applications face a critical challenge: discomfort induced by prolonged pressure at the human–robot interface. Conventional attachment systems with static straps or rigid cuffs frequently exceed pain tolerance thresholds, limiting clinical acceptance and patient adherence. This study [...] Read more.
Wearable robotic devices for rehabilitation and assistive applications face a critical challenge: discomfort induced by prolonged pressure at the human–robot interface. Conventional attachment systems with static straps or rigid cuffs frequently exceed pain tolerance thresholds, limiting clinical acceptance and patient adherence. This study presents a novel dynamic pressure modulation system using thermally activated Twisted and Coiled Artificial Muscles (TCAMs). The system integrates a lightweight lattice structure (0.1 kg) with biocompatible silicone coating incorporating two TCAMs fabricated from silver-coated nylon 6,6 fibers (Shieldex 235/36 × 4 HCB). Electrothermal activation via 2 A constant current induces axial contraction, dynamically regulating circumferential pressure from 0.05 kgf/cm2 to 0.50 kgf/cm2 within physiological comfort ranges. Experimental validation on a wrist-worn prototype demonstrates precise pressure control, rapid response (5–10 s), and thermal safety through 8 mm Ecoflex insulation. The system enables on-demand interface stiffening during robotic actuation and controlled pressure release during rest periods, significantly enhancing comfort and device tolerability. This approach represents a promising solution for clinically viable wearable robotic devices supporting upper limb rehabilitation and activities of daily living. Full article
(This article belongs to the Special Issue Recent Advances in Soft Actuators, Robotics and Intelligence)
Show Figures

Figure 1

19 pages, 3954 KB  
Article
Improvement of Structural, Elastic, and Magnetic Properties of Vanadium-Doped Lithium Ferrite
by W. R. Agami, H. M. Elsayed and A. M. Faramawy
Compounds 2025, 5(4), 54; https://doi.org/10.3390/compounds5040054 - 1 Dec 2025
Viewed by 282
Abstract
The influence of vanadium substitution on the structure, elastic, mechanical, and magnetic behavior of lithium ferrite (Li0.5+xVxFe2.5−2xO4; x = 0.00–0.2) was systematically studied. X-ray diffraction (XRD) was used to investigate the crystal structure, and infrared [...] Read more.
The influence of vanadium substitution on the structure, elastic, mechanical, and magnetic behavior of lithium ferrite (Li0.5+xVxFe2.5−2xO4; x = 0.00–0.2) was systematically studied. X-ray diffraction (XRD) was used to investigate the crystal structure, and infrared spectroscopy (IR) was used to determine the cation distribution between the two ferrite sublattices, in addition to the elastic and mechanical behavior of Li0.5+xVxFe2.5−2xO4 ferrites. X-ray analysis revealed a monotonic decrease in lattice parameter from 8.344 Å to 8.320 Å with increasing V5+ content, confirming lattice contraction and stronger metal–oxygen bonding. Despite a moderate increase in porosity (from 6.9% to 8.9%), the elastic constants C11 and C12 increased, indicating improved stiffness and reduced compressibility. The derived Young’s, bulk, and rigidity moduli rose with the doping of V5+. Correspondingly, the longitudinal, shear, and mean velocities (Vl, Vs, and Vm) increased. The Debye temperature also showed a linear rise from 705 K to 723 K with V5+ doping, directly reflecting enhanced lattice stiffness and phonon frequency. Furthermore, both the saturation magnetization (MS) and the initial permeability (μi) increased up to V5+ concentration x = 0.1 and then decreased. Curie temperature (TC) decreased with increasing V5+ concentration, while both the saturation magnetization (MS) and the initial permeability (μi) increased up to V5+ concentration x = 0.1 and then decreased, while the coercivity (HC) showed the reverse trend. These results confirm that V5+ incorporation significantly enhances the Li ferrite, improving its elastic strength, lattice energy, thermal stability, and magnetically controlling properties and making them suitable for a variety of daily uses such as magneto-elastic sensors, high-frequency devices, and applications requiring mechanically robust ferrite materials. Full article
Show Figures

Figure 1

17 pages, 2952 KB  
Article
Higher than 60% Dielectric Tunability in Ba0.6Sr0.4TiO3 Films Using TiO2 Anatase Buffer Layers
by Pengzhan Zhang, Jiaming He, Xinyu Liu, Leng Zhang, Ling Zhang, Danbei Wang, Kongpin Wu and Sake Wang
Nanomaterials 2025, 15(23), 1797; https://doi.org/10.3390/nano15231797 - 28 Nov 2025
Viewed by 274
Abstract
In this work, Ba0.6Sr0.4TiO3 (BST) films were deposited on Si(100) and Pt(111)/Ti/SiO2/Si(100) substrates using the pulsed laser deposition (PLD) technique. The effects of TiO2 buffer layer thickness and preparation temperature on the microstructure and electrical [...] Read more.
In this work, Ba0.6Sr0.4TiO3 (BST) films were deposited on Si(100) and Pt(111)/Ti/SiO2/Si(100) substrates using the pulsed laser deposition (PLD) technique. The effects of TiO2 buffer layer thickness and preparation temperature on the microstructure and electrical properties of BST films were studied in detail. We intensively investigated the influence of the TiO2 buffer layer on the microstructure of BST films by using X-ray diffraction and scanning electron microscopy. We found that anatase crystalline TiO2 buffer layers within 15 nm thicknesses could significantly change the BST films from an irregular orientation to the (111) preferential orientation. The TiO2 anatase layers could promote the growth of BST film grains for obtaining minimal stress and low lattice distortion, increase the nucleation density, and improve its surface morphology, resulting in higher dielectric constant and resistance voltage, and lower dielectric loss and leakage current density. The dielectric constant, dielectric loss, and dielectric tunability of the BST devices with 8 nm thick TiO2 anatase buffer layers at 1 MHz were 856.5, 0.017, and 64.3%, respectively. The achieved high dielectric tunability indicates BST with TiO2 anatase buffer layers as one of the encouraging candidates for RF and microwave tunable applications at room temperature. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 2814 KB  
Article
Simultaneous Broadband Sound Absorption and Vibration Suppression in Gradient-Symmetric Multilayer Metamaterials
by Hanbo Shao, Yichao Yang, Wentao Di, Hanqi Zhang and Dong Jiang
Appl. Sci. 2025, 15(23), 12628; https://doi.org/10.3390/app152312628 - 28 Nov 2025
Viewed by 490
Abstract
Metamaterials show perfect physics characteristics for controlling elastic wave propagation. Their potential offers a lot of useful applications in low-frequency sound absorption and vibration reduction systems. However, traditional materials have inherent deficiencies in terms of functionality. There are a few designs in both [...] Read more.
Metamaterials show perfect physics characteristics for controlling elastic wave propagation. Their potential offers a lot of useful applications in low-frequency sound absorption and vibration reduction systems. However, traditional materials have inherent deficiencies in terms of functionality. There are a few designs in both acoustic and solid-mechanics domains that simultaneously exhibit sound attenuation bands and vibration bandgaps. The question poses new challenges for metamaterial development. To address this, we propose a gradient-symmetric multilayered metamaterial. The structure is capable of concurrent sound and vibration absorption. First, we established an acoustic model based on Helmholtz resonators and a vibration model by spring-mass systems. This model can predict the sound attenuation frequencies and natural frequency positions accurately. Second, through a combined simulation and experimental approach, we investigated how variations in the number of structural layers affect sound attenuation bandwidth. In addition, we analyzed the mechanisms of sound pressure distribution inside and outside the bandgaps. Finally, we elucidated the influence of lattice constants on vibration bandgap positions, demonstrating possibilities for passive control of metamaterials. This research provides robust support for the dynamic design of acoustic and mechanical metamaterials, structural modeling methodologies, bandwidth regulation strategies, and the development of sound-absorbing and vibration-damping devices. Full article
Show Figures

Figure 1

10 pages, 3045 KB  
Proceeding Paper
Structural, Optical, and Dielectric Behavior of MCr2O4 (M=Co, Cu, Ni) Spinel Chromites Prepared by Sol–Gel Route
by Pavithra Gurusamy, Anitha Gnanasekar, Geetha Deivasigamani and Jose Luis Arias Mediano
Mater. Proc. 2025, 25(1), 6; https://doi.org/10.3390/materproc2025025006 - 24 Nov 2025
Viewed by 240
Abstract
The influence of M site substitution in MCr2O4 nanoceramics on their properties is examined in this research. This study is an attempt to correlate the structural, morphological, and optical properties of M-site-modified chromites. The MCr2O4 nanoceramics-CuCr2 [...] Read more.
The influence of M site substitution in MCr2O4 nanoceramics on their properties is examined in this research. This study is an attempt to correlate the structural, morphological, and optical properties of M-site-modified chromites. The MCr2O4 nanoceramics-CuCr2O4, CoCr2O4, and NiCr2O4 were synthesized using a wet chemical sol–gel auto-combustion method, and all three samples were annealed for 4 h at 900 °C. X-ray diffraction analysis showed that the XRD patterns of CuCr2O4, CoCr2O4, and NiCr2O4 correspond to single-phase cubic crystal structures with the space group Fd-3m. Using the Scherrer equation, the crystallite sizes were found to be 9.86 nm, 6.73 nm, and 10.73 nm for CuCr2O4, CoCr2O4, and NiCr2O4, respectively. Other parameters, including crystal structure, micro-strain, lattice constant, unit cell volume, X-ray density, packing factor, and the stacking fault of the calcined powder samples, were determined from data acquired from the X-ray diffractometer. Energy dispersive X-ray spectroscopy (EDX) was employed to confirm the appropriate chromite elements in their expected stoichiometric proportions, removed from other impurities. The identification of the functional groups of the samples was performed using Fourier Transform Infrared Spectroscopy (FTIR). The absorption bands characteristic of tetrahedral and octahedral coordination compounds of the spinel structure are found between 450 and 750 cm−1 for all three samples in the spectrum. From the UV-absorption spectra, and using Tauc’s plot, the energy bandgap values for CuCr2O4, CoCr2O4, and NiCr2O4 were measured to be 1.66 eV, 1.82 eV, and 2.01 eV, respectively. The dielectric properties of the chromites were studied using an LCR meter. Frequency-dependent dielectric properties, including Dielectric constant and Tangent loss, were calculated. These findings suggest the feasibility of the use of these synthesized chromites for optical devices and other optoelectronic applications. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

18 pages, 3414 KB  
Article
A Comparative Study of the Effects of Cholesterol and Lanosterol on Hydrated Phosphatidylethanolamine Assemblies: Focusing on Physical Parameters Related to Membrane Fusion
by Ayumi Okayama, Michael Postrado and Hiroshi Takahashi
Membranes 2025, 15(12), 352; https://doi.org/10.3390/membranes15120352 - 24 Nov 2025
Viewed by 729
Abstract
Cholesterol (Chol) plays a crucial role in regulating membrane properties and biological processes such as membrane fusion, yet the molecular mechanisms underlying its function remain incompletely understood. In order to elucidate how sterol structure influences phospholipid organization relevant to membrane fusion, we compared [...] Read more.
Cholesterol (Chol) plays a crucial role in regulating membrane properties and biological processes such as membrane fusion, yet the molecular mechanisms underlying its function remain incompletely understood. In order to elucidate how sterol structure influences phospholipid organization relevant to membrane fusion, we compared the effects of Chol and its biosynthetic precursor lanosterol (Lan) on hydrated phosphatidylethanolamine (PE) assemblies using X-ray diffraction, the neutral flotation method, and osmotic stress measurements. Volumetric analyses revealed that Lan has a larger occupied molecular volume than Chol in the bilayers. These values were largely independent of differences between phospholipids (phosphatidylcholine and PE), indicating that sterols are deeply embedded within the bilayer. In palmitoyl-oleoyl-PE lamellar membranes, both sterols increased bilayer thickness. They both enhanced short-range repulsive hydration forces, but Chol suppressed fluctuation-induced repulsion more effectively, reflecting its greater stiffening effect. In bacterial PE systems forming the inverted hexagonal (HII) phase, increasing sterol concentration decreased the lattice constant, with a more substantial effect for Lan, which also induced greater curvature of the water columns. These results suggest that while Chol enhances mechanical rigidity and membrane cohesion, Lan promotes molecular flexibility and curvature, properties associated with fusion intermediates. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

Back to TopTop