Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4
Highlights
- Ge4+ substitution successfully forms a solid solution in Mg2SnO4 up to x = 0.03.
- Lattice contraction follows Vegard’s law, indicating stable Ge4+ incorporation.
- The optimal composition (x = 0.03, 1550 °C) shows εr = 8.0 and Qf = 67,000 GHz.
- Demonstrate that moderate Ge substitution improves dielectric performance.
- Provide structural insight into phonon scattering reduction in spinel ceramics.
- Offer design guidance for low-loss materials in microwave communication devices.
Abstract
1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, M.D.; Cruickshank, D.B. Perspective on ceramic materials for 5G wireless communication systems. Appl. Phys. Lett. 2021, 118, 120501. [Google Scholar] [CrossRef]
- Lou, W.; Mao, M.; Song, K.; Xu, K.; Liu, B.; Li, W.; Yang, B.; Qi, Z.; Zhao, J.; Sun, S.; et al. Low permittivity cordierite-based microwave dielectric ceramics for 5G/6Gtelecommunications. J. Eur. Ceram. Soc. 2022, 42, 2820–2826. [Google Scholar] [CrossRef]
- Reaney, I.M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Chen, Y.C.; Wang, Y.N.; Hsu, C.H. Elucidating the dielectric properties of Mg2SnO4 ceramics at microwave frequency. J. Alloys Compd. 2011, 509, 9650–9653. [Google Scholar] [CrossRef]
- Costa, J.M.; Lima, L.C.; Li, M.S.; Santos, I.M.G.; Silva, M.R.S.; Maia, A.S. Structural and photocatalytic properties of Mg2SnO4 spinel obtained by modified Pechini method. Mater. Lett. 2019, 236, 320–323. [Google Scholar] [CrossRef]
- Du, K.; Wang, F.; Song, X.; Guo, Y.; Wang, X.; Lu, W.; Lei, W. Correlation between crystal structure and dielectric characteristics of Ti4+ substituted CaSnSiO5 ceramics. J. Eur. Ceram. Soc. 2021, 41, 2567–2578. [Google Scholar] [CrossRef]
- Santana, N.D.C.; López, A.; Sosman, L.P.; Pedro, S.S. Broadband photoluminescence in a ceramic (Mg2SnO4–SnO2): Cr3+ system. SN Appl. Sci. 2021, 3, 125. [Google Scholar] [CrossRef]
- Shen, C.H.; Shen, T.W.; Hsieh, T.Y.; Lan, K.C.; Hsu, S.H.; Wang, C.H.; Lin, Y.T.; Wu, W.F.; Tseng, Z.L. The enhanced thermal stability of (Mg0.95Ni0.05)2TiO4 dielectric ceramics modified by a multi-phase method. Materials 2023, 16, 2997. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, H.; Lu, S.; Xiang, Z.; Li, C.; Chen, L.; Truong, N.X.; Lu, W. The effect of Ge substitution on phase transformation and magnetic properties of MnBi alloys. Mater. Lett. 2024, 359, 135833. [Google Scholar] [CrossRef]
- Wirths, S.; Buca, D.; Mantl, S. Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–39. [Google Scholar] [CrossRef]
- Huang, D.; Gao, J. Effects of Ge substitution for Sn on the crystal structure, magnetization, and the magnetocaloric effect of Mn3SnC. J. Magn. Magn. Mater. 2021, 537, 168163. [Google Scholar] [CrossRef]
- Appiah, M.; Yang, Y.; Ullah, B.; Xiao, Y.; Stavrou, E.; Zhang, Q.; Tan, D. Phase structural characteristics and microwave dielectric properties of Ge-doped cordierite-based ceramics. Mater. Res. Bull. 2024, 179, 112939. [Google Scholar] [CrossRef]
- Lu, Y.; Guo, W.; Zhang, C.; Yue, Z. Effects of Ge4+ substitution on the crystal structure microwave/terahertz dielectric properties of diopside ceramics. J. Eur. Ceram. Soc. 2024, 44, 5008–5015. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, Y.; Wang, R.; Wu, H.; Shan, L. Effect of Ge4+-substituted on the structure characteristics and microwave/terahertz dielectric properties of ultra-low εr, high Qf cordierite ceramics. J. Mater. Sci. Technol. 2025, 216, 165–177. [Google Scholar] [CrossRef]
- Su, H.; Li, J.; Wang, G.; Gao, F.; Yang, Y.; Sun, Y.; Han, X.; Liang, Z.; Li, Q. Ge-doped Li3+xMg2Nb1−xGexO6 ceramics with enhanced low loss and high temperature stability properties. Ceram. Int. 2021, 47, 23038–23044. [Google Scholar] [CrossRef]
- Chen, C.; Du, Y.X. Influence of Co substitution on crystal structures, Raman spectroscopy, and microwave dielectric properties of Mg2SnO4 ceramics. J. Aust. Ceram. Soc. 2020, 56, 1493–1499. [Google Scholar] [CrossRef]
- Khan, M.; Mishra, A.; Shukla, J.; Sharma, P. X-ray analysis of BaTiO3 ceramics by Williamson-Hall and size strain plot methods. AIP Conf. Proc. 2019, 2100, 020138. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction, 3rd ed.; Pearson Education: London, UK, 2014. [Google Scholar]
- Goldstein, J.; Newbury, D.E.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis, 4th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Kajfez, D.; Guillon, P. Dielectric Resonators; Artech House: Norwood, MA, USA, 1998. [Google Scholar]
- Hakki, B.W.; Coleman, P.D. A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Technol. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Courtney, W.E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory Technol. 1970, 18, 476–485. [Google Scholar] [CrossRef]
- West, A.R. Solid State Chemistry and Its Applications, 2nd ed.; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Zhang, J.; Zuo, R. Raman scattering and infrared reflectivity study of orthorhombic/monoclinic LaTiNbO6 microwave dielectric ceramics by A/B-site substitution. Ceram. Int. 2018, 44, 16191–16198. [Google Scholar] [CrossRef]
- Yang, X.; Fernández–Carrión, A.J.; Geng, X.; Kuang, X. B-site deficient hexagonal perovskites: Structural stability, ionic order-disorder and electrical properties. Prog. Solid State Chem. 2024, 74, 100459. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. Sect. B 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Kurian, M.; Thankachan, S. Introduction: Ceramics classification and applications. In Ceramic Catalysts; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–17. [Google Scholar] [CrossRef]
- Shanmugasundram, H.P.P.V.; Jayamani, E.; Soon, K.H. A comprehensive review on dielectric composites: Classification of dielectric composites. Renew. Sustain. Energy Rev. 2022, 157, 112075. [Google Scholar] [CrossRef]
- Narang, S.B.; Bahe, S. Low loss dielectric ceramics for microwave applications: A review. J. Ceram. Process. Res. 2010, 11, 316–321. [Google Scholar] [CrossRef]
- Silverman, B.D. Microwave absorption in cubic strontium titanate. Phys. Rev. 1962, 125, 1921–1925. [Google Scholar] [CrossRef]










| x Value | S.T. (°C) | M.P. (vol%) | S.P. (vol%) |
|---|---|---|---|
| 0 | 1450 | - | - |
| 1500 | - | - | |
| 1550 | 94.9 | 5.1 | |
| 1600 | - | - | |
| 0.01 | 1450 | 94.1 | 5.9 |
| 1500 | 93.0 | 7.0 | |
| 1550 | 96.9 | 3.1 | |
| 1600 | 100 | 0 | |
| 0.03 | 1450 | 96.2 | 3.8 |
| 1500 | 96.3 | 3.8 | |
| 1550 | 95.3 | 4.7 | |
| 1600 | 96.6 | 3.4 | |
| 0.05 | 1450 | 96.7 | 3.3 |
| 1500 | 100 | 0 | |
| 1550 | 100 | 0 | |
| 1600 | 100 | 0 |
| Parameters | x = 0 | x = 0.01 | x = 0.03 | x = 0.05 |
|---|---|---|---|---|
| Lattice parameter, a (Å) | ||||
| Refined value | 8.6579 | 8.6379 | 8.6410 | 8.6325 |
| Calculated value | 8.6579 | 8.6379 | 8.6410 | 8.6325 |
| Bond length (Å) | ||||
| Mg1–O1 (Å) (Tetrahedral) | 1.8156 | 1.8756 | 1.9043 | 1.9886 |
| Mg2–O1/Sn1–O1 (Å) (Octahedral) | 2.1881 | 2.1109 | 2.1062 | 2.087 |
| The reliability factor of weighted patterns: Rwp (%) | 11.64 | 13.41 | 9.69 | 14.37 |
| Spot | Mg | Sn | Ge | O | Mg:Sn:Ge:O | |
|---|---|---|---|---|---|---|
| (a) | A | 27.7 | 20.8 | 0.0 | 51.4 | 3:2:0:5 (Mg2SnO4) |
| B | 11.1 | 28.8 | 0.0 | 60.1 | 1:3:0:6 (SnO2) | |
| (b) | C | 29.3 | 17.2 | 0.7 | 52.8 | 3:1.7:0:5.3 (Mg2SnO4) |
| D | 16.5 | 18.5 | 0.5 | 64.5 | 2:2:0:6 (MgSnO3) | |
| E | 9.4 | 44.4 | 0.1 | 46.1 | 1:4.5:0:4.5 (SnO2) | |
| (c) | F | 29.7 | 16.4 | 0.3 | 53.6 | 3:1.5:0:5.5 (Mg2SnO4) |
| G | 7.9 | 36.8 | 1.2 | 54.1 | 1:3.5:0:5.5 (SnO2) | |
| (d) | H | 31.0 | 28.3 | 1.8 | 38.9 | 3:3:0:4 (MgSnO3) |
| I | 29.7 | 15.1 | 1.2 | 54.0 | 3:1.5:0:5.5 (Mg2SnO4) |
| x Value | Bulk Density (g/cm3) | DR (%) | εr | Qf (GHz) | τf (ppm/°C) |
|---|---|---|---|---|---|
| 0.0 | 4.5 | 93.75 | 7.6 | 56,200 | −68 |
| 0.01 | 4.55 | 94.83 | 8.0 | 62,000 | −64 |
| 0.03 | 4.57 | 95.56 | 8.0 | 67,000 | −64 |
| 0.05 | 4.56 | 95.45 | 7.9 | 60,000 | −66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Shen, C.-H.; Pan, C.-L.; Tai, C.-H. Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4. Materials 2025, 18, 5557. https://doi.org/10.3390/ma18245557
Chen Y-C, Shen C-H, Pan C-L, Tai C-H. Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4. Materials. 2025; 18(24):5557. https://doi.org/10.3390/ma18245557
Chicago/Turabian StyleChen, Yih-Chien, Chun-Hsu Shen, Chung-Long Pan, and Chun-Hao Tai. 2025. "Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4" Materials 18, no. 24: 5557. https://doi.org/10.3390/ma18245557
APA StyleChen, Y.-C., Shen, C.-H., Pan, C.-L., & Tai, C.-H. (2025). Influence of Germanium Substitution on the Crystal Chemistry and Dielectric Properties of Mg2SnO4. Materials, 18(24), 5557. https://doi.org/10.3390/ma18245557

