Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = laser-induced plasma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4468 KiB  
Article
A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
by Hongliang Pei, Qingwen Fan, Yixiang Duan and Mingtao Zhang
Appl. Sci. 2025, 15(15), 8640; https://doi.org/10.3390/app15158640 (registering DOI) - 4 Aug 2025
Abstract
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and [...] Read more.
To improve the accuracy of three-dimensional (3D) reconstruction under microscopic conditions for laser-induced breakdown spectroscopy (LIBS), this study developed a novel visual platform by integrating an industrial CCD camera with a microscope. A customized microscale calibration target was designed to calibrate intrinsic and extrinsic camera parameters accurately. Based on the pinhole imaging model, disparity maps were obtained via pixel matching to reconstruct high-precision 3D ablation morphology. A mathematical model was established to analyze how key imaging parameters—baseline distance, focal length, and depth of field—affect reconstruction accuracy in micro-imaging environments. Focusing on trace element detection in WC-Co alloy samples, the reconstructed ablation craters enabled the precise calculation of ablation volumes and revealed their correlations with laser parameters (energy, wavelength, pulse duration) and the physical-chemical properties of the samples. Multivariate regression analysis was employed to investigate how ablation morphology and plasma evolution jointly influence LIBS quantification. A nonlinear calibration model was proposed, significantly suppressing matrix effects, achieving R2 = 0.987, and reducing RMSE to 0.1. This approach enhances micro-scale LIBS accuracy and provides a methodological reference for high-precision spectral analysis in environmental and materials applications. Full article
(This article belongs to the Special Issue Novel Laser-Based Spectroscopic Techniques and Applications)
Show Figures

Figure 1

13 pages, 1704 KiB  
Article
Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization
by Ting Luo, Weihua Huang, Riheng Chen, Furong Chen, Jinke Chen, Zhenlin Hu and Junfei Nie
Chemosensors 2025, 13(8), 271; https://doi.org/10.3390/chemosensors13080271 - 23 Jul 2025
Viewed by 275
Abstract
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of [...] Read more.
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of water hardness by combining one-point calibration laser-induced breakdown spectroscopy (OPC–LIBS) and aerosolization. First, the water samples are aerosolized via the aerosol generation device and the LIBS spectra of aerosols are obtained. Then, a modified OPC–LIBS model is used to determine the elemental contents of the aerosols via LIBS spectra, in which the plasma temperature is calculated using the Multi-Element Saha–Boltzmann (ME–SB) plot. One suitable standard liquid sample (the concentrations of Ca, Mg, and Sr were 50 mg/L, 50 mg/L, and 500 mg/L, respectively) was selected to evaluate the quantitative performance of the modified OPC–LIBS. Then, the Ca and Mg concentrations in the three real water samples (from the Yangtze River, reservoir, and underground) were detected and quantified by the proposed method, and the quantitative results of three LIBS calibration methods were compared with that of inductively coupled plasma optical emission spectroscopy (ICP–OES). The average relative error of Ca and Mg found in the OPC–LIBS results was lower by 22.23% than the internal standard method and 14.50% lower than the external standard method. The method combining modified OPC–LIBS and aerosolization can achieve high-precision rapid quantification of water hardness detection, which provides a new path for rapid detection of water hardness and is expected to make online detection a reality in the water quality testing field. Full article
Show Figures

Graphical abstract

16 pages, 1519 KiB  
Article
Rare Earth Element Detection and Quantification in Coal and Rock Mineral Matrices
by Chet R. Bhatt, Daniel A. Hartzler and Dustin L. McIntyre
Chemosensors 2025, 13(8), 270; https://doi.org/10.3390/chemosensors13080270 - 23 Jul 2025
Viewed by 562
Abstract
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known [...] Read more.
As global demand for rare earth elements (REEs) increases, maintaining the production and supply chain is critical. Technologies capable of being used in the field and in situ in the subsurface for rapid REE detection and quantification facilitates the efficient mining of known resources and exploration of new and unconventional resources. Laser-induced breakdown spectroscopy (LIBS) is a promising technique for rapid elemental analysis both in the laboratory and in the field. Multiple articles have been published evaluating LIBS for detection and quantification of REEs; however, REEs in their natural deposits have not been adequately studied. In this work, detection and quantification of two REEs, La and Nd, have been studied in both synthetic and natural mineral matrices at concentrations relevant to REE extraction. Measurements were performed on REE-containing rock and coal samples (natural and synthetic) utilizing different LIBS instruments and techniques, specifically a commercial benchtop instrument, a custom benchtop instrument (single- and double-pulse modes), and a custom LIBS probe currently being developed for in situ, subsurface, borehole wall detection and quantification of REEs. Plasma expansion, emission intensity, detection limits, and double-pulse signal enhancement were studied. The limits of detection (LOD) were found to be 10/14 ppm for La and 15/25 ppm for Nd in simulated coal/rock matrices in single-pulse mode. Signal enhancement of 3.5 to 6-fold was obtained with double-pulse mode as compared to single-pulse operation. Full article
(This article belongs to the Special Issue Application of Laser-Induced Breakdown Spectroscopy, 2nd Edition)
Show Figures

Figure 1

11 pages, 1699 KiB  
Article
Optimization of the LIBS Technique in Air, He, and Ar at Atmospheric Pressure for Hydrogen Isotope Detection on Tungsten Coatings
by Salvatore Almaviva, Lidia Baiamonte and Marco Pistilli
J. Nucl. Eng. 2025, 6(3), 22; https://doi.org/10.3390/jne6030022 - 1 Jul 2025
Viewed by 333
Abstract
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing [...] Read more.
In current and future fusion devices, detecting hydrogen isotopes, particularly tritium and deuterium, implanted or redeposited on the surface of Plasma-Facing Components (PFCs) will be increasingly important to ensure safe machine operations. The Laser-Induced Breakdown Spectroscopy (LIBS) technique has proven capable of performing this task directly in situ, without handling or removing PFCs, thus limiting analysis times and increasing the machine’s duty cycle. To increase sensitivity and the ability to discriminate between isotopes, LIBS analysis can be performed under different background gases at atmospheric pressure, such as air, He, and Ar. In this work, we present the results obtained on tungsten coatings enriched with deuterium and/or hydrogen as a deuterium–tritium nuclear fuel simulant, measured with the LIBS technique in air, He, and Ar at atmospheric pressure, and discuss the pros and cons of their use. The results obtained demonstrate that both He and Ar can improve the LIBS signal resolution of the hydrogen isotopes compared to air. However, using Ar has the additional advantage that the same procedure can also be used to detect He implanted in PFCs as a product of fusion reactions without any interference. Finally, the LIBS signal in an Ar atmosphere increases in terms of the signal-to-noise ratio (SNR), enabling the use of less energetic laser pulses to improve performance in depth profiling analyses. Full article
(This article belongs to the Special Issue Fusion Materials with a Focus on Industrial Scale-Up)
Show Figures

Graphical abstract

19 pages, 3754 KiB  
Article
Combining Laser-Induced Breakdown Spectroscopy with the Standard Addition Method for Analyzing Impurity Elements in the Lithium Ore Mineral Spodumene
by Zeshan Adeel Umar, Sandeep Kumar, Song-Hee Han, Su-Bin Ki, Sunhye Kim, Sehoon Jung, Sang-Ho Nam and Yonghoon Lee
Minerals 2025, 15(6), 659; https://doi.org/10.3390/min15060659 - 19 Jun 2025
Viewed by 385
Abstract
Spodumene (LiAlSi2O6) is a key lithium source mineral for energy storage devices, making the accurate and rapid analysis of its elemental composition crucial for the battery industry. This study explores the use of laser-induced breakdown spectroscopy (LIBS) combined with [...] Read more.
Spodumene (LiAlSi2O6) is a key lithium source mineral for energy storage devices, making the accurate and rapid analysis of its elemental composition crucial for the battery industry. This study explores the use of laser-induced breakdown spectroscopy (LIBS) combined with the standard addition method to analyze Be, Na, and K in spodumene. The method achieved relative errors of 5%–15% compared to inductively coupled plasma optical emission spectroscopy (ICP-OES), without requiring certified standards. To ensure accuracy, non-resonance emissions were used for Be and Na to minimize self-absorption effects. Although K analysis faced challenges due to strong self-absorption in resonance emissions, focusing on weak edge intensity reduced the relative error significantly. Our results suggest that LIBS combined with the standard addition method is a promising approach for lithium ore analysis, eliminating the need for certified standard materials and complex sample preparation steps such as acid digestion and high-factor dilution. Full article
Show Figures

Graphical abstract

14 pages, 2874 KiB  
Article
Quantitative Analysis of Lithium in Natural Brines from the Lithium Triangle by Laser-Induced Breakdown Spectroscopy
by Juan Molina M., Carisa Sarchi, Alvaro Y. Tesio, César Costa-Vera and Diego M. Díaz Pace
Atoms 2025, 13(6), 56; https://doi.org/10.3390/atoms13060056 - 17 Jun 2025
Viewed by 404
Abstract
Lithium (Li)-rich continental brines found in the Lithium Triangle region in South America are a natural resource of paramount importance. In the present research, the analytical performance of laser-induced breakdown spectroscopy (LIBS) technology was assessed for the quantitative analysis of Li in natural [...] Read more.
Lithium (Li)-rich continental brines found in the Lithium Triangle region in South America are a natural resource of paramount importance. In the present research, the analytical performance of laser-induced breakdown spectroscopy (LIBS) technology was assessed for the quantitative analysis of Li in natural brines aimed at enhancing the efficient exploration of salt flats (called salars). Brine samples were collected from different salars located in the Puna plateau (Northwest Argentina) and analyzed by LIBS in the form of solid pressed pellets. Broadband emission spectra (180–900 nm) were recorded and spectrally analyzed by specially designed computational algorithms. The laser-induced plasmas were characterized by calculating the electron density and the temperature. The Li elemental concentrations in the brines were determined through univariate calibration with the Li I emission line at 670.77 nm by using a suitable set of standards with Li concentrations up to 1300 μg/g. The calculated limit of detection was LoD = 0.2 ± 0.1 μg/g. The Li content in the brines determined with LIBS showed a good agreement (normalized standard deviation: σN = 25%) with the concentrations measured with atomic absorption spectroscopy. The results demonstrated the feasibility of the LIBS technique for the quantitative analysis of Li in natural brines, thus contributing to advancing the exploration of Li-rich resources. Full article
Show Figures

Graphical abstract

18 pages, 3589 KiB  
Article
Detection of Phosphorus in Water by Laser-Induced Breakdown Spectroscopy Based on Liquid-Solid Transformation of Graphite Substrate Combined with PLS-SVR Fusion Quantitative Analysis Algorithm
by Huijie Zhang, Yao Chen, Zongjie Bi, Xiaohua Che and Zhaoshuo Tian
Photonics 2025, 12(6), 616; https://doi.org/10.3390/photonics12060616 - 16 Jun 2025
Viewed by 277
Abstract
To enhance sensitivity in detecting phosphorus in water via laser-induced breakdown spectroscopy (LIBS), this study integrates liquid–solid conversion on graphite substrates with a PLS-SVR fusion algorithm. Optimized laser parameters (500 mJ, 13 pulses) improved plasma excitation and signal-to-noise ratios. The graphite substrate adsorbed [...] Read more.
To enhance sensitivity in detecting phosphorus in water via laser-induced breakdown spectroscopy (LIBS), this study integrates liquid–solid conversion on graphite substrates with a PLS-SVR fusion algorithm. Optimized laser parameters (500 mJ, 13 pulses) improved plasma excitation and signal-to-noise ratios. The graphite substrate adsorbed phosphorus, converting liquid samples into a solid matrix to suppress matrix interference and intensify spectral lines (P I 213.6 nm and 214.9 nm), achieving detection limits of 0.09 mg/L and 0.23 mg/L, respectively. Calibration curves showed high accuracy (R2 = 0.9936). In real-world testing, absolute errors were below 0.017 mg/L, with relative errors <12%, aligning closely with traditional ammonium molybdate spectrophotometry. The PLS-SVR algorithm boosted prediction accuracy through data enhancement and spectral feature extraction, reducing errors to 2.1% (0.625 mg/L) and 5.6% (2.5 mg/L). With rapid sample preparation (<10 min), this method offers an efficient, low-cost solution for in situ phosphorus monitoring, advancing LIBS from lab to field use and supporting precise eutrophication management. Full article
Show Figures

Figure 1

14 pages, 6581 KiB  
Article
High-Precision Diagnosis of the Whole Process of Laser-Induced Plasma and Shock Waves Using Simultaneous Phase-Shift Interferometry
by Lou Gao, Hongchao Zhang, Jian Lu and Zhonghua Shen
Photonics 2025, 12(6), 601; https://doi.org/10.3390/photonics12060601 - 11 Jun 2025
Viewed by 750
Abstract
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and [...] Read more.
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and its applicability is verified. Uncertainty analysis and precision verification show that the total phase shift uncertainty is controlled within 0.045 radians, equivalent to a refractive index accuracy of 8.55×106, with sensitivity to weak perturbations improved by approximately one order of magnitude compared to conventional carrier-frequency interferometry. Experimental results demonstrate that the SPSI system precisely captures the initial spatiotemporal evolution of LIP and tracks shock waves at varying attenuation levels, exhibiting notable advantages in weak shock wave detection. This research validates the SPSI system’s high sensitivity to transient weak perturbations, offering a valuable diagnostic tool for high-vacuum plasmas, low-pressure shock waves, and stress waves in optical materials. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

23 pages, 9331 KiB  
Article
Non-Ideal Hall MHD Rayleigh–Taylor Instability in Plasma Induced by Nanosecond and Intense Femtosecond Laser Pulses
by Roman S. Zemskov, Maxim V. Barkov, Evgeniy S. Blinov, Konstantin F. Burdonov, Vladislav N. Ginzburg, Anton A. Kochetkov, Aleksandr V. Kotov, Alexey A. Kuzmin, Sergey E. Perevalov, Il’ya A. Shaikin, Sergey E. Stukachev, Ivan V. Yakovlev, Alexander A. Soloviev, Andrey A. Shaykin, Efim A. Khazanov, Julien Fuchs and Mikhail V. Starodubtsev
Plasma 2025, 8(2), 23; https://doi.org/10.3390/plasma8020023 - 10 Jun 2025
Viewed by 1369
Abstract
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility [...] Read more.
A pioneering detailed comparative study of the dynamics of plasma flows generated by high-power nanosecond and high-intensity femtosecond laser pulses with similar fluences of up to 3×104 J/cm2 is presented. The experiments were conducted on the petawatt laser facility PEARL using two types of high-power laser radiation: femtosecond pulses with energy exceeding 10 J and a duration less than 60 fs, and nanosecond pulses with energy exceeding 10 J and a duration on the order of 1 ns. In the experiments, high-velocity (>100 km/s) flows of «femtosecond» (created by femtosecond laser pulses) and «nanosecond» plasmas propagated in a vacuum across a uniform magnetic field with a strength over 14 T. A significant difference in the dynamics of «femtosecond» and «nanosecond» plasma flows was observed: (i) The «femtosecond» plasma initially propagated in a vacuum (no B-field) as a collimated flow, while the «nanosecond» flow diverged. (ii) The «nanosecond» plasma interacting with external magnetic field formed a quasi-spherical cavity with Rayleigh–Taylor instability flutes. In the case of «femtosecond» plasma, such flutes were not observed, and the flow was immediately redirected into a narrow plasma sheet (or «tongue») propagating across the magnetic field at an approximately constant velocity. (iii) Elongated «nanosecond» and «femtosecond» plasma slabs interacting with a transverse magnetic field broke up into Rayleigh–Taylor «tongues». (iv) The ends of these «tongues» in the femtosecond case twisted into vortex structures aligned with the ion motion in the external magnetic field, whereas the «tongues» in the nanosecond case were randomly oriented. It was suggested that the twisting of femtosecond «tongues» is related to Hall effects. The experimental results are complemented by and consistent with numerical 3D magnetohydrodynamic simulations. The potential applications of these findings for astrophysical objects, such as short bursts in active galactic nuclei, are discussed. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

11 pages, 2860 KiB  
Communication
Threshold-Governed Inversion of Plasma Chronology at Air–Silicon Interfaces Under Tight Femtosecond Focusing
by Xian-An Dou, Xin Li, Qing Ye and Yuntao Xie
Photonics 2025, 12(6), 574; https://doi.org/10.3390/photonics12060574 - 6 Jun 2025
Viewed by 329
Abstract
The sequencing of laser-induced plasma formation in multi-material systems is fundamentally governed by the interplay between material ionization thresholds and laser temporal characteristics. This study uncovers a counterintuitive phenomenon where silicon plasma precedes air filamentation at air–silicon interfaces under tight femtosecond laser focusing, [...] Read more.
The sequencing of laser-induced plasma formation in multi-material systems is fundamentally governed by the interplay between material ionization thresholds and laser temporal characteristics. This study uncovers a counterintuitive phenomenon where silicon plasma precedes air filamentation at air–silicon interfaces under tight femtosecond laser focusing, which can be attributed to the significant difference in their ionization thresholds. Through time-resolved shadowgraphy with 550 fs resolution, we demonstrate that silicon plasma precedes air filamentation by approximately 3 ps, a temporal discrepancy that can be quantitatively attributed to the 137.5-fold lower ionization threshold of silicon compared to air. The combined influence of the laser temporal contrast and tight focusing geometry modulates this lead time from femtosecond to picosecond scales. This threshold-governed plasma chronology mechanism provides a new paradigm for controlling laser–material interactions, with direct implications for precision manufacturing of layered composites, depth-resolved optical diagnostics, phase-change material characterization, and 3D material architectures. Full article
(This article belongs to the Special Issue Advances in Nonlinear Optics: From Fundamentals to Applications)
Show Figures

Figure 1

8 pages, 4565 KiB  
Proceeding Paper
Vision Sensing Techniques for TIG Weld Bead Geometry Analysis: A Short Review
by Panneer Selvam Periyasamy, Prabhakaran Sivalingam, Vishwa Priya Vellingiri, Sundaram Maruthachalam and Vinod Balakrishnapillai
Eng. Proc. 2025, 95(1), 5; https://doi.org/10.3390/engproc2025095005 - 30 May 2025
Viewed by 475
Abstract
Automated and robotic welding have become standard practices in manufacturing, requiring precise control to maintain weld quality without relying on skilled welders. In Tungsten Inert Gas (TIG) welding, monitoring the weld pool is crucial for ensuring the necessary weld penetration, which is vital [...] Read more.
Automated and robotic welding have become standard practices in manufacturing, requiring precise control to maintain weld quality without relying on skilled welders. In Tungsten Inert Gas (TIG) welding, monitoring the weld pool is crucial for ensuring the necessary weld penetration, which is vital for maintaining weld integrity. Real-time observation is essential to prevent defects and improve weld quality. Various sensing technologies have been developed to address this need, with vision-based systems showing particular effectiveness in enhancing welding quality and productivity within the framework of Industry 4.0. This review looks at the latest technologies for monitoring weld pools and bead shapes. It covers methods like using Complementary Metal-Oxide Semiconductors (CMOS) to take clear images of the melt pool for better process identification, Active Appearance Model (AAM) to capture 3D images of the weld pool for accurate penetration measurement, and Charge-Coupled Devices (CCD) and Laser-Induced Breakdown Spectroscopy (LIBS) to analyze plasma spectra and create material composition graphs. Full article
Show Figures

Figure 1

14 pages, 2289 KiB  
Article
Propagation Regimes and Signal Enhancement Mechanisms of Collinear Double-Pulse Plasma with Varying Inter-Pulse Delays
by Yang Zhao, Lei Zhang, Zhihui Tian, Xiuqing Zhang, Jiandong Bai and Wangbao Yin
Sensors 2025, 25(11), 3409; https://doi.org/10.3390/s25113409 - 28 May 2025
Viewed by 402
Abstract
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) is an in situ analytical technique. Compared to traditional single-pulse LIBS (SP-LIBS), collinear double-pulse LIBS (DP-LIBS) is a promising technique due to its lower limit of detection for trace elements. In this paper, we analyze the spectral and image information obtained from the emissions emitted by single/double pulse (SP/DP) laser-induced plasmas. The types of laser-supported absorption (LSA) waves of the plasmas were determined according to the interactions among the ablation vapor, the ambient gas, and the laser. Furthermore, the influence mechanisms of plasma shielding on DP-LIBS signal intensity enhancement with different inter-pulse delay were investigated. In our experimental conditions, the propagation regime of SP plasma is a laser-supported combustion (LSC) wave. The DP plasmas with short inter-pulse delays show the characteristics of a laser-supported detonation (LSD) wave, and the enhancement mechanism is mainly reheating for pre-plasma. On the contrary, the DP plasmas with longer inter-pulse delays show the characteristics of a LSC wave, and the increase in laser ablation is a major contributing factor to the signal improvement. In addition, the spectral lines, which are difficult to excite by SP-LIBS, can be obtained by selecting an appropriate inter-pulse delay and setting a short delay, which provides a new idea for the measurement of trace elements. Full article
(This article belongs to the Special Issue Spectral Detection Technology, Sensors and Instruments, 2nd Edition)
Show Figures

Figure 1

23 pages, 5628 KiB  
Article
Optimization of Bond Strength Between Heat-Polymerized PMMA and Contemporary CAD/CAM Framework Materials: A Comparative In Vitro Study
by Başak Topdağı
Polymers 2025, 17(11), 1488; https://doi.org/10.3390/polym17111488 - 27 May 2025
Viewed by 526
Abstract
This study aimed to comparatively evaluate the effects of various surface treatment protocols on the shear bond strength (SBS) between heat-polymerized polymethyl methacrylate (PMMA) and different CAD/CAM framework materials, including cobalt–chromium (Co–Cr) alloys, ceramic particle-reinforced polyetheretherketone (PEEK), and glass fiber-reinforced composite resin (FRC). [...] Read more.
This study aimed to comparatively evaluate the effects of various surface treatment protocols on the shear bond strength (SBS) between heat-polymerized polymethyl methacrylate (PMMA) and different CAD/CAM framework materials, including cobalt–chromium (Co–Cr) alloys, ceramic particle-reinforced polyetheretherketone (PEEK), and glass fiber-reinforced composite resin (FRC). A total of 135 disc-shaped specimens were prepared from Co–Cr, PEEK, and FRC materials. Surface treatments specific to each material, including airborne-particle abrasion, sulfuric acid etching, laser irradiation, plasma activation, and primer application, were applied. PMMA cylinders were polymerized onto the treated surfaces, and all specimens were subjected to 30,000 thermal cycles. SBS values were measured using a universal testing machine, and the failure modes were classified. The normality of data distribution was assessed using the Kolmogorov–Smirnov test, and the homogeneity of variances was evaluated using Levene’s test. Group comparisons were performed using the Kruskal–Wallis test, and Dunn’s post hoc test with Bonferroni correction was applied in cases where significant differences were detected (α = 0.05). The highest SBS values (~27–28 MPa) were obtained in the Co–Cr group and in the PEEK groups treated with sulfuric acid and primer. In contrast, the PEEK group with additional laser treatment exhibited a lower SBS value. The untreated PEEK group showed significantly lower SBS (~3.9 MPa) compared to all other groups. The Trinia groups demonstrated intermediate SBS values (16.5–17.4 MPa), which exceeded the clinically acceptable threshold of 10 MPa. SEM observations revealed material- and protocol-specific surface responses; plasma-treated specimens maintained topographic integrity, whereas laser-induced surfaces showed localized degradation, particularly following dual-step protocols. Fracture mode analysis indicated that higher SBS values were associated with cohesive or mixed failures. SEM observations suggested that plasma treatment preserved surface morphology more effectively than laser treatment. This study highlights the importance of selecting material-specific surface treatments to optimize bonding between CAD/CAM frameworks and PMMA. Sulfuric acid and primer provided strong adhesion for PEEK, while the addition of laser or plasma offered no further benefit, making such steps potentially unnecessary. Trinia frameworks also showed acceptable performance with conventional treatments. These findings reinforce that simplified conditioning protocols may be clinically sufficient, and indicate that FRC materials like Trinia should be more fully considered for their broader clinical potential in modern CAD/CAM-based prosthetic planning. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Figure 1

13 pages, 5706 KiB  
Article
High-Repetition-Rate Targets for Plasma Mirror FROG on Chirped Picosecond Pulses
by Ștefan Popa, Andrei Nazîru, Ana-Maria Lupu, Dan Gh. Matei, Alice Dumitru, Cristian Alexe, Ioan Dăncuş, Claudiu A. Stan and Daniel Ursescu
Photonics 2025, 12(6), 533; https://doi.org/10.3390/photonics12060533 - 24 May 2025
Viewed by 445
Abstract
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used [...] Read more.
High-repetition-rate targets present an opportunity for developing diagnostic tools for on-demand calibration at high-power laser facilities for consistent performance and reproducibility during experimental campaigns. The non-linear change in transmission associated with a laser-driven plasma mirror, based on high-repetition rate targets, has been used in a Frequency Resolved Optical Gating (FROG) configuration to analyze the spectral phase for near-infrared pulses far from the Fourier limit. Three types of targets were compared for characterizing pulses in the 1–8 ps range: a glass slide, a polymer tape, and a thin liquid sheet created by two impinging micrometer-scale jets. The thin liquid film had the best mechanical stability and introduced the least spectral distortion, allowing the most robust reconstruction of the temporal intensity profile. The spectral phase was reconstructed using a non-iterative algorithm, which reproduced the second-order phase distortions induced with an acousto-optic programmable dispersive filter with an RMS error of 6.2%, leading to measured pulse durations with an RMS deviation ranging from 1% for pulses of 6.8–7.8 ps up to 7.5% for pulses around 1 ps. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Lasers and Applications)
Show Figures

Figure 1

25 pages, 4627 KiB  
Article
Laser-Based Characterization and Classification of Functional Alloy Materials (AlCuPbSiSnZn) Using Calibration-Free Laser-Induced Breakdown Spectroscopy and a Laser Ablation Time-of-Flight Mass Spectrometer for Electrotechnical Applications
by Amir Fayyaz, Muhammad Waqas, Kiran Fatima, Kashif Naseem, Haroon Asghar, Rizwan Ahmed, Zeshan Adeel Umar and Muhammad Aslam Baig
Materials 2025, 18(9), 2092; https://doi.org/10.3390/ma18092092 - 2 May 2025
Viewed by 780
Abstract
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of [...] Read more.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn—elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods. Full article
Show Figures

Figure 1

Back to TopTop