Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (736)

Search Parameters:
Keywords = laser power densities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3109 KiB  
Article
Numerical Simulation of Damage Processes in CCD Detectors Induced by Multi-Pulse Nanosecond Laser Irradiation
by Weijing Zhou, Hao Chang, Zhilong Jian, Yingjie Ma, Xiaoyuan Quan and Chenyu Xiao
Sensors 2025, 25(15), 4851; https://doi.org/10.3390/s25154851 (registering DOI) - 7 Aug 2025
Abstract
This paper presents a finite element simulation of thermal damage to a CCD caused by nanosecond multi-pulse laser exposure. The temperature changes in the CCD due to the laser pulses were simulated, and the time evolution of thermal damage was studied. The impacts [...] Read more.
This paper presents a finite element simulation of thermal damage to a CCD caused by nanosecond multi-pulse laser exposure. The temperature changes in the CCD due to the laser pulses were simulated, and the time evolution of thermal damage was studied. The impacts of different laser parameters such as spot radius, pulse width, and repetition frequency on thermal damage were evaluated. The results indicated that the temperature of the CCD increased with each pulse due to cumulative effects, leading to thermal damage. A smaller laser spot size intensified the temperature rise, accelerating the rate at which different layers in the CCD exceeded the relative melting point of each material. In the case of nanosecond pulse width, variations in pulse width had minimal effects on CCD thermal damage when repetition frequency and average power density were constant. Lower repetition frequencies made it easier to cause melting damage to the CCD when pulse width and average power density were constant. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 7119 KiB  
Article
Rapid-Optimized Process Parameters of 1080 Carbon Steel Additively Manufactured via Laser Powder Bed Fusion on High-Throughput Mechanical Property Testing
by Jianyu Feng, Meiling Jiang, Guoliang Huang, Xudong Wu and Ke Huang
Materials 2025, 18(15), 3705; https://doi.org/10.3390/ma18153705 - 6 Aug 2025
Abstract
To ensure the sustainability of alloy-based strategies, both compositional design and processing routes must be simplified. Metal additive manufacturing (AM), with its exceptionally rapid, non-equilibrium solidification, offers a unique platform to produce tailored microstructures in simple alloys that deliver superior mechanical properties. In [...] Read more.
To ensure the sustainability of alloy-based strategies, both compositional design and processing routes must be simplified. Metal additive manufacturing (AM), with its exceptionally rapid, non-equilibrium solidification, offers a unique platform to produce tailored microstructures in simple alloys that deliver superior mechanical properties. In this study, we employ laser powder bed fusion (LPBF) to fabricate 1080 plain carbon steel, a binary alloy comprising only iron and carbon. Deviating from conventional process optimization focusing primarily on density, we optimize LPBF parameters for mechanical performance. We systematically varied key parameters (laser power and scan speed) to produce batches of tensile specimens, which were then evaluated on a high-throughput mechanical testing platform (HTP). Using response surface methodology (RSM), we developed predictive models correlating these parameters with yield strength (YS) and elongation. The RSM models identified optimal and suboptimal parameter sets. Specimens printed under the predicted optimal conditions achieved YS of 1543.5 MPa and elongation of 7.58%, closely matching RSM predictions (1595.3 MPa and 8.32%) with deviations of −3.25% and −8.89% for YS and elongation, respectively, thus validating model accuracy. Comprehensive microstructural characterization, including metallographic analysis and fracture surface examination, revealed the microstructural origins of performance differences and the underlying strengthening mechanisms. This methodology enables rapid evaluation and optimization of LPBF parameters for 1080 carbon steel and can be generalized as an efficient framework for robust LPBF process development. Full article
14 pages, 4016 KiB  
Article
Failure Mechanism of Pre-Stressed CFRP Beam Under Laser Ablation
by Yuting Zhao, Ruokun Zhang and Zhuhua Tan
Polymers 2025, 17(15), 2153; https://doi.org/10.3390/polym17152153 - 6 Aug 2025
Abstract
This paper focuses on the failure mechanism of a pre-stressed CFRP cantilever beam under laser ablation. During testing, a mass was applied to the CFRP cantilever beam to achieve a pre-stressed state, and the laser power densities varied from 500 to 1500 W·cm [...] Read more.
This paper focuses on the failure mechanism of a pre-stressed CFRP cantilever beam under laser ablation. During testing, a mass was applied to the CFRP cantilever beam to achieve a pre-stressed state, and the laser power densities varied from 500 to 1500 W·cm−2. Corresponding scanning electron microscope (SEM) tests were also performed on the ablation zone and fracture surface to analyze the failure mechanism. The results showed that the CFRP beam failed in compression at the bottom surface, which was due to a decrease in local stiffness and strength caused by heat softening, rather than by ablation damage on the top surface. The failure time decreased from 19.64 s to 6.52 s as the power density (500–1500 W·cm−2) and pre-stress loading (300–750 N·cm) increased, indicating that pre-stress loading has a more significant influence on the failure time of CFRP beams compared to power density. Full article
Show Figures

Figure 1

17 pages, 1635 KiB  
Article
Predicting Relative Density of Pure Magnesium Parts Produced by Laser Powder Bed Fusion Using XGBoost
by Kristijan Šket, Snehashis Pal, Janez Gotlih, Mirko Ficko and Igor Drstvenšek
Appl. Sci. 2025, 15(15), 8592; https://doi.org/10.3390/app15158592 (registering DOI) - 2 Aug 2025
Viewed by 149
Abstract
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve [...] Read more.
In this work, Laser Powder Bed Fusion (LPBF), an additive manufacturing (AM) process, was optimised to produce pure magnesium components. The focus of the presented work is on the prediction of the relative product density using the machine learning model XGBoost to improve the production process and thus the usability of the material for practical use. Experimental tests with different parameters, laser power, scanning speed and layer thickness, and fixed parameters, track overlapping and hatching distance, were analysed and resulted in relative material densities between 89.29% and 99.975%. The XGBoost model showed high predictive power, achieving an R2 test result of 0.835, a mean absolute error (MAE) of 0.728 and a root mean square error (RMSE) of 0.982. Feature importance analysis showed that the interaction of laser power and scanning speed had the largest influence on the predictions at 35.9%, followed by laser power × layer thickness at 29.0%. The individual contributions were laser power (11.8%), scanning speed (10.7%), scanning speed × layer thickness (9.0%) and layer thickness (3.6%). These results provide a data-based method for LPBF parameter settings that improve manufacturing efficiency and component performance in the aerospace, automotive and biomedical industries and identify optimal parameter regions for a high density, serving as a pre-optimisation stage. Full article
Show Figures

Figure 1

20 pages, 1890 KiB  
Review
Laser Surface Hardening of Carburized Steels: A Review of Process Parameters and Application in Gear Manufacturing
by Janusz Kluczyński, Katarzyna Jasik, Jakub Łuszczek and Jakub Pokropek
Materials 2025, 18(15), 3623; https://doi.org/10.3390/ma18153623 - 1 Aug 2025
Viewed by 243
Abstract
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion [...] Read more.
This article provides a comprehensive overview of recent studies concerning laser heat treatment (LHT) of structural and tool steels, with particular attention to the 21NiCrMo2 steel used for carburized gear wheels. Analysis includes the influence of critical laser processing conditions—including power output, motion speed, spot size, and focusing distance—on surface microhardness, hardening depth, and microstructure development. The findings indicate that the energy density is the dominant factor that affects the outcomes of LHT. Optimal results, in the form of a high surface microhardness and a sufficient depth of hardening, were achieved within the energy density range of 80–130 J/mm2, allowing for martensitic transformation while avoiding defects such as melting or cracking. At densities below 50 J/mm2, incomplete hardening occurred with minimal microhardness improvement. On the contrary, densities exceeding 150–180 J/mm2 caused surface overheating and degradation. For carburized 21NiCrMo2 steel, the most effective parameters included 450–1050 W laser power, 1.7–2.5 mm/s scanning speed, and 2.0–2.3 mm beam diameter. The review confirms that process control through energy-based parameters allows for reliable prediction and optimization of LHT for industrial applications, particularly in components exposed to cyclic loads. Full article
(This article belongs to the Special Issue Advanced Machining and Technologies in Materials Science)
Show Figures

Figure 1

36 pages, 17913 KiB  
Article
Manufacturing, Microstructure, and Mechanics of 316L SS Biomaterials by Laser Powder Bed Fusion
by Zhizhou Zhang, Paul Mativenga and Shi-Qing Huang
J. Funct. Biomater. 2025, 16(8), 280; https://doi.org/10.3390/jfb16080280 - 31 Jul 2025
Viewed by 267
Abstract
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely [...] Read more.
Laser powder bed fusion (LPBF) is an advanced additive manufacturing technology that is gaining increasing interest for biomedical implants because it can produce dense, patient-specific metallic components with controlled microstructures. This study investigated the LPBF fabrication of 316L stainless steel, which is widely used in orthopedic and dental implants, and examined the effects of laser power and scanning speed on the microstructure and mechanical properties relevant to biomedical applications. The study achieved 99.97% density and refined columnar and cellular austenitic grains, with optimized molten pool morphology. The optimal LPBF parameters, 190 W laser power and 700 mm/s, produced a tensile strength of 762.83 MPa and hardness of 253.07 HV0.2, which exceeded the values of conventional cast 316L stainless steel. These results demonstrated the potential of optimized LPBF 316L stainless steel for functional biomedical applications that require high mechanical integrity and biocompatibility. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

18 pages, 5843 KiB  
Article
Microstructure Evolution in Homogenization Heat Treatment of Inconel 718 Manufactured by Laser Powder Bed Fusion
by Fang Zhang, Yifu Shen and Haiou Yang
Metals 2025, 15(8), 859; https://doi.org/10.3390/met15080859 (registering DOI) - 31 Jul 2025
Viewed by 134
Abstract
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain [...] Read more.
This study systematically investigates the homogenization-induced Laves phase dissolution kinetics and recrystallization mechanisms in laser powder bed fusion (L-PBF) processed IN718 superalloy. The as-built material exhibits a characteristic fine dendritic microstructure with interdendritic Laves phase segregation and high dislocation density, featuring directional sub-grain boundaries aligned with the build direction. Laves phase dissolution demonstrates dual-stage kinetics: initial rapid dissolution (0–15 min) governed by bulk atomic diffusion, followed by interface reaction-controlled deceleration (15–60 min) after 1 h at 1150 °C. Complete dissolution of the Laves phase is achieved after 3.7 h at 1150 °C. Recrystallization initiates preferentially at serrated grain boundaries through boundary bulging mechanisms, driven by localized orientation gradients and stored energy differentials. Grain growth kinetics obey a fourth-power time dependence, confirming Ostwald ripening-controlled boundary migration via grain boundary diffusion. Such a study is expected to be helpful in understanding the microstructural development of L-PBF-built IN718 under heat treatments. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

22 pages, 3461 KiB  
Article
Evaluation of the Impact of the LPBF Manufacturing Conditions on Microstructure and Corrosion Behaviour in 3.5 wt.% NaCl of the WE43 Magnesium Alloy
by Jorge de la Pezuela, Sara Sánchez-Gil, Juan Pablo Fernández-Hernán, Alena Michalcova, Pilar Rodrigo, Maria Dolores López, Belén Torres and Joaquín Rams
Materials 2025, 18(15), 3613; https://doi.org/10.3390/ma18153613 - 31 Jul 2025
Viewed by 155
Abstract
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density [...] Read more.
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density of 99.9% was achieved for 300 W and 800 mm/s, showing that the use of high laser power is not a limitation for the manufacturing of Mg alloys, as has been usually considered. Microstructural characterisation revealed refined grains and the presence of RE-rich intermetallic particles, while microhardness increased with height due to thermal gradients. Electrochemical testing in 3.5 wt.% NaCl solution, a more aggressive media than those already used, indicated that the corrosion of samples with density values below 99% is conditioned by the porosity; however, above this value, in the WE43, the corrosion evolution is more related to the microstructure of the samples, according to electrochemical evaluation. This study demonstrates the viability of high-energy LPBF processing for WE43, offering optimised mechanical and corrosion properties for biomedical and structural applications. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

10 pages, 2570 KiB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 (registering DOI) - 31 Jul 2025
Viewed by 439
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

7 pages, 202 KiB  
Article
Morphological Features in Eyes with Prominent Corneal Endothelial Cell Loss Associated with Primary Angle-Closure Disease
by Yumi Kusumi, Masashi Yamamoto, Masaki Fukui and Masakazu Yamada
J. Clin. Med. 2025, 14(15), 5364; https://doi.org/10.3390/jcm14155364 - 29 Jul 2025
Viewed by 275
Abstract
Background: Patients with primary angle-closure disease (PACD), those with no history of acute angle-closure glaucoma or laser iridotomy, rarely present with prominent corneal endothelial cell density (CECD) loss. To identify factors associated with decreased CECD in PACD, anterior segment parameters were compared in [...] Read more.
Background: Patients with primary angle-closure disease (PACD), those with no history of acute angle-closure glaucoma or laser iridotomy, rarely present with prominent corneal endothelial cell density (CECD) loss. To identify factors associated with decreased CECD in PACD, anterior segment parameters were compared in patients with PACD and normal CECD and patients with PACD and decreased CECD, using anterior segment optical coherence tomography (AS-OCT). Patients and Methods: Ten patients with PACD and CECD of less than 1500/mm2 without a history of cataract surgery, acute angle-closure glaucoma, or prior laser glaucoma procedures were identified at the Kyorin Eye Center from January 2018 to July 2023. Patients with an obvious corneal guttata or apparent corneal edema were also excluded. Seventeen patients with PACD and normal CECD (normal CECD group) were used as the control. Simultaneous biometry of all anterior segment structures, including the cornea, anterior chamber, and iris, were assessed using a swept-source AS-OCT system. Results: Corneal curvature radius was significantly larger in the decreased CECD group compared with the corneal refractive power in the normal CECD group (p = 0.022, Mann–Whitney test). However, no significant differences were detected in other anterior segment morphology parameters. Multiple regression analysis with CECD as the dependent variable revealed that a large corneal curvature radius was a significant explanatory variable associated with corneal endothelial loss. Conclusions: Flattened corneal curvature may be a risk factor for corneal endothelial loss in patients with PACD. Full article
(This article belongs to the Special Issue Advances in Anterior Segment Surgery: Second Edition)
13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Viewed by 421
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

19 pages, 9988 KiB  
Article
Research on Modification Technology of Laser Cladding Stellite6/Cu Composite Coating on the Surface of 316L Stainless Steel Plow Teeth
by Wenhua Wang, Qilang He, Wenqing Shi and Weina Wu
Micromachines 2025, 16(7), 827; https://doi.org/10.3390/mi16070827 - 20 Jul 2025
Viewed by 318
Abstract
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite [...] Read more.
Plow loosening machines are essential agricultural machinery in the agricultural production process. Improving the surface strengthening process and extending the working life of the plow teeth of the plow loosening machine are of great significance. In this paper, the preparation of Stellite6/Cu composite coating on the surface of 316L steel substrate intended for strengthening the plow teeth of a plow loosening machine using laser cladding technology was studied. The influence of different laser process parameters on the microstructure and properties of Stellite6/Cu composite coating was investigated. The composite coating powder was composed of Stellite6 powder with a different weight percent of copper. Microstructural analysis, phase composition, elemental distribution, microhardness, wear resistance, and corrosion resistance of the composite coatings on the plow teeth were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), microhardness testing, energy dispersive spectroscopy (EDS), friction and wear testing, and electrochemical workstation measurements. The results showed that (1) When the laser power was 1000 W, the average hardness of the prepared Stellite6/Cu composite layer achieved the highest hardness, approximately 1.36 times higher than the average hardness of the substrate, and the composite coating prepared exhibited the best wear resistance; (2) When the scanning speed was 800 mm/min, the composite coating exhibited the lowest average friction coefficient and the optimal corrosion resistance in a 3.5% wt.% NaCl solution with a self-corrosion current density of −7.55 µA/cm2; (3) When the copper content was 1 wt.%, the composite coating achieved the highest average hardness with 515.2 HV, the lowest average friction coefficient with 0.424, and the best corrosion resistance with a current density of −8.878 µA/cm2. Full article
Show Figures

Figure 1

14 pages, 3233 KiB  
Article
Influence of Printing Parameters on Microstructure and Mechanical Properties of EOS NickelAlloy HX Produced via Laser Powder Bed Fusion
by Piotr Maj, Konstanty Jonak, Rafał Molak, Ryszard Sitek and Jarosław Mizera
Appl. Sci. 2025, 15(14), 8011; https://doi.org/10.3390/app15148011 - 18 Jul 2025
Viewed by 290
Abstract
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3 [...] Read more.
The research investigated the influence of laser powder bed fusion (LPBF) parameters for NickelAlloy HX, a nickel-based superalloy, to achieve high-density components with superior mechanical properties. A systematic approach was employed, involving printing 40 cylindrical specimens with varying energy densities (50–240 J/mm3) to evaluate porosity, hardness, and anisotropy. Results revealed that energy density significantly influences relative density, with optimal parameters identified at 111 J/mm3 (900 mm/s scan speed, 120 W laser power). Microstructural examination revealed columnar grains aligned with the build direction in as-printed samples. The findings highlight the trade-offs between density, hardness, and microstructure in the additive manufacturing of nickel-based superalloys, providing actionable insights for industrial applications requiring specific property profiles. Full article
(This article belongs to the Special Issue The Applications of Laser-Based Manufacturing for Material Science)
Show Figures

Figure 1

17 pages, 5457 KiB  
Article
Multiphysics Modeling of Heat Transfer and Melt Pool Thermo-Fluid Dynamics in Laser-Based Powder Bed Fusion of Metals
by Tingzhong Zhang, Xijian Lin, Yanwen Qin, Dehua Zhu, Jing Wang, Chengguang Zhang and Yuchao Bai
Materials 2025, 18(13), 3183; https://doi.org/10.3390/ma18133183 - 5 Jul 2025
Viewed by 399
Abstract
Laser-based powder bed fusion of metals (PBF-LB/M) is one of the most promising additive manufacturing technologies to fabricate complex-structured metal parts. However, its corresponding applications have been limited by technical bottlenecks and increasingly strict industrial requirements. Process optimization, a scientific issue, urgently needs [...] Read more.
Laser-based powder bed fusion of metals (PBF-LB/M) is one of the most promising additive manufacturing technologies to fabricate complex-structured metal parts. However, its corresponding applications have been limited by technical bottlenecks and increasingly strict industrial requirements. Process optimization, a scientific issue, urgently needs to be solved. In this paper, a three-phase transient model based on the level-set method is established to examine the heat transfer and melt pool behavior in PBF-LB/M. Surface tension, the Marangoni effect, and recoil pressure are implemented in the model, and evaporation-induced mass and thermal loss are fully considered in the computing element. The results show that the surface roughness and density of metal parts induced by heat transfer and melt pool behavior are closely related to process parameters such as laser power, layer thickness, scanning speed, etc. When the volumetric energy density is low, the insufficient fusion of metal particles leads to pore defects. When the line energy density is high, the melt track is smooth with low porosity, resulting in the high density of the products. Additionally, the partial melting of powder particles at the beginning and end of the melting track usually contributes to pore formation. These findings provide valuable insights for improving the quality and reliability of metal additive manufacturing. Full article
(This article belongs to the Special Issue Latest Developments in Advanced Machining Technologies for Materials)
Show Figures

Figure 1

18 pages, 2891 KiB  
Article
Size Effects on Process-Induced Porosity in Ti6Al4V Thin Struts Additively Manufactured by Laser Powder-Bed Fusion
by Nismath Valiyakath Vadakkan Habeeb and Kevin Chou
J. Manuf. Mater. Process. 2025, 9(7), 226; https://doi.org/10.3390/jmmp9070226 - 2 Jul 2025
Viewed by 626
Abstract
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan [...] Read more.
Laser powder-bed fusion (L-PBF) additive manufacturing has been widely explored for fabricating intricate metallic parts such as lattice structures with thin struts. However, L-PBF-fabricated small parts (e.g., thin struts) exhibit different morphological and mechanical characteristics compared to bulk-sized parts due to distinct scan lengths, affecting the melt pool behavior between transient and quasi-steady states. This study investigates the keyhole porosity in Ti6Al4V thin struts fabricated by L-PBF, incorporating a range of strut sizes, along with various levels of linear energy densities. Micro-scaled computed tomography and image analysis were employed for porosity measurements and evaluations. Generally, keyhole porosity lessens with decreasing energy density, though with varying patterns across a higher energy density range. Keyhole porosity in struts predictably becomes severe at high laser powers and/or low scan speeds. However, a major finding reveals that the porosity is reduced with decreasing strut size (if less than 1.25 mm diameter), plausibly because the keyhole formed has not reached a stable state to produce pores in a permanent way. This implies that a higher linear energy density, greater than commonly formulated in making bulk components, could be utilized in making small-scale features to ensure not only full melting but also minimum keyhole porosity. Full article
Show Figures

Figure 1

Back to TopTop