Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = larval mortality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 615 KiB  
Article
Bioactive Compounds, Ruminal Fermentation, and Anthelmintic Activity of Specialty Coffee and Spent Coffee Grounds In Vitro
by Matej Leško, Daniel Petrič, Matúš Várady, Pola Sidoruk, Robert Mikula, Sylwester Ślusarczyk, Paweł Edward Hodurek, Michaela Komáromyová, Michal Babják, Marián Várady, Amlan Kumar Patra, Adam Cieslak and Zora Váradyová
Agriculture 2025, 15(14), 1515; https://doi.org/10.3390/agriculture15141515 - 14 Jul 2025
Viewed by 370
Abstract
We quantified the bioactive compounds of Ethiopian coffee (ETH), spent coffee grounds SCGs from ETH (SCG-ETH), and mixed SCGs (SCG-MIX) prepared by filtration methods and investigated the effect of SCG-ETH on ruminal fermentation as well as the anthelmintic activity of ETH. Three substrates, [...] Read more.
We quantified the bioactive compounds of Ethiopian coffee (ETH), spent coffee grounds SCGs from ETH (SCG-ETH), and mixed SCGs (SCG-MIX) prepared by filtration methods and investigated the effect of SCG-ETH on ruminal fermentation as well as the anthelmintic activity of ETH. Three substrates, meadow hay (MH)-barley grain (MH-BG), MH-SCG-ETH, and BG-SCG-ETH (1:1 w/w), were fermented using an in vitro gas production technique. The bioactive compounds were quantitatively analyzed using ultra-high-resolution mass spectrometry. We performed an in vitro larval development test to determine the anthelmintic effect of an aqueous extract of ETH against the gastrointestinal nematode (GIN) Haemonchus contortus. The total content of bioactive compounds was highest in SCG-ETH, followed by SCG-MIX and ETH (35.2, 31.2, and 20.9 mg/g dry matter, respectively). Total gas and methane production (p < 0.001) were decreased by both MH-SCG-ETH and BG-SCG-ETH. The in vitro digestibility of dry matter was higher for MH-SCG-ETH and BG-SCG-ETH than for MH-BG. The aqueous ETH extract exhibited a strong larvicidal effect, with a mean lethal dose of 13.2 mg/mL for 50% mortality and 31.9 mg/L for 99% mortality. SCG substrates have the potential to modulate ruminal fermentation and serve as a source of anthelmintic bioactive compounds against GINs in ruminants. Full article
(This article belongs to the Special Issue Utilizing Novel and Alternative Sources of Feed for Animal Production)
Show Figures

Figure 1

16 pages, 2623 KiB  
Article
Grapevine Responses to the Entomopathogenic Fungi Beauveria bassiana and Isaria fumosorosea and the Effects of Salicylic Acid on Their Virulence Against the European Grapevine Moth, Lobesia botrana
by Evangelos Beris, Xenophon Venios, Dimitrios Papachristos, Mathilde Ponchon, Dimitrios Kontodimas, Elias Korkas, Georgios Banilas and Annette Reineke
Microorganisms 2025, 13(7), 1630; https://doi.org/10.3390/microorganisms13071630 - 10 Jul 2025
Viewed by 416
Abstract
Entomopathogenic fungi (EPF) are substantial biocontrol agents reducing the populations of economically important pests in numerous crops. Recent findings indicate that their role in agroecosystems is more complex and extends to affecting plant physiology and growth. This study examined the effects of Beauveria [...] Read more.
Entomopathogenic fungi (EPF) are substantial biocontrol agents reducing the populations of economically important pests in numerous crops. Recent findings indicate that their role in agroecosystems is more complex and extends to affecting plant physiology and growth. This study examined the effects of Beauveria bassiana and Isaria fumosorosea, as well as Salicylic acid (SA), on physiological parameters of grapevine (Vitis vinifera cv. Sauvignon Blanc). Additionally, the impact of SA on spore germination and pathogenicity of EPF against larvae of the European grapevine moth (Lobesia botrana) was tested. Foliar application of EPF was found to increase the electron transport rate (ETR) from PSII to PSI, indicating higher photosynthetic activity compared to control plants. EPF also elevated the transpiration rate (E) and stomatal conductance (gs). In contrast, SA treatments decreased E and gs, while the high dose (10 mM) exhibited reduced Fv/Fm value, accompanied by phytotoxic spots on leaves. Spore germination of both fungi was significantly reduced only by the SA concentration of 2 mM, while 0.5 and 1 mM did not affect germination. Combination EPF and SA treatments presented the highest larval mortality of L. botrana (87.5% at 28 °C and 77.5% at 24 °C for B. bassiana and I. fumosorosea, respectively). However, SA reduced larval mycosis in most cases. Overall, the results suggest that EPF and SA can be co-applied and included in vineyard integrated strategies to support grapevine health. Full article
(This article belongs to the Special Issue Microbiology of the Grape-Wine System)
Show Figures

Figure 1

13 pages, 1328 KiB  
Article
Biocontrol of Fall Armyworm Larvae by Selected Mexican Metarhizium rileyi Isolates Under Greenhouse and Small-Scale Field Conditions in Maize
by Yordanys Ramos, Samuel Pineda-Guillermo, Patricia Tamez-Guerra, Javier Francisco Valle-Mora, José Isaac Figueroa-de la Rosa, Selene Ramos-Ortiz, Luis Jesús Palma-Castillo and Ana Mabel Martínez-Castillo
Insects 2025, 16(7), 706; https://doi.org/10.3390/insects16070706 - 9 Jul 2025
Viewed by 448
Abstract
The efficacy of two selected Metarhizium rileyi Mexican isolates (T9-21 and L8-22) against Spodoptera frugiperda was evaluated under greenhouse conditions. To this end, a suspension (1 × 108 conidia/mL) of these isolates was sprayed on maize plants previously infested with six second-instar [...] Read more.
The efficacy of two selected Metarhizium rileyi Mexican isolates (T9-21 and L8-22) against Spodoptera frugiperda was evaluated under greenhouse conditions. To this end, a suspension (1 × 108 conidia/mL) of these isolates was sprayed on maize plants previously infested with six second-instar larvae. No significant differences were observed between the survival curves of the T9-21 and L8-22 isolates. Cadaver sporulation was significantly higher, and the lethal time was significantly lower with the T9-21 isolate compared with those of the L8-22 isolate (97% and 8 days vs. 70% and 10 days, respectively). Based on these results, a small-scale field trial on maize was performed to evaluate the degree of pest control achieved by the T9-21 isolate and compare it with the insecticide spinetoram, applied at a rate of 1 × 1013 conidia/ha and 75 mL/ha, respectively. No significant differences were observed in the proportion of larval mortality between the T9-21 isolate (0.49) and spinetoram (0.72). However, spinetoram significantly reduced natural enemies and phytophagous insect populations compared with the fungus and the control. In conclusion, M. rileyi T9-21 isolate could be a promising alternative for the control of S. frugiperda larvae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1888 KiB  
Article
Corn Oil Supplementation Enhances Locomotor Performance and Mitochondrial Function in Drosophila melanogaster
by Jadyellen Rondon Silva, Thiago Henrique Oliveira Alves, Eric Bruno Silva Santos, Marylu Mardegan Lima, Giulia Covolo Spegiorim, Carlos Antônio Couto-Lima, Luciane Carla Alberici, Marcos José Jacinto and Anderson Oliveira Souza
Appl. Sci. 2025, 15(13), 7607; https://doi.org/10.3390/app15137607 - 7 Jul 2025
Viewed by 359
Abstract
Polyunsaturated fatty acids are vital for brain health, supporting cognitive development and helping to prevent neurodegenerative diseases. Since the body cannot produce them, they must be obtained through food. This study aimed to assess the effects of corn oil on the behavior and [...] Read more.
Polyunsaturated fatty acids are vital for brain health, supporting cognitive development and helping to prevent neurodegenerative diseases. Since the body cannot produce them, they must be obtained through food. This study aimed to assess the effects of corn oil on the behavior and biochemical parameters of Drosophila melanogaster. The flies were fed a diet supplemented with different concentrations of corn oil from the larval stage until the fifth day of adulthood. A diet containing corn oil (37.8 mg/mL of linoleic acid) reduced mortality under starvation conditions and enhanced locomotor performance (p < 0.01). Biochemical analyses revealed increased levels of glutathione (p < 0.001), citrate synthase activity (p < 0.05), and mitochondrial phosphorylation (p < 0.05), indicating a potential boost in energy metabolism. Conversely, a decrease in acetylcholinesterase activity (p < 0.05) was observed, suggesting cholinergic modulation. These results demonstrate that corn oil supplementation supports neural health in this animal model, opening pathways for further research into non-pharmacological treatments for neurodegenerative diseases such as Alzheimer’s disease. Full article
Show Figures

Figure 1

12 pages, 243 KiB  
Article
Acaricidal Efficacy of Diatomaceous Earths on Different Life Stages of Acarus siro L. and Tyrophagus putrescentiae (Schrank)
by Maria C. Boukouvala, Constantin S. Filintas and Nickolas G. Kavallieratos
Insects 2025, 16(7), 693; https://doi.org/10.3390/insects16070693 - 4 Jul 2025
Viewed by 496
Abstract
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against [...] Read more.
Acarus siro L. and Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) are cosmopolitan mite species in food storage and processing environments, infesting a wide variety of commodities. In the current study, the diatomaceous earths (DEs) InsectoSec and Fossil Shield were evaluated for wheat protection against adults, larvae, and nymphs of A. siro and T. putrescentiae. Both DEs were examined at 200 and 500 ppm at 1, 2, and 5 days post-exposure. The efficacy of both formulations against A. siro and T. putrescentiae life stages depended on dose and exposure. Mortality of A. siro reached 100% in larvae, 99.3% in nymphs, and 95.6% in adults by day 5 at 500 ppm of InsectoSec. Similarly, Fossil Shield achieved almost complete larval mortality (99.3%) of A. siro at 500 ppm. For T. putrescentiae, 100% mortality was observed for larvae at both doses of InsectoSec and for adults or nymphs at 500 ppm by the fifth day. Fossil Shield caused a similar mortality to larvae, reaching 97.0% and 100%, at 200 and 500 ppm, respectively, after 5 days. Our findings indicate that InsectoSec and Fossil Shield can be used as sustainable management tools against A. siro and T. putrescentiae. Full article
(This article belongs to the Special Issue Advances in the Effects of Insecticides on Pests)
13 pages, 1283 KiB  
Article
Susceptibility of Spodoptera frugiperda to Commercial Entomopathogenic Fungi Formulations in South Africa
by Simoné Louw, Vongai M. Paradza, Johnnie van den Berg and Hannalene du Plessis
Insects 2025, 16(7), 656; https://doi.org/10.3390/insects16070656 - 24 Jun 2025
Viewed by 654
Abstract
Chemical control using synthetic insecticides is the most widely used method for controlling the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Sub-Saharan Africa (SSA). However, the application of insecticides is not a long-term or sustainable solution. Biological control is an [...] Read more.
Chemical control using synthetic insecticides is the most widely used method for controlling the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Sub-Saharan Africa (SSA). However, the application of insecticides is not a long-term or sustainable solution. Biological control is an important pillar of integrated pest management, and entomopathogenic fungi (EPFs) are becoming increasingly important as biocontrol agents. However, no EPF biopesticides have been registered in South Africa for the control of S. frugiperda. Few studies have been conducted on the efficacy of commercial formulations of biopesticides against all S. frugiperda life stages. The objective of this study was, therefore, to assess the potential of two Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae) and two Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) based commercial biopesticides registered in South Africa against other pests, for their efficacy against S. frugiperda. The effects of these EPF formulations were evaluated on larval and prepupal mortality, moth emergence, fecundity, and longevity of the emerged moths. The results indicated that S. frugiperda second- and sixth-instar larvae were not susceptible to the biopesticides. Moth emergence, fecundity, and longevity were not significantly affected. However, prepupae were susceptible to both Metarhizium formulations, with Metarhizium anisopliae ICIPE 78 resulting in the highest mortality (56.7%). This biopesticide holds potential for the management of S. frugiperda when applied to the soil for the control of pupating larvae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

16 pages, 1963 KiB  
Article
Characterization and Functional Analysis of Small Heat Shock Protein Genes (Hsp22.2 and Hsp26.7) in Sitodiplosis mosellana Diapause
by Qitong Huang, Qian Ma, Xiaobin Liu, Keyan Zhu-Salzman and Weining Cheng
Insects 2025, 16(7), 649; https://doi.org/10.3390/insects16070649 - 20 Jun 2025
Viewed by 572
Abstract
Small heat shock proteins (sHsps) play crucial roles in organismal adaptation to stress tolerance. Sitodiplosis mosellana, a devastating insect wheat pest, undergoes long obligatory larval diapause to survive temperature extremes during summer and winter. To elucidate the function of sHsps in this [...] Read more.
Small heat shock proteins (sHsps) play crucial roles in organismal adaptation to stress tolerance. Sitodiplosis mosellana, a devastating insect wheat pest, undergoes long obligatory larval diapause to survive temperature extremes during summer and winter. To elucidate the function of sHsps in this process, two sHsp-encoding genes (SmHsp22.2 and SmHsp26.7) were characterized from S. mosellana, and their responsiveness to diapause and thermal stress, as well as their roles in cold stress, was analyzed. Both SmHsp22.2 and SmHsp26.7 possessed the canonical α-crystallin domain and lacked introns. Quantitative PCR indicated significant upregulation of SmHsp22.2 and SmHsp26.7 during diapause, especially in summer and winter. Notably, SmHsp22.2 exhibited higher expression in summer relative to winter, whereas SmHsp26.7 showed the opposite profile. Moreover, short-term heat shock (≥35 °C) in over-summering larvae or cold shock (≤−10 °C) in over-wintering larvae was found to trigger transcriptional upregulation of both genes, while prolonged temperature extremes (i.e., 45–50 °C or −15 °C) did not elicit a comparable response. RNA interference-mediated knockdown of both genes significantly increased the mortality of S. mosellana larvae under cold stress. These findings indicate the importance of both SmHsps in diapause and environmental adaptation in S. mosellana. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Graphical abstract

22 pages, 27621 KiB  
Article
Exploration of the Effects of Different Beauveria bassiana Strains on Dioryctria sylvestrella Larvae from the Perspective of Oxidative Stress
by Ruting Chen, Meiling Wang, Hanwen Zhang, Jianjiao Xu, Xiaomei Wang, Defu Chi and Jia Yu
Insects 2025, 16(6), 640; https://doi.org/10.3390/insects16060640 - 18 Jun 2025
Viewed by 618
Abstract
(1) Background: The larvae of Dioryctria sylvestrella typically bore into the shoots and cones of Pinus koraiensis, increasing tree breakage risk and reducing cone yield. (2) Methods: Five Beauveria bassiana strains were evaluated for virulence against fourth-instar larvae. And the levels of [...] Read more.
(1) Background: The larvae of Dioryctria sylvestrella typically bore into the shoots and cones of Pinus koraiensis, increasing tree breakage risk and reducing cone yield. (2) Methods: Five Beauveria bassiana strains were evaluated for virulence against fourth-instar larvae. And the levels of T-AOC and MDA in the larvae infected by each strain were measured. To assess larval responses to different strains, we measured the activities of six enzymes (SOD, CAT, POD, PPO, CarE, GST) and the levels of GSH and H2O2 in larvae treated with each strain. Additionally, the infection process of highly pathogenic B. bassiana in larvae was explored using scanning electron microscopy (SEM). (3) Results: Strain CGMCC3.2055 demonstrated the highest toxicity to larvae, achieving a cumulative corrected mortality of 80.56% on the 4th day and an LT50 of 3.248 days. The T-AOC of larvae treated with strain CGMCC3.2055 was inhibited within 48 h. The relative MDA content in this group was significantly higher than that in other strain-treated groups at 6, 12, and 24 h. In Bb01-treated larvae, H2O2 accumulation at 6 and 24 h post-infection was influenced by POD activity rather than GSH levels; in BbZ1-treated larvae, the activities of CAT and POD were upregulated at 6 and 36 h, while the activity of SOD was downregulated, but the content of H2O2 increased significantly, resulting in accumulation; in CFCC81428-treated larvae, a decline in T-AOC coincided with substantial H2O2 accumulation over 48 h, while a concomitant increase in GSH content bolstered tolerance to lethal oxidative damage; in CGMCC3.2055-treated larvae, H2O2 only accumulated significantly at 24 and 48 h, yet upregulated CAT and POD were insufficient to effectively scavenge the excess H2O2; and in bio-21738-treated larvae, SOD-driven dismutation generated substantial H2O2 from 12 to 48 h, leading to pronounced accumulation from 6 to 48 h, yet limited upregulation of POD (only at 6 and 12 h) and CAT (only at 12 and 48 h) were insufficient to mitigate H2O2 buildup. PPO activity was upregulated within 48 h in all treatment groups except for BbZ1, where no upregulation was observed at 12 and 48 h. GST activity was upregulated in all treatment groups except for CGMCC3.2055, where a downregulation was observed at 12 h post-infection. CarE activity was significantly upregulated within 48 h in both CFCC81428 and CGMCC3.2055 groups; in the Bb01 group, CarE was upregulated only at 6 and 48 h; in the BbZ1 group, CarE was downregulated only at 48 h; and in the bio-21738 group, CarE showed no upregulation at 24 and 48 h. Through SEM, the infection process of the strain CGMCC3.2055 on the surface of the larvae was further determined, which mainly included adhesion, the appearance of bud-like protrusions, the growth of germ tubes along the epidermis and penetration of the epidermis, as well as the colonization of the strain and its emergence from the surface of the larvae. (4) Conclusions: This study first screened the highly pathogenic B. bassiana strain CGMCC3.2055 by evaluating its virulence to larvae and post-infection T-AOC and MDA levels. It also clarified the strain’s infection process and the larvae’s immune responses to various strains. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

13 pages, 2585 KiB  
Article
Chitosan Combined with Methanolic Plants Extracts: Antifungal Activity, Phytotoxicity and Acute Toxicity
by Sofía de Gante-de la Maza, Maribel Plascencia-Jatomea, Mario Onofre Cortez-Rocha, Reyna Isabel Sánchez-Mariñez, Salvador Enrique Meneses-Sagrero, Alma Carolina Gálvez-Iriqui and Ana Karenth López-Meneses
Polysaccharides 2025, 6(2), 52; https://doi.org/10.3390/polysaccharides6020052 - 18 Jun 2025
Viewed by 1843
Abstract
Anthracnose is a disease caused by phytopathogenic fungi such as Colletotrichum siamense that attacks plants and fruits causing great postharvest losses. Different alternatives for the control of this fungus have been studied. In the present study, we evaluated the in vitro antifungal activity [...] Read more.
Anthracnose is a disease caused by phytopathogenic fungi such as Colletotrichum siamense that attacks plants and fruits causing great postharvest losses. Different alternatives for the control of this fungus have been studied. In the present study, we evaluated the in vitro antifungal activity of the methanolic extracts of Baccharis glutinosa (ExB) and Jacquinia macrocarpa (ExJ) individually, as well as in combination with chitosan (CS), along with their toxicity in different models. Using the radial growth technique, it was observed that the mycelial development of C. siamense was altered and reduced during exposure to the different treatments evaluated during the first hours of incubation, indicating a fungistatic effect. While the cell viability, by colorimetric assay using the XTT salt, showed alteration since the chitosan reduced proliferation by 50%, while the plant extracts and their mixtures with chitosan reduced approximately 40% indicating cell damage, which was confirmed by fluorescence microscopy. In addition, toxicity tests demonstrated that the J. macrocarpa extract significantly affected the germination percentage of Lactuca sativa seeds, whereas radicle length was reduced in all treatments except for chitosan. The larval survival test for Artemia salina with the extracts indicated their potential toxicity by causing up to 60% mortality. The results indicate that ExB and ExJ mixed with CS are a good option for controlling C. siamense; however, at the concentrations used, they exhibit a toxic effect on the evaluated models. Full article
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
by Isabella Maria Pompeu Monteiro Padial, Silvana Aparecida de Souza, Claudia Andrea Lima Cardoso, Juliana Rosa Carrijo Mauad, Anelise Samara Nazari Formagio and Rosilda Mara Mussury
Agronomy 2025, 15(6), 1464; https://doi.org/10.3390/agronomy15061464 - 16 Jun 2025
Viewed by 445
Abstract
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. [...] Read more.
The growing demand for sustainable phytosanitary products has renewed interest in botanical insecticides as viable pest control tools. Amid rising demand for sustainable crop protection, this study screens Cerrado plants traditionally used in medicine to pinpoint bioactive compounds that could replace synthetic pesticides. These products have complex chemical compositions, with compounds acting synergistically through multiple mechanisms, including oral (ingestion of allelochemicals) and topical (contact of allelochemicals on epidermis) toxicity. This study evaluated the oral and topical toxicity of aqueous leaf extracts from Anemopaegma arvense (AEAa), Coussarea hydrangeifolia (AECh), Tapirira guianensis (AETg), and Duguetia furfuracea (AEDf) on Plutella xylostella. In the oral toxicity test, first-instar larvae were fed treated diets until pupation, with biological parameters monitored until adulthood. The extracts caused an average of 45% larval mortality, reduced pupal duration, and lowered egg production. In the topical toxicity test, only the extract from T. guianensis showed significant effect (p = 0.0171), causing 30% mortality in third-instar larvae. The other extracts showed no significant topical toxicity, and AECh showed no lethal or sublethal effects at all. Phytochemical screening was assessed by quantitative spectrophotometric assays, and semi-quantitative classical colorimetric tests. Major compound classes identified were tannins, flavonoids, triterpenoids, coumarins, and alkaloids. These findings highlight the potential of the evaluated plant extracts for pest control, particularly via ingestion, while also underscoring the need for further studies to better understand their efficacy and mechanisms of action. Full article
Show Figures

Figure 1

17 pages, 911 KiB  
Article
Toxicodynamic Assessment of Aqueous Neem (Azadirachta indica A. Juss) Seed Extract on Mortality and Carboxylesterase Activity in Key Organs of Bombyx mori L. Larvae
by Ajin Rattanapan, Chuthep Phannasri, Chawiwan Phannasri, Patcharawan Sujayanont and Kattinat Sagulsawasdipan
Toxins 2025, 17(6), 304; https://doi.org/10.3390/toxins17060304 - 16 Jun 2025
Viewed by 481
Abstract
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This [...] Read more.
Botanical insecticides derived from neem (Azadirachta indica A. Juss.) seeds have gained significant interest due to their sustainable characteristics and low environmental impact. However, their use in sericulture remains contentious due to the heightened sensitivity of domesticated silkworms to environmental stressors. This study systematically investigates the toxicodynamic effects of aqueous neem seed extract (ANSE) on fifth instar larvae of Thai multivoltine Bombyx mori L., focusing on larval mortality and carboxylesterase (CarE) enzyme activity in essential detoxification organs. Larvae were exposed to ANSE concentrations ranging from 5 to 50 mg L−1 for up to 72 h. Key findings highlight a pronounced dose- and time-dependent increase in mortality, with an accurately determined LC50 value of 17 mg L−1 at the longest time exposure, accompanied by mortality rates reaching approximately 83% at the highest concentration tested, indicating considerable susceptibility. Additionally, notable and distinct organ-specific responses were observed, with significant inhibition of CarE activity in the midgut contrasting with elevated activities in the fat body and Malpighian tubules. These differential enzymatic responses reveal previously undocumented adaptive detoxification mechanisms. Consequently, the study advocates cautious and regulated application of neem-based insecticides in sericulture, recommending precise management of concentrations and exposure durations according to silkworm strain sensitivities to ensure optimal silk production. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

17 pages, 1232 KiB  
Article
Wohlfahrtia nuba (Wiedemann, 1830) (Diptera: Sarcophagidae) Development and Survival Under Fluctuating Temperatures
by Abeer S. Yamany, Manal F. Elkhadragy and Rewaida Abdel-Gaber
Insects 2025, 16(6), 628; https://doi.org/10.3390/insects16060628 - 13 Jun 2025
Viewed by 578
Abstract
The flesh fly, Wohlfahrtia nuba (Wiedemann) (Diptera: Sarcophagidae), is one of the first necrophagous insects to arrive on a cadaver and is vital for understanding decomposition. Environmental factors, especially temperature, influence insect development, which is crucial for estimating postmortem interval (PMI) in forensic [...] Read more.
The flesh fly, Wohlfahrtia nuba (Wiedemann) (Diptera: Sarcophagidae), is one of the first necrophagous insects to arrive on a cadaver and is vital for understanding decomposition. Environmental factors, especially temperature, influence insect development, which is crucial for estimating postmortem interval (PMI) in forensic entomology. This study explored how seasonal temperature variations affect the survival and development of W. nuba’s immature stages. The W. nuba colony was reared in the laboratory for four seasons from 3 October 2023 to 30 September 2024. The duration of the larval and pupal phases, the percentage of survival and mortality of the larvae and pupae, the larval growth rate, the percentage of emergence, fecundity, the sex ratio, and the pre-larviposition period were among the many life cycle characteristics that were documented during the study. Research indicates that seasonal changes affect development, shortening the growth period as temperatures rise. Flies raised at an average temperature of 38.3 °C grew faster but experienced higher larval mortality and lower survival rates. The average duration of larval and pupal stages was reduced, with an optimal development temperature of 27.9 °C showing higher survival rates, maximum body weight, and fecundity. The largest mortality rate occurred during winter at an average temperature of 18.5 °C, with males and females showing significant pupal elongation. The findings could help forensic entomologists working on legal investigations to ascertain PMI. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

21 pages, 1339 KiB  
Article
Toxicity Assessment and Antifungal Potential of Copper(II) and Silver(I) Complexes with 1,10-Phenanthroline-5,6-dione Against Drug-Resistant Clinical Isolates of Cryptococcus gattii and Cryptococcus neoformans
by Lucas Giovanini, Ana Lucia Casemiro, Larissa S. Corrêa, Matheus Mendes, Thaís P. Mello, Lucieri O. P. Souza, Luis Gabriel Wagner, Christiane Fernandes, Matheus M. Pereira, Lais C. S. V. de Souza, Andrea R. S. Baptista, Josué de Moraes, Malachy McCann, Marta H. Branquinha and André L. S. Santos
J. Fungi 2025, 11(6), 436; https://doi.org/10.3390/jof11060436 - 6 Jun 2025
Viewed by 1532
Abstract
The World Health Organization included Cryptococcus neoformans and Cryptococcus gattii in its priority fungal pathogen list due to their high mortality rates and frequent treatment failures. These facts have driven research toward the discovery of new compounds for the treatment of cryptococcosis. In [...] Read more.
The World Health Organization included Cryptococcus neoformans and Cryptococcus gattii in its priority fungal pathogen list due to their high mortality rates and frequent treatment failures. These facts have driven research toward the discovery of new compounds for the treatment of cryptococcosis. In this study, we investigated the therapeutic potential of two complexes, [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) and [Ag(phendione)2]ClO4 (Ag-phendione), against drug-resistant clinical isolates of C. gattii and C. neoformans. Both complexes demonstrated anti-Cryptococcus activity, with Cu-phendione exhibiting minimum inhibitory concentration (MIC) values of 6.25 μM for C. gattii and 3.125 μM for C. neoformans, while Ag-phendione showed an MIC of 1.56 μM for both Cryptococcus species. Notably, both Cu-phendione and Ag-phendione complexes exhibited enhanced antifungal activity against reference strains of C. neoformans and C. gattii. In silico analysis identified both complexes as highly promising, exhibiting good oral bioavailability, high gastrointestinal absorption, and moderate skin permeability. Moreover, neither complex demonstrated toxicity toward sheep erythrocytes at concentrations up to 62.5 μM, with a selectivity index (SI) exceeding 10 for Cu-phendione and 40 for Ag-phendione. In vivo testing using the Galleria mellonella model demonstrated that both complexes were non-toxic, with 100% larval survival at concentrations up to 1000 μM and SI exceeding 160 following a single administration. Interestingly, larvae exposed to Cu-phendione at concentrations of 15.6–31.25 μM exhibited a significant increase in the density of hemocytes, the immune cells responsible for defense in invertebrates. Furthermore, multiple treatments with 62.5 μM of complexes caused either no larval mortality, hemocyte alterations, or changes in silk production or coloration, indicating a lack of toxicity. These findings suggest that Cu-phendione and Ag-phendione may serve as promising antifungal alternatives against Cryptococcus, with minimal host toxicity. Full article
(This article belongs to the Special Issue Fungal Infections: Immune Defenses and New Therapeutic Strategies)
Show Figures

Figure 1

17 pages, 2370 KiB  
Article
Infective Larvae of Haemonchus contortus (Nematoda: Trichostrongylidae) Are Captured and Destroyed by Nematode-Trapping Fungi Dactylellina spp. (Fungi: Orbiliales)
by Manuel Salvador Balanzar-Aguilera, Enrique Gutiérrez-Medina, Gustavo Pérez-Anzúrez, Edgar Jesús Delgado-Núñez, María Eugenia López-Arellano, Ana Yuridia Ocampo-Gutiérrez and Pedro Mendoza-de Gives
Parasitologia 2025, 5(2), 26; https://doi.org/10.3390/parasitologia5020026 - 3 Jun 2025
Viewed by 459
Abstract
This study aimed to explore and identify soil-dwelling nematophagous fungi (NF) from the “El Texcal” Ecological Reserve in Morelos, Mexico, and evaluate their potential as biological control agents against Haemonchus contortus infective larvae (HcL3), a major parasitic threat in livestock systems. [...] Read more.
This study aimed to explore and identify soil-dwelling nematophagous fungi (NF) from the “El Texcal” Ecological Reserve in Morelos, Mexico, and evaluate their potential as biological control agents against Haemonchus contortus infective larvae (HcL3), a major parasitic threat in livestock systems. The fungi were isolated from soil using the sprinkling of soil on water agar plates. The identification of NF was achieved using morphological identification keys, which was corroborated by molecular procedures using the PCR technique in the ITS4 and ITS5 regions. The nematocidal effects occasioned by these NF were examined through their predatory activity (PA) against HcL3 on water agar plates, and additionally, the larval mortality attributed to their liquid filtrates (LFs) was assessed at three different concentrations (25, 50, and 100 mg/mL) on 96-well microtiter plates. Two NF were identified and classified as two species of Dactylellina genus, namely D. haptospora (Dh) and D. phymatopaga (Dp). The PA exhibited by these NF were 94.79% for Dh and 68.88% for Dp; while their LFs showed 27.83% mortality for Dh and 32.86% for Dp at the highest concentration assessed. While the PA was notably high, the moderate larvicidal effect of the LF suggests that their efficacy may primarily rely on direct physical interaction rather than metabolite-mediated toxicity. The high PA demonstrated by these two isolates of NF indicates that they could be effective candidates for biological control agents against HcL3. Full article
Show Figures

Figure 1

15 pages, 3295 KiB  
Article
Purification and Characterization of the Recombinant Chitinase ChiBlUV02 of Bacillus licheniformis UV01 with a Choleoptericidal Effect on Hive Beetle (Aethina tumida)
by Deny de Jesús Velasco-Vique, Argel Flores-Primo, Sóstenes Rodríguez-Dehaibes, María Guadalupe Sánchez-Otero, Violeta T. Pardío-Sedas, Rosa María Oliart-Ros, Gabriela Blasco-López and Rodolfo Quintana-Castro
Appl. Microbiol. 2025, 5(2), 48; https://doi.org/10.3390/applmicrobiol5020048 - 19 May 2025
Viewed by 947
Abstract
The biotechnological applications of chitinases are diverse. They are used in industrial sectors such as pharmaceuticals, textiles, and agriculture, including the use of recombinant chitinases for pest control, since traditional treatments affect and contaminate hive products. Bacillus licheniformis UV01 bacterium is of interest, [...] Read more.
The biotechnological applications of chitinases are diverse. They are used in industrial sectors such as pharmaceuticals, textiles, and agriculture, including the use of recombinant chitinases for pest control, since traditional treatments affect and contaminate hive products. Bacillus licheniformis UV01 bacterium is of interest, as it expresses genes for different enzymes, including chitinase. The Chibluv01 gene was cloned into the pHTP8 vector with a His/tag for purification using affinity chromatography. It showed a specific activity of 115 U/m. The optimal pH and temperature were 7.5 and 42 °C, respectively. The choleoptericidal activity (ability to kill beetles) of the enzyme was evaluated in the larvae and adult beetles of Aethina tumida treated with immersion in a purified enzyme extract at different concentrations, and the mortality was verified at 24, 48, and 72 h. Within 24 h of application, the mortality increased by 50% in the larval stage and 56.6% in adult beetles compared to the control groups. The LC50 and LC90 were obtained: 104.05 U/mL and 234.36 U/mL in larvae and 92.99 U/mL and 211.14 U/mL in adults, respectively. These results indicate the potential of the application of ChiBlUV02 chitinase in pest control. Full article
Show Figures

Figure 1

Back to TopTop