Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (965)

Search Parameters:
Keywords = large water reservoirs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3135 KiB  
Article
Nonstationary Streamflow Variability and Climate Drivers in the Amur and Yangtze River Basins: A Comparative Perspective Under Climate Change
by Qinye Ma, Jue Wang, Nuo Lei, Zhengzheng Zhou, Shuguang Liu, Aleksei N. Makhinov and Aleksandra F. Makhinova
Water 2025, 17(15), 2339; https://doi.org/10.3390/w17152339 - 6 Aug 2025
Abstract
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing [...] Read more.
Climate-driven hydrological extremes and anthropogenic interventions are increasingly altering streamflow regimes worldwide. While prior studies have explored climate or regulation effects separately, few have integrated multiple teleconnection indices and reservoir chronologies within a cross-basin comparative framework. This study addresses this gap by assessing long-term streamflow nonstationarity and its drivers at two key stations—Khabarovsk on the Amur River and Datong on the Yangtze River—representing distinct hydroclimatic settings. We utilized monthly discharge records, meteorological data, and large-scale climate indices to apply trend analysis, wavelet transform, percentile-based extreme diagnostics, lagged random forest regression, and slope-based attribution. The results show that Khabarovsk experienced an increase in winter baseflow from 513 to 1335 m3/s and a notable reduction in seasonal discharge contrast, primarily driven by temperature and cold-region reservoir regulation. In contrast, Datong displayed increased discharge extremes, with flood discharges increasing by +71.9 m3/s/year, equivalent to approximately 0.12% of the mean flood discharge annually, and low discharges by +24.2 m3/s/year in recent decades, shaped by both climate variability and large-scale hydropower infrastructure. Random forest models identified temperature and precipitation as short-term drivers, with ENSO-related indices showing lagged impacts on streamflow variability. Attribution analysis indicated that Khabarovsk is primarily shaped by cold-region reservoir operations in conjunction with temperature-driven snowmelt dynamics, while Datong reflects a combined influence of both climate variability and regulation. These insights may provide guidance for climate-responsive reservoir scheduling and basin-specific regulation strategies, supporting the development of integrated frameworks for adaptive water management under climate change. Full article
(This article belongs to the Special Issue Risks of Hydrometeorological Extremes)
Show Figures

Figure 1

23 pages, 5064 KiB  
Article
Study on Reasonable Well Spacing for Geothermal Development of Sandstone Geothermal Reservoir—A Case Study of Dezhou, Shandong Province, China
by Shuai Liu, Yan Yan, Lanxin Zhang, Weihua Song, Ying Feng, Guanhong Feng and Jingpeng Chen
Energies 2025, 18(15), 4149; https://doi.org/10.3390/en18154149 - 5 Aug 2025
Abstract
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in [...] Read more.
Shandong Province is rich in geothermal resources, mainly stored in sandstone reservoirs. The setting of reasonable well spacing in the early stage of large-scale recharge has not attracted enough attention. The problem of small well spacing in geothermal engineering is particularly prominent in the sandstone thermal reservoir production area represented by Dezhou. Based on the measured data of temperature, flow, and water level, this paper constructs a typical engineering numerical model by using TOUGH2 software. It is found that when the distance between production and recharge wells is 180 m, the amount of production and recharge is 60 m3/h, and the temperature of reinjection is 30 °C, the temperature of the production well will decrease rapidly after 10 years of production and recharge. In order to solve the problem of thermal breakthrough, three optimization schemes are assumed: reducing the reinjection temperature to reduce the amount of re-injection when the amount of heat is the same, reducing the amount of production and injection when the temperature of production and injection is constant, and stopping production after the temperature of the production well decreases. However, the results show that the three schemes cannot solve the problem of thermal breakthrough or meet production demand. Therefore, it is necessary to set reasonable well spacing. Therefore, based on the strata near the Hydrological Homeland in Decheng District, the reasonable spacing of production and recharge wells is achieved by numerical simulation. Under a volumetric flux scenario ranging from 60 to 80 m3/h, the well spacing should exceed 400 m. For a volumetric flux between 80 and 140 m3/h, it is recommended that the well spacing be greater than 600 m. Full article
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 402
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 1394 KiB  
Article
Water Quality and Biological Response in the Deschutes River, Oregon, Following the Installation of a Selective Water Withdrawal
by Joseph M. Eilers, Tim Nightengale and Kellie B. Vache
Water 2025, 17(14), 2091; https://doi.org/10.3390/w17142091 - 13 Jul 2025
Viewed by 441
Abstract
Selective water withdrawals (SWWs) are frequently used to minimize the downstream effects of dams by blending water from different depths to achieve a desired temperature regime in the river. In 2010, an SWW was installed on the outlet structure of the primary hydropower [...] Read more.
Selective water withdrawals (SWWs) are frequently used to minimize the downstream effects of dams by blending water from different depths to achieve a desired temperature regime in the river. In 2010, an SWW was installed on the outlet structure of the primary hydropower reservoir on the Deschutes River (Oregon, USA) to increase spring temperatures by releasing a combination of surface water and bottom waters from a dam that formerly only had a hypolimnetic outlet. The objective of increasing spring river temperatures was to recreate pre-dam river temperatures and optimize conditions for the spawning and rearing of anadromous fish. The operation of the SWW achieved the target temperature regime, but the release of surface water from a hypereutrophic impoundment resulted in a number of unintended consequences. These changes included significant increases in river pH and dissolved oxygen saturation. Inorganic nitrogen releases decreased in spring but increased in summer. The release of surface water from the reservoir increased levels of plankton in the river resulting in changes to the macroinvertebrates such as increases in filter feeders and a greater percentage of taxa tolerant to reduced water quality. No significant increase in anadromous fish was observed. The presence of large irrigation diversions upstream of the reservoir was not accounted for in the temperature analysis that led to the construction of the SWW. This complicating factor would have reduced flow in the river leading to increased river temperatures at the hydropower site during the measurement period used to develop representations of historical temperature. The analysis supports the use of numerical models to assist in forecast changes associated with SWWs, but the results from this project illustrate the need for greater consideration of complex responses of aquatic communities caused by structural modifications to dams. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

29 pages, 1606 KiB  
Article
BIM and AI Integration for Dynamic Schedule Management: A Practical Framework and Case Study
by Heap-Yih Chong, Xinyi Yang, Cheng Siew Goh and Yan Luo
Buildings 2025, 15(14), 2451; https://doi.org/10.3390/buildings15142451 - 12 Jul 2025
Viewed by 1034
Abstract
Traditional project scheduling tools like Gantt charts struggle with dynamic adjustments and real-time optimization in complex construction projects, leading to inefficiencies and delays. This study addresses this challenge by proposing a dynamic optimization framework that integrates Building Information Modeling (BIM) and Artificial Intelligence [...] Read more.
Traditional project scheduling tools like Gantt charts struggle with dynamic adjustments and real-time optimization in complex construction projects, leading to inefficiencies and delays. This study addresses this challenge by proposing a dynamic optimization framework that integrates Building Information Modeling (BIM) and Artificial Intelligence (AI) to enhance schedule management. The framework comprises three layers: a data layer for collecting BIM and real-time site data, an analysis layer powered by AI algorithms for predictive analytics and optimization, and an application layer for visualizing progress and supporting decision-making. Through a case study on a large-scale water reservoir tunnel project in China, the framework demonstrated significant improvements in identifying schedule risks, optimizing resource allocation, and enabling real-time adjustments. Key innovations include a 4-in-1 Network Diagram Engine and a Blueprint Engine, which facilitate intuitive progress monitoring and automated task management. However, limitations in personnel skill matching, interface complexity, and mobile system performance were identified. This research advances the theoretical foundation of BIM-AI integration and provides practical insights for improving scheduling efficiency and project outcomes in the construction industry. Future work should focus on enhancing human resource management modules and refining system usability for broader adoption. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

19 pages, 12183 KiB  
Article
A Study on the Sedimentary Environment and Facies Model of Triassic Carbonate Rocks in the Mangeshlak Basin
by Fanyang Meng, Kaixun Zhang, Zhiping He, Miao Miao and Feng Wang
Appl. Sci. 2025, 15(14), 7788; https://doi.org/10.3390/app15147788 - 11 Jul 2025
Viewed by 270
Abstract
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has [...] Read more.
Based on drilling, core and seismic data, combined with the regional tectonic sedimentary evolution background, the sedimentary environment of the Triassic carbonate rocks in the Mangeshlak Basin was studied. A sedimentary facies model of this set of carbonate rocks was established. Research has shown that the Mangeshlak Basin underwent a complete large-scale marine transgression–regression sedimentary evolution process during the Triassic. During the early to middle Triassic, seawater gradually invaded the northwest region of the basin from northwest to southeast and gradually regressed in the late Middle Triassic. In the lower part of the Triassic carbonate rocks, the primary components are developed granular limestone or dolomite with oolitic structures, interspersed with a small amount of thin mudstone, which is a good reservoir; the upper part of the Triassic is mainly composed of sedimentary mudstone and mudstone, which can form good sealings. The hill-shaped reflections of the platform edge facies, along with the high-frequency, strong-amplitude, and moderately continuous reflections within the restricted platform interior, are clearly visible on the seismic profile. These features are consistent with the sedimentary environment and lithofacies characteristics revealed by drilling data along the profile. Drilling and seismic data revealed that the sedimentary environment of the early and middle Triassic in the basin is mainly composed of shallow water platform edges and restricted platforms, as well as carbonate rock slopes and open non-marine shelves in deep water areas. A sedimentary facies model of the Triassic carbonate rock segment in the basin was established, comprising restricted platforms, platform edges, carbonate rock slopes, and non-marine shelves. Unlike the modified Wilson marginal carbonate rock platform model, the carbonate rock platform edge in the Mangeshlak Basin does not develop reef facies. Instead, it is mainly composed of oolitic beach (dam) sediments, making it the most favorable sedimentary facies zone for the Triassic reservoir development in the basin. Full article
Show Figures

Figure 1

23 pages, 4329 KiB  
Article
Sediment Fingerprinting Enables the Determination of Soil Erosion Sources and Sediment Transport Processes in a Topographically Complex Nile Headwater Basin
by Amartya K. Saha, Christopher L. Dutton, Marc Manyifika, Sarah C. Jantzi and Sylvere N. Sirikare
Soil Syst. 2025, 9(3), 70; https://doi.org/10.3390/soilsystems9030070 - 4 Jul 2025
Viewed by 320
Abstract
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used [...] Read more.
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used to identify erosional hotspots and sediment transport processes in highly mountainous regions undergoing swift land use transformation. This technique involves a statistical comparison of the elemental composition of suspended sediments in river water with the elemental composition of soils belonging to different geological formations present in the catchment, thereby determining the sources of the suspended sediment. Suspended sediments were sampled five times over dry and wet seasons in all major headwater tributaries, as well as the main river channel, and compared with soils from respective delineated watersheds. Elemental composition was obtained using laser ablation inductively coupled plasma mass spectrometry, and elements were chosen that could reliably distinguish between the various geological types. The final results indicate different levels of sediment contribution from different geological types. A three-level intervention priority system was devised, with Level 1 indicating the areas with the most serious erosion. Potential sources were located on an administrative map, with the highest likely erosion over the study period (Level 1) occurring in Kabuga cell in the Mwogo sub-catchment, Nganzo and Nyamirama cells in the Nyagako sub-catchment and Kanyana cell in the NNYU downstream sub-catchment. This map enables the pinpointing of site visits in an extensive and rugged terrain to verify the areas and causes of erosion and the pathways of sediment transport. Sediment concentrations (mg L−1) were the highest in the Secoko and Satinsyi tributaries. The composition of suspended sediment was seen to be temporally and spatially dynamic at each sampling point, suggesting the need for an adequate number of sampling locations to identify erosion hotspots in a large mountainous watershed. Apart from prioritizing rehabilitation locations, the detailed understanding of critical zone soil–land cover–climate processes is an important input for developing region-specific watershed management and policy guidelines. Full article
Show Figures

Figure 1

24 pages, 4645 KiB  
Article
The Impact of Climate Change and Water Consumption on the Inflows of Hydroelectric Power Plants in the Central Region of Brazil
by Filipe Otávio Passos, Benedito Cláudio da Silva, José Wanderley Marangon de Lima, Marina de Almeida Barbosa, Pedro Henrique Gomes Machado and Rafael Machado Martins
Climate 2025, 13(7), 140; https://doi.org/10.3390/cli13070140 - 4 Jul 2025
Viewed by 422
Abstract
There is a consensus that climate change has affected society. The increase in temperature and reduction in precipitation for some regions of the world have had implications for the intensity and frequency of extreme events. This scenario is worrying for various sectors of [...] Read more.
There is a consensus that climate change has affected society. The increase in temperature and reduction in precipitation for some regions of the world have had implications for the intensity and frequency of extreme events. This scenario is worrying for various sectors of water use, such as hydroelectric power generation and agriculture. Reduced flows in river basins, coupled with increased water consumption, can significantly affect energy generation and food production. Within this context, this paper presents an analysis of climate change impacts in a large basin of Brazil between the Amazon and Cerrado biomes, considering the effects of water demands. Inflow projections were generated for seven power plant reservoirs in the Tocantins–Araguaia river basin, using projections from five climate models. The results indicate significant reductions in flows, with decreases of more than 50% in the average flow. For minimum flows, there are indications of reductions of close to 85%. The demand for water, although growing, represents a smaller part of the effects, but should not be disregarded, since it impacts the dry periods of the rivers and can generate conflicts with energy production. Full article
(This article belongs to the Section Climate and Economics)
Show Figures

Figure 1

14 pages, 27914 KiB  
Article
Inversion Motion of Xanthene and Detection of Its Oxidation Product Xanthone from Gas-Phase Rotational Spectroscopy
by Celina Bermúdez, Manuel Goubet and Elias M. Neeman
Molecules 2025, 30(13), 2801; https://doi.org/10.3390/molecules30132801 - 29 Jun 2025
Viewed by 337
Abstract
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading [...] Read more.
The rotational spectra of xanthene and its oxidation product xanthone were investigated by combining quantum chemical calculations with Fourier transform microwave spectroscopy in a jet-cooled environment. Xanthone was unexpectedly generated in the experiment when water was present in the reservoir of xanthene leading to the total disappearance of xanthene after few hours. Structurally, xanthone shows a near planar disposition, whereas xanthene exhibits a non-planar geometry with both benzene rings twisted out of the molecular plane. This geometry enables an inversion motion between two equivalent conformers, giving rise to a splitting in the ground vibrational state. A two-state analysis of the vibration–rotation interaction for the v=0 and v=1 states gives an energy separation between these states (inversion splitting) of ΔE01=4689.7095(10)MHz. This large-amplitude motion leads to vibration–rotation coupling of energy levels. A symmetric double-minimum inversion potential function was determined, resulting in a barrier of about 45 cm−1 in good agreement with that obtained by DFT quantum chemical calculations. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

20 pages, 2599 KiB  
Article
Reservoir Dynamic Reserves Characterization and Model Development Based on Differential Processing Method: Differentiated Development Strategies for Reservoirs with Different Bottom Water Energies
by Hongwei Song, Shiliang Zhang, Feiyu Yuan, Lu Li, Yafei Fu, Chao Yu and Chao Zhang
Processes 2025, 13(7), 2053; https://doi.org/10.3390/pr13072053 - 28 Jun 2025
Viewed by 290
Abstract
Complex carbonate reservoirs feature large-scale karst cavern structures, exhibiting complex pore and bottom water energy distributions, which increase the difficulty of reservoir development and require targeted research. This paper proposes a new method for dynamic reserves calculation in these reservoirs based on the [...] Read more.
Complex carbonate reservoirs feature large-scale karst cavern structures, exhibiting complex pore and bottom water energy distributions, which increase the difficulty of reservoir development and require targeted research. This paper proposes a new method for dynamic reserves calculation in these reservoirs based on the Differential Processing Method (DPM) and aimed at optimizing the development of complex reservoirs. The AD22 unit of the Tarim Oilfield in Xinjiang is taken as the research object, and this reservoir features complex karst and fault characteristics, which traditional reserves calculation methods cannot effectively capture due to its complex heterogeneous distribution. This study constructs a refined reservoir numerical model through 3D geological modeling and impedance inversion techniques, calculates dynamic reserves using the DPM, and compares the result with traditional material balance and production data analysis methods. The results indicate that the DPM has an advantage in estimating the petrophysical parameters and reserve utilization in such reservoirs. The error between the constructed reservoir numerical model and the actual reservoir development historical data is only 2.04%, demonstrating a good reference value. The model shows that more than 60% of the recoverable reserves in the target unit are located in areas shallower than 160 m underground, while the current development degree is only 12.6%. The model shows that the recovery rate is low in the strong bottom water energy areas of the unit, while the recovery potential is high in the weak bottom water areas. Therefore, a differentiated development strategy based on varying bottom water energy is required to enhance development efficiency. The model indicates that this strategy can improve the comprehensive development benefits of the reservoir by 81.66% over the existing baseline, demonstrating significant potential. This study provides new ideas and methods for dynamic reserve estimation and development strategy optimization for complex carbonate reservoirs, verifies the effectiveness of the DPM in evaluating the development of complex bottom water energy reservoirs, and offers data references for related research and field applications. Full article
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 321
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

14 pages, 3423 KiB  
Article
Urban Flood Risk Sustainable Management: Risk Analysis of Dam Break Induced Flash Floods in Mountainous Valley Cities
by Yuanyuan Liu, Yesen Liu, Qian Yu and Shu Liu
Sustainability 2025, 17(13), 5863; https://doi.org/10.3390/su17135863 - 25 Jun 2025
Viewed by 515
Abstract
Small reservoirs in hilly areas serve as critical water conservancy infrastructure, playing an essential role in flood control, irrigation, and regional water security. However, dam-break events pose significant risks to downstream urban areas, threatening the sustainability and resilience of cities. This study takes [...] Read more.
Small reservoirs in hilly areas serve as critical water conservancy infrastructure, playing an essential role in flood control, irrigation, and regional water security. However, dam-break events pose significant risks to downstream urban areas, threatening the sustainability and resilience of cities. This study takes Guangyuan City as a case study and employs numerical simulation methods—including dam-break modeling, hydrological modeling, and hydrodynamic modeling—to analyze the impact of dam-break floods on downstream urban regions. The results reveal that dam failure in small reservoirs can cause peak flood velocities exceeding 15 m/s, severely endangering urban infrastructure, ecosystems, and public safety. Additionally, for reservoirs with large catchment areas, dam-break floods combined with rainfall-induced flash floods may create compound disaster effects, intensifying urban flood risks. These findings underscore the importance of sustainable reservoir management and integrated flood risk strategies to enhance urban resilience and reduce disaster vulnerability. This research contributes to sustainable development by providing scientific insights and practical support for flood risk mitigation and resilient infrastructure planning in mountainous regions. Full article
Show Figures

Figure 1

22 pages, 5618 KiB  
Article
Using Sentinel Imagery for Mapping and Monitoring Small Surface Water Bodies
by Mariana Campista Chagas, Ana Paula Falcão and Rodrigo Proença de Oliveira
Remote Sens. 2025, 17(13), 2128; https://doi.org/10.3390/rs17132128 - 21 Jun 2025
Viewed by 568
Abstract
Increasing water demand and climate change exacerbate water management challenges in arid and semi-arid regions experiencing water scarcity resulting from low and irregular precipitation and high evapotranspiration. These regions rely on substantial water storage capacity, typically provided by large multi-purpose public reservoirs and [...] Read more.
Increasing water demand and climate change exacerbate water management challenges in arid and semi-arid regions experiencing water scarcity resulting from low and irregular precipitation and high evapotranspiration. These regions rely on substantial water storage capacity, typically provided by large multi-purpose public reservoirs and small private reservoirs. While public reservoirs are typically monitored, the number, size, and private ownership of small reservoirs complicate effective storage monitoring, hindering efforts to assess water availability during droughts and to allocate water efficiently and equitably. Remote sensing provides a solution to complement existing monitoring systems by offering high spatial and temporal resolution observations. This study introduces a methodology for monitoring the surface area of large and small reservoirs based on optical and radar images from Sentinel-1 and Sentinel-2 satellites. The Normalized Difference Water Index (NDWI) and the Otsu image segmentation method are employed to identify and estimate water body areas, and the Google Earth Engine and programming languages are used to automate the process. The validation results demonstrated correlation for most reservoirs, with slight underestimations at flood peaks. Among the 17 large reservoirs, 16 had an R2 value above 0.82, 12 had an RMSE value below 0.8, and 14 had a KGE value above 0.7. For the small reservoirs, the method correctly identified 3224 of the 6370 reservoirs recorded in situ, with greater accuracy in the classes of reservoirs with elevation above 10 m. A total of 7251 reservoirs were mapped, including 4027 not present in the database of the responsible regulatory entity, most with an area of less than 1.8 ha. Performance was better for larger areas (>3 ha), while small areas were underestimated. This methodology offers a practical water management tool adaptable for various-sized surface water bodies, including small, unmonitored water bodies. Full article
Show Figures

Figure 1

22 pages, 3940 KiB  
Article
Insights into the Process of Fish Diversity Pattern Changes and the Current Status of Spatiotemporal Dynamics in the Three Gorges Reservoir Area Using eDNA
by Jiaxin Huang, Yufeng Zhang, Xiaohan Dong, Xinxin Zhou, Zhihao Liu, Qiliang Chen, Fan Chen and Yanjun Shen
Fishes 2025, 10(6), 295; https://doi.org/10.3390/fishes10060295 - 18 Jun 2025
Cited by 1 | Viewed by 522
Abstract
The ecological consequences of the construction and operation of the Three Gorges Reservoir, particularly its unique operation strategy of storing clear water and releasing turbid water, exerts a profound influence on the composition and dynamics of local fish communities. To date, detailed and [...] Read more.
The ecological consequences of the construction and operation of the Three Gorges Reservoir, particularly its unique operation strategy of storing clear water and releasing turbid water, exerts a profound influence on the composition and dynamics of local fish communities. To date, detailed and comprehensive research on seasonal changes in the fish community across the entire reservoir remains scarce. This study aims to fill this research gap by systematically investigating fish diversity through a comprehensive assessment of six main river reaches and eight major tributaries. The investigation employs environmental DNA (eDNA) technology across three critical life-cycle stages: breeding, feeding, and overwintering periods. A total of 124 fish species were recorded, comprising 10 orders, 20 families, and 80 genera. The comparative analyses of historical data suggest a significant decline in lotic and endemic fish populations, accompanied by a concurrent increase in lentic, eurytopic, and non-native fish species. Notably, the composition of fish communities exhibited similarities between breeding and overwintering periods. This study highlights the occurrence of significant seasonal fluctuations in the fish communities, showing a preference for reservoir tails and tributaries as optimal habitats. Water temperature has a predominant influence on structuring fish communities within aquatic ecosystems. This study investigates variations in the biodiversity of fish communities using historical data, with a focus on changes linked to reservoir operations and water impoundment activities. By integrating historical data, this research examines changes in fish diversity that are associated with water storage processes. It provides foundational data on the current composition and diversity of fish communities within the watershed, elucidating the spatiotemporal variations in fish diversity and the mechanisms by which environmental factors influence these communities. Furthermore, the current study serves as a valuable reference for understanding the changes in fish communities within other large reservoirs. Full article
Show Figures

Figure 1

19 pages, 1281 KiB  
Article
An Optimal Sizing Methodology for a Wind/PV Hybrid Energy Production System for Agricultural Irrigation in Skikda, Algeria
by Nadhir Abderrahmane, Allaoua Brahmia, Adlen Kerboua and Ridha Kelaiaia
Appl. Sci. 2025, 15(12), 6704; https://doi.org/10.3390/app15126704 - 14 Jun 2025
Viewed by 400
Abstract
This paper presents an innovative solution to address agricultural irrigation needs through a hybrid renewable energy system (HRES) that was specifically designed for a farm located in the Skikda region of Algeria. This system is tailored to irrigate 830 fruit trees spread across [...] Read more.
This paper presents an innovative solution to address agricultural irrigation needs through a hybrid renewable energy system (HRES) that was specifically designed for a farm located in the Skikda region of Algeria. This system is tailored to irrigate 830 fruit trees spread across 3 hectares with a total perimeter of 770 m. The proposed approach integrates two main renewable energy sources (while eliminating the use of traditional batteries for electrical energy storage): solar and wind. Instead, a large water reservoir is employed as an energy storage medium in the form of potential energy. Utilizing gravity, this reservoir directly powers the irrigation system for the fruit trees, thereby reducing the costs and environmental impacts associated with conventional batteries. This innovative design not only enhances sustainability, but also improves the system’s energy efficiency. To ensure precise and customized sizing of the system for the irrigation area, a detailed mathematical modeling of the key system components (solar panels, wind turbines, and reservoir) was conducted. This modeling identifies the critical design variables required to meet technical specifications and irrigation needs. A multi-objective optimization approach was then developed to determine the optimal configuration of the HRES, and this was achieved by considering both technical and economic constraints. The optimization algorithm used was tailored to the formulated problem, ensuring reliable and applicable results. The robustness of the optimization approach was shown by the precise match between energy production (24 kWh at 16,119.40 $) and the minimum demand. This alignment prevents over- or under-designing the system, which increases costs and reduces energy use. The findings highlight the relevance and effectiveness of the proposed methodology, demonstrating its practical utility and significant potential for generalization and adaptation to different agricultural zones with varying conditions. This work paves the way for sustainable and innovative solutions for agricultural irrigation, particularly in remote areas or regions lacking traditional energy infrastructure. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop