Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,583)

Search Parameters:
Keywords = landscape fragmentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7504 KB  
Article
Historical Trajectories of the Evolved Cropland Features and Their Reshaped Influences on Agricultural Landscapes and Ecosystem Services in China’s Sanjiang Commodity Grain Base
by Tao Pan, Kun Liu, Zherui Yin, Zexian Li and Lin Shi
Land 2026, 15(1), 175; https://doi.org/10.3390/land15010175 (registering DOI) - 16 Jan 2026
Abstract
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a [...] Read more.
Drastic cropland expansion and its internal structural changes have had an obvious impact on agricultural landscapes and ecosystem services. However, a prolonged investigation of this effect is still lacking in China’s grain-producing bases, such as Sanjiang Plain. To address this issue, half a century of study on the ‘land trajectory migration–landscape evolution–ecological effect,’ covering the period 1970–2020, was elucidated using the synergistic methodology of spatial analysis technology, the reclamation rate algorithm, the landscape indicator, and the newly established ecosystem service improvement model. Satellite observation results indicate that the cropland area exhibited a substantial expansion trend from 23,672.69 km2 to 42,856.17 km2 from 1970 to 2020, representing a net change of +19,183.48 km2 and a huge growth rate of 81.04%, which led to an obvious improvement in the level of agricultural cultivation. Concurrently, the internal structure of the cropland underwent dramatic restructuring, with rice fields increasing from 6.46% to 53.54%, while upland fields decreased from 93.54% to 46.46%. In different regions, spatially heterogeneous improvements of 2.64–52.47% in agricultural cultivation levels across all cities were observed. From 1970 to 2020, the tracked cropland center of gravity trajectories exhibited a distinct biphasic pattern, initially shifting westward and then followed by a southward transition, accumulating a displacement of 19.39 km2. As for the evolved agricultural landscapes, their integrity has improved (SHDI = −0.08%), accompanied by increased connectivity (CON = +8.82%) and patch edge integrity (LSI = −15.71%) but also by reduced fragmentation (PD = −48.14%). Another important discovery was that the evaluated ecosystem services continuously decreased from 2337.84 × 108 CNY in 1970 to 1654.01 × 108 CNY in 2020, a net loss of −683.84 × 108 CNY and a huge loss rate of 33.65%, accompanied by a center–periphery gradient pattern whereby degradation propagated from the low-value central croplands to the high-value surrounding natural covers. These discoveries will play a significant role in guiding farmland structure reformation, landscape optimization, and ecosystem service improvement. Full article
(This article belongs to the Special Issue Monitoring Ecosystem Services and Biodiversity Under Land Use Change)
Show Figures

Figure 1

15 pages, 1904 KB  
Article
Stand Age and Litter Shape Myriapod Communities in a Forest Mosaic (Diplopoda, Chilopoda)
by Marea Grinvald and Ivan Hadrián Tuf
Forests 2026, 17(1), 127; https://doi.org/10.3390/f17010127 - 16 Jan 2026
Abstract
(1) Forest fragmentation and associated edge effects can strongly modify the diversity and distribution of soil invertebrates, yet their responses in temperate floodplain forests remain poorly understood. We investigated myriapod (centipede and millipede) assemblages in a fragmented forest mosaic in the protected landscape [...] Read more.
(1) Forest fragmentation and associated edge effects can strongly modify the diversity and distribution of soil invertebrates, yet their responses in temperate floodplain forests remain poorly understood. We investigated myriapod (centipede and millipede) assemblages in a fragmented forest mosaic in the protected landscape area Litovelské Pomoraví (Czech Republic), focusing on the role of stand age, ecotones and key microhabitat variables. (2) Myriapods were sampled continuously during two years using pitfall traps arranged along transects crossing four neighboring patches (clear-cut with seedlings, 10-year-old stand, 87-year-old and 127-year-old Querco–Ulmetum forests). Species diversity was quantified using the Shannon–Wiener index, and patterns were analyzed by t-tests, canonical correspondence analysis and generalized additive models. (3) We collected over six thousand individuals (10 centipede and 10 millipede species). Diversity peaked in old-growth stands and adjacent ecotones, and two of the three ecotones supported particularly high species abundances. Litter cover and thickness, stand age, and the structure of the herb and shrub layers were the most important predictors of species distributions. Dominant species (e.g., Glomeris tetrasticha Brandt, 1833, Lithobius mutabilis L. Koch, 1862, L. forficatus (Linnaeus, 1758)) showed contrasting habitat preferences, reflecting niche differentiation along microhabitat and stand-age gradients. (4) Our findings indicate that conserving a fine-grained mosaic of stand ages, together with structurally complex forest interiors and ecotones, is essential for maintaining myriapod diversity and the ecosystem functions they provide in Central European forests. Full article
(This article belongs to the Special Issue Distribution, Species Richness, and Diversity of Wildlife in Forests)
Show Figures

Figure 1

20 pages, 8754 KB  
Article
Landscape Pattern Evolution in the Source Region of the Chishui River
by Yanzhao Gong, Xiaotao Huang, Jiaojiao Li, Ju Zhao, Dianji Fu and Geping Luo
Sustainability 2026, 18(2), 914; https://doi.org/10.3390/su18020914 - 15 Jan 2026
Abstract
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To [...] Read more.
Recognizing the evolution of landscape patterns in the Chishui River source region is essential for protecting ecosystems and sustainable growth in the Yangtze River Basin and other similar areas. However, knowledge of landscape pattern evolution within the primary channel zone remains insufficient. To address this gap, the current study used 2000–2020 land-use, geography, and socio-economic data, integrating landscape pattern indices, land-use transfer matrices, dynamic degree, the GeoDetector model, and the PLUS model. Results revealed that forest and cropland remained the prevailing land-use types throughout 2000–2020, comprising over 85% of the landscape. Grassland had the highest dynamic degree (1.58%), and landscape evolution during the study period was characterized by increased fragmentation, enhanced diversity, and stable dominance of major forms of land use. Anthropogenic influence on different landscape types followed the order: construction land > cropland > grassland > forest > water bodies. Land-use change in this region is a complex process governed by the interrelationships among various factors. Scenario-based predictions demonstrate pronounced variability in various land types. These findings provided a more comprehensive understanding of landscape patterns in karst river source regions, provided evidence-based support for regional planning, and offered guidance for ecological management of similar global river sources. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

23 pages, 3276 KB  
Article
Multi-Scenario Assessment of Ecological Network Resilience and Community Clustering in the Yellow River Delta
by Yajie Zhu, Zhaohong Du, Yunzhao Li, Chienzheng Yong, Jisong Yang, Bo Guan, Fanzhu Qu and Zhikang Wang
Land 2026, 15(1), 170; https://doi.org/10.3390/land15010170 - 15 Jan 2026
Viewed by 112
Abstract
The rapid economic and urban development in the Yellow River Delta Efficient Ecological Economic Zone (YRDEEZ) has intensified land use changes and aggravated ecological patch fragmentation. Constructing ecological networks (ENs) can reconnect fragmented patches and enhance ecosystem services. This study simulated land use [...] Read more.
The rapid economic and urban development in the Yellow River Delta Efficient Ecological Economic Zone (YRDEEZ) has intensified land use changes and aggravated ecological patch fragmentation. Constructing ecological networks (ENs) can reconnect fragmented patches and enhance ecosystem services. This study simulated land use patterns for 2040 under three scenarios: Natural Development (NDS), Ecological Protection (EPS), and Urban Development (UDS). Results indicated a consistent decline in agricultural land and an expansion of urban land across all scenarios, with the most pronounced urban growth under UDS (6.79%) and the largest ecological land area under EPS (5178.96 km2). Since 2000, the number of EN sources and corridors had decreased, with sources mainly concentrated along coastal areas. The source and corridor under UDS exhibited the highest area ratio (20.08%), while NDS showed the lowest (18.72%), with UDS demonstrating the strongest resilience. Through community detection, the UDS EN was divided into five ecological clusters, encompassing 127 intra-cluster corridors (2285.95 km) and 34 inter-cluster corridors (1171.32 km), among which the cluster near the Yellow River estuary was determined to be the most critical (Level 1). These findings will provide valuable insights for managing landscape fragmentation and biological habitat protection in YRDEEZ. Meanwhile, the multi-scenario simulations of ENs could play an important role in constructing ecological security patterns and protecting ecosystems. Full article
Show Figures

Figure 1

22 pages, 9039 KB  
Article
A Study on the Development and Applicability of a Landscape Planning Model Platform
by Jin-Young Park, Hyun-Ju Cho, Jin-Hyo Kim and Jung-Hwa Ra
Sustainability 2026, 18(2), 876; https://doi.org/10.3390/su18020876 - 15 Jan 2026
Viewed by 49
Abstract
This study aims to establish an integrated landscape planning model and explore its applicability through the convergence of digital twin technology. The primary goal is to address the fragmented implementation of landscape policies and to provide a systematic framework that enhances efficiency and [...] Read more.
This study aims to establish an integrated landscape planning model and explore its applicability through the convergence of digital twin technology. The primary goal is to address the fragmented implementation of landscape policies and to provide a systematic framework that enhances efficiency and visualization in the planning process. To this end, text-mining analysis was conducted to extract relevant laws, statutory plans, and project data, thereby identifying key factors for model construction. The resulting model integrates conservation-oriented and recreation-oriented modules, presenting a practical approach for landscape management. Furthermore, by utilizing Blender 3D and OpenStreetMap, this study demonstrates the process through which a digital twin visualizes and simulates the spatial characteristics of the actual target site, thereby validating its utility in decision-making and stakeholder communication. The results indicate that the landscape planning model was reconfigured and integrated into 6 detailed implementation measures and 41 specific indicators. Moreover, the model visually linked 36 laws and approximately 70 plans and projects. Ultimately, the study confirms that the proposed approach provides a dynamic, data-driven platform for sustainable landscape management. Full article
Show Figures

Figure 1

58 pages, 606 KB  
Review
The Pervasiveness of Digital Identity: Surveying Themes, Trends, and Ontological Foundations
by Matthew Comb and Andrew Martin
Information 2026, 17(1), 85; https://doi.org/10.3390/info17010085 - 13 Jan 2026
Viewed by 85
Abstract
Digital identity operates as the connective infrastructure of the digital age, linking individuals, organisations, and devices into networks through which services, rights, and responsibilities are transacted. Despite this centrality, the field remains fragmented, with technical solutions, disciplinary perspectives, and regulatory approaches often developing [...] Read more.
Digital identity operates as the connective infrastructure of the digital age, linking individuals, organisations, and devices into networks through which services, rights, and responsibilities are transacted. Despite this centrality, the field remains fragmented, with technical solutions, disciplinary perspectives, and regulatory approaches often developing in parallel without interoperability. This paper presents a systematic survey of digital identity research, drawing on a Scopus-indexed baseline corpus of 2551 publications spanning full years 2005–2024, complemented by a recent stratum of 1241 publications (2023–2025) used to surface contemporary thematic structure and inform the ontology-oriented synthesis. The survey contributes in three ways. First, it provides an integrated overview of the digital identity landscape, tracing influential and widely cited works, historical developments, and recent scholarship across technical, legal, organisational, and cultural domains. Second, it applies natural language processing and subject metadata to identify thematic patterns, disciplinary emphases, and influential authors, exposing trends and cross-field connections difficult to capture through manual review. Third, it consolidates recurring concepts and relationships into ontological fragments (illustrative concept maps and subgraphs) that surface candidate entities, processes, and contexts as signals for future formalisation and alignment of fragmented approaches. By clarifying how digital identity has been conceptualised and where gaps remain, the study provides a foundation for progress toward a universal digital identity that is coherent, interoperable, and socially inclusive. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

23 pages, 6278 KB  
Article
Scenario-Based Land-Use Trajectories and Habitat Quality in the Yarkant River Basin: A Coupled PLUS–InVEST Assessment
by Min Tian, Yingjie Ma, Qiang Ni, Amannisa Kuerban and Pengrui Ai
Sustainability 2026, 18(2), 796; https://doi.org/10.3390/su18020796 - 13 Jan 2026
Viewed by 103
Abstract
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four [...] Read more.
Land use/cover change (LUCC) is a dominant driver of ecosystem service dynamics in arid inland basins. Focusing on the Yarkant River Basin (YRB), Xinjiang, we coupled the PLUS land-use simulation with the InVEST Habitat Quality Model to project 2040 land-use patterns under four policy scenarios—Natural Development (ND), Arable Protection (AP), Ecological Protection (EP), and Economic Development (ED)—and to quantify their impact on habitat quality. Model validation against the 2020 map indicated strong agreement (Kappa = 0.792; FOM = 0.342), supporting scenario inference. From 1990 to 2023, arable land expanded by 58.17% and construction land by 121.64%, while forest land declined by 37.45%; these shifts corresponded to a basin-wide decline and increasing spatial heterogeneity of habitat quality. Scenario comparisons showed the EP pathway performed best, with 32.11% of the basin classified as very high-quality habitat and only 8.36% as very low-quality. In contrast, under ED, the combined share of very low + low quality reached 11.17%, alongside greater fragmentation. Spatially, high-quality habitat concentrates in forest and grassland zones of the middle–upper basin, whereas low-quality areas cluster along the oasis–desert transition and urban peripheries. Expansion of arable and construction land emerges as the primary driver of degradation. These results underscore the need to prioritize ecological-protection strategies especially improving habitat quality in oasis regions and strengthening landscape connectivity to support spatial planning and ecological security in dryland inland river basins. Full article
Show Figures

Figure 1

16 pages, 579 KB  
Article
The Short-Tailed Golden Dog Fragmented Realm: α-Hull Unravels the Maned Wolf’s Hidden Population
by Luan de Jesus Matos de Brito
Wild 2026, 3(1), 4; https://doi.org/10.3390/wild3010004 - 13 Jan 2026
Viewed by 73
Abstract
Understanding the spatial structure of large mammals is critical for conservation planning, especially under increasing habitat fragmentation. This study applies an integrated spatial analysis combining the DBSCAN density-based clustering algorithm and the α-hull method to delineate non-convex geographic ranges of the maned wolf [...] Read more.
Understanding the spatial structure of large mammals is critical for conservation planning, especially under increasing habitat fragmentation. This study applies an integrated spatial analysis combining the DBSCAN density-based clustering algorithm and the α-hull method to delineate non-convex geographic ranges of the maned wolf (Chrysocyon brachyurus) across South America. Using 454 occurrence records filtered for ecological reliability, we identified 11 geographically isolated α-populations distributed across five countries and multiple biomes, including the Cerrado, Chaco, and Atlantic Forest. The sensitivity analysis of the α parameter demonstrated that values below 2 failed to generate viable polygons, while α = 2 provided the best balance between geometric detail and ecological plausibility. Our results reveal a highly fragmented distribution, with α-populations varying in area from 43,077 km2 to 566,154.7 km2 and separated by distances up to 994.755 km. Smaller and peripheral α-populations are likely more vulnerable to stochastic processes, genetic drift, and inbreeding, while larger clusters remain functionally isolated due to anthropogenic barriers. We propose the concept of ‘α-population’ as an operational unit to describe geographically and functionally isolated groups identified through combined spatial clustering and non-convex hull analysis. This approach offers a reproducible and biologically meaningful framework for refining range estimates, identifying conservation units, and guiding targeted management actions. Overall, integrating α-hulls with density-based clustering improves our understanding of the species’ fragmented spatial structure and supports evidence-based conservation strategies aimed at maintaining habitat connectivity and long-term viability of C. brachyurus populations. Full article
Show Figures

Figure 1

30 pages, 42468 KB  
Article
From “Data Silos” to “Collaborative Symbiosis”: How Digital Technologies Empower Rural Built Environment and Landscapes to Bridge Socio-Ecological Divides: Based on a Comparative Study of the Yuanyang Hani Terraces and Yu Village in Anji
by Weiping Zhang and Yian Zhao
Buildings 2026, 16(2), 296; https://doi.org/10.3390/buildings16020296 - 10 Jan 2026
Viewed by 188
Abstract
Rural areas are currently facing a deepening “social-ecological divide,” where the fragmentation of natural, economic, and cultural data—often trapped in “data silos”—hinders effective systemic governance. To bridge this gap, in this study, the Rural Landscape Information Model (RLIM), an integrative framework designed to [...] Read more.
Rural areas are currently facing a deepening “social-ecological divide,” where the fragmentation of natural, economic, and cultural data—often trapped in “data silos”—hinders effective systemic governance. To bridge this gap, in this study, the Rural Landscape Information Model (RLIM), an integrative framework designed to reconfigure rural connections through data fusion, process coordination, and performance feedback, is proposed. We validate the framework’s effectiveness through a comparative analysis of two distinct rural archetypes in China: the innovation-driven Yu Village and the heritage-conservation-oriented Hani Terraces. Our results reveal that digital technologies drive distinct empowerment pathways moderated by regional contexts: (1) In the data domain, heterogeneous resources were successfully integrated into the framework in both cases (achieving a Monitoring Coverage > 80%), yet served divergent strategic ends—comprehensive territorial management in Yu Village versus precision heritage monitoring in the Hani Terraces. (2) In the process domain, digital platforms restructured social interactions differently. Yu Village achieved high individual participation (Participation Rate ≈ 0.85) via mobile governance apps, whereas the Hani Terraces relied on cooperative-mediated engagement to bridge the digital divide for elderly farmers. (3) In the performance domain, the interventions yielded contrasting but positive economic-ecological outcomes. Yu Village realized a 25% growth in tourism revenue through “industrial transformation” (Ecology+), while the Hani Terraces achieved a 12% value enhancement by stabilizing traditional agricultural ecosystems (Culture+). This study contributes a verifiable theoretical model and a set of operational tools, demonstrating that digital technologies are not merely instrumental add-ons but catalysts for fostering resilient, collaborative, and context-specific rural socio-ecological systems, ultimately offering scalable governance strategies for sustainable rural revitalization in the digital era. Full article
(This article belongs to the Special Issue Digital Technologies in Construction and Built Environment)
Show Figures

Figure 1

17 pages, 3322 KB  
Article
Global Warming Drives the Adaptive Distribution and Landscape Fragmentation of Neosinocalamus affinis Forests in China
by Huayong Zhang, Junwei Liu, Yihe Zhang, Zhongyu Wang and Zhao Liu
Forests 2026, 17(1), 84; https://doi.org/10.3390/f17010084 - 8 Jan 2026
Viewed by 189
Abstract
Compared with other forest vegetation, bamboo forests have a stronger carbon sequestration capacity, which plays a vital role in achieving the national goals of carbon peak and carbon neutrality. Global warming has profoundly impacted the adaptive distribution and landscape fragmentation of bamboo forests. [...] Read more.
Compared with other forest vegetation, bamboo forests have a stronger carbon sequestration capacity, which plays a vital role in achieving the national goals of carbon peak and carbon neutrality. Global warming has profoundly impacted the adaptive distribution and landscape fragmentation of bamboo forests. This study utilized an optimized MaxEnt model to calculate the current habitat range of Neosinocalamus affinis (Rendle) Keng f. forests across China and project their potential distribution under three future climate scenarios (SSP126, SSP370, SSP585) for the 2050s and 2090s and analyzed the landscape fragmentation of their land use using landscape indices. The results reveal that Neosinocalamus affinis forests are currently primarily distributed in Chongqing Municipality, eastern and southeastern Sichuan Province, and northern Guizhou Province. The key environmental factors influencing their distribution are identified as: mean diurnal temperature range (Bio2), precipitation of warmest quarter (Bio18), and precipitation of wettest quarter (Bio16). Across the three future scenarios, the suitable habitat area for Neosinocalamus affinis forests demonstrates an overall expanding trend. Rising CO2 concentrations correlate with a reduction in suitable habitat. The habitat centroid shifts southward in the 2050s and northeastward in the 2090s. In the future, the fragmentation degree of highly suitable areas for Neosinocalamus affinis forests will be higher than at present and show an increasing trend, with forest fragmentation significantly intensifying and overall landscape quality further declining. The predictive results of this study provide a scientific basis for the effective conservation and management of Neosinocalamus affinis forests, thereby contributing to the sustainable utilization of bamboo forest resources. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 3045 KB  
Review
A Bibliometric Analysis of Digital Financial Literacy and Its Role in Reducing Online Financial Fraud in the European Union
by Carol Wangari Maina, Mahdi Imani Bashokoh and Diána Koponicsné Györke
Int. J. Financial Stud. 2026, 14(1), 18; https://doi.org/10.3390/ijfs14010018 - 8 Jan 2026
Viewed by 182
Abstract
The rapid digitalization of financial services in the European Union (EU) has not only enhanced convenience and inclusion but also increased exposure to sophisticated online financial fraud. Digital financial literacy (DFL) is widely promoted as a key tool for empowering consumers and reducing [...] Read more.
The rapid digitalization of financial services in the European Union (EU) has not only enhanced convenience and inclusion but also increased exposure to sophisticated online financial fraud. Digital financial literacy (DFL) is widely promoted as a key tool for empowering consumers and reducing fraud victimization. However, the empirical and conceptual landscape linking DFL to fraud reduction within the specific sociolegal context of the EU remains fragmented. This study uses bibliometric analysis to map the research area, define major themes within the field, and determine the role of DFL in reducing online financial fraud in the EU. Peer-reviewed journal articles were targeted to ensure academic rigor, with a publication window of 2010–2025 reflecting key fintech and regulatory developments. After adhering to PRISMA principles, 87 peer-reviewed publications were chosen out of a total of 568 records identified through OpenAlex and Web of Science, coauthorship, keyword co-occurrence, citation, temporal, and density representations were analyzed using VOSviewer. Findings indicate an increasingly diffuse research field with new clusters concentrating on macroeconomic policy, business technology, social psychology, and interdisciplinary foundations. Results demonstrate that successful implementation of DFL interventions combines behavioral insights, technological protection, and non-discriminatory policy considerations. The study concludes by identifying major gaps in research and providing a path forward for future evidence-based policy efforts toward enhancing consumer protection in the EU digital financial market. Full article
Show Figures

Figure 1

23 pages, 5403 KB  
Article
Stage-Dependent Evolution of Floodplain Landscapes in the Lower Yellow River Under Dam Regulation
by Xiaohong Wei, Zechen Wang, Shengyan Ding and Shiliang Liu
Land 2026, 15(1), 121; https://doi.org/10.3390/land15010121 - 7 Jan 2026
Viewed by 313
Abstract
The floodplain landscape of the lower Yellow River is jointly shaped by natural water-sediment processes and human activities. With intensified regulation by large reservoirs and increasing human development intensity, the landscape pattern of the floodplain has undergone significant changes. Clarifying the relative contributions [...] Read more.
The floodplain landscape of the lower Yellow River is jointly shaped by natural water-sediment processes and human activities. With intensified regulation by large reservoirs and increasing human development intensity, the landscape pattern of the floodplain has undergone significant changes. Clarifying the relative contributions of natural and anthropogenic factors, as well as their interactive mechanisms, is crucial for ecological management of the floodplain. Based on 40-year long-term land-use data and hydrological and meteorological observations, this study integrates landscape metrics, the human interference index (HI), grey relational analysis, and partial least squares regression to quantify the spatiotemporal dynamics of landscape pattern in the floodplain of the lower Yellow River and to elucidate the driving mechanisms underlying landscape-pattern evolution. The results indicate that (1) during the study period, the areas of cultivated land and built-up land in the floodplain continuously increased, whereas natural wetlands and grassland decreased accordingly. Taking 2000 as a breakpoint, the rate and direction of landscape change exhibited stage-dependent differences. (2) Landscape pattern metrics changed nonlinearly: the number of patches decreased first and then increased; the patch cohesion index increased first and then declined; and Shannon’s diversity index showed an overall downward trend. These changes suggest a process of landscape consolidation induced by agricultural cultivation, followed by re-fragmentation driven by the expansion of built-up land. (3) Driving-mechanism analysis shows that the HI is the primary driver of the current changes in floodplain landscape pattern. After the operation of the Xiaolangdi Dam, water-sediment conditions tended to stabilize and flood risk in the floodplain decreased, thereby creating favourable conditions for human activities. This study highlights the stage-dependent influences of natural and anthropogenic factors on floodplain landscape evolution under dam regulation and suggests that management strategies should be adapted to the current re-fragmentation phase, prioritizing the strict control of agricultural expansion and the restoration of ecological corridors to mitigate anthropogenic interference under stable dam regulation. Full article
Show Figures

Figure 1

24 pages, 8129 KB  
Article
Ecological Health Assessment in Rocky Desertification Control Areas from a Landscape Pattern-Process Coupling Perspective
by Yanmei Liao, Zhongfa Zhou, Jie Zhang and Denghong Huang
Land 2026, 15(1), 115; https://doi.org/10.3390/land15010115 - 7 Jan 2026
Viewed by 197
Abstract
To investigate the spatiotemporal evolution of ecosystem health in a typical rocky desertification control demonstration zone. This study utilized land use data and remote sensing imagery from 1992, 2003, 2009, 2015, and 2021. Landscape pattern analysis was employed to quantify landscape characteristics. A [...] Read more.
To investigate the spatiotemporal evolution of ecosystem health in a typical rocky desertification control demonstration zone. This study utilized land use data and remote sensing imagery from 1992, 2003, 2009, 2015, and 2021. Landscape pattern analysis was employed to quantify landscape characteristics. A Pressure-State-Response (PSR) model framework was integrated to establish an ecosystem health assessment system comprising 14 indicator factors, enabling ecosystem health evaluation from the perspective of coupling landscape patterns and ecological processes. Key findings reveal: Significant cropland expansion occurred within the study area, accompanied by mutual transitions within ecological land types, yet the overall landscape structure remained relatively stable. The regional landscape underwent substantial transformations, characterized by grassland reduction alongside increases in cropland and shrubland. These changes led to decreased landscape heterogeneity and fragmentation, an increasingly dominant landscape matrix, significantly enhanced connectivity, and reduced diversity. Ecosystem health experienced an initial deterioration phase followed by gradual recovery. By 2021, a transition trend emerged where a suboptimal state prevailed, yet localized areas exhibited improved quality. Distinct variations in ecological response mechanisms were observed across different geomorphic types. Unhealthy ecosystems were predominantly distributed in areas of intensive human activity, specifically peak-cluster platforms (I), eroded platforms (III), and V-shaped valleys (V). These results underscore the necessity of considering differential ecological carrying capacities inherent to various geomorphic types during rocky desertification control. Implementing differentiated management strategies and adaptive governance is crucial for promoting the sustainable enhancement of regional ecosystem health. Full article
(This article belongs to the Special Issue Landscape Ecological Risk in Mountain Areas)
Show Figures

Figure 1

26 pages, 1891 KB  
Article
Effect of Climatic Aridity on Above-Ground Biomass, Modulated by Forest Fragmentation and Biodiversity in Ghana
by Elisha Njomaba, Ben Emunah Aikins and Peter Surový
Earth 2026, 7(1), 7; https://doi.org/10.3390/earth7010007 - 7 Jan 2026
Viewed by 179
Abstract
Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its [...] Read more.
Forests play a vital role in the global carbon cycle but face growing anthropogenic pressures, with climate change and forest fragmentation among the most critical. In West Africa, particularly in Ghana, the interaction between increasing aridity and forest fragmentation remains underexplored, despite its significance for forest biomass dynamics and carbon storage processes. This study examined how spatial variation in climatic aridity (Aridity Index, AI) affects above-ground biomass (AGB) in Ghana’s ecological zones, both directly and indirectly through forest fragmentation and biodiversity, using structural equation modeling (SEM) and generalized additive models (GAMs). Results from this study show that AGB declines along the aridity gradient, with humid zones supporting the highest biomass and semi-arid zones the lowest. The SEM analysis revealed that areas with a lower aridity index (drier conditions) had significantly lower AGB, indicating that arid conditions are associated with lower forest biomass. Fragmentation patterns align with this relationship, while biodiversity (as measured by species richness) showed weak associations, likely reflecting both ecological and data limitations. GAMs highlighted nonlinear fragmentation effects: mean patch area (AREA_MN) was the strongest predictor, showing a unimodal relationship with biomass, whereas number of patches (NP), edge density (ED), and landscape shape index (LSI) reduced AGB. Overall, these findings demonstrate that aridity and spatial configuration jointly control biomass, with fragmentation acting as a key mediator of this relationship. Dry and transitional forests emerge as particularly vulnerable, emphasizing the need for management strategies that maintain large, connected forest patches and integrate restoration into climate adaptation policies. Full article
Show Figures

Figure 1

24 pages, 3349 KB  
Article
Transhumance as Biocultural Heritage in Island Territories: Conservation Challenges and Tourism Opportunities in Gran Canaria (Spain)
by Claudio Moreno-Medina, Juan Manuel Parreño-Castellano, Ilaria Gesualdi and Javier Gil-León
Heritage 2026, 9(1), 15; https://doi.org/10.3390/heritage9010015 - 6 Jan 2026
Viewed by 184
Abstract
This article analyses contemporary transhumance in Gran Canaria as a singular case of insular pastoralism and biocultural heritage within the Mediterranean and Atlantic contexts. While transhumance has been widely recognised for its ecological, cultural and socio-economic relevance, in Gran Canaria it persists in [...] Read more.
This article analyses contemporary transhumance in Gran Canaria as a singular case of insular pastoralism and biocultural heritage within the Mediterranean and Atlantic contexts. While transhumance has been widely recognised for its ecological, cultural and socio-economic relevance, in Gran Canaria it persists in an especially fragile form, maintained by a small, ageing group of herders. Drawing on an interdisciplinary methodology that combines 36 semi-structured interviews, ethnographic fieldwork and GIS-based spatial analysis of routes and grazing areas, the study characterises the socio-ecological functioning of the system, its environmental and cultural contributions, and the threats it faces. The results highlight the role of transhumance in sustaining agrobiodiversity, fire prevention, ecological connectivity and traditional ecological knowledge, as well as in shaping a distinctive pastoral soundscape, toponymy and material culture. At the same time, the system is undermined by demographic ageing, land fragmentation, urban and tourism pressure, bureaucratic burdens and climate uncertainty. The article examines emerging initiatives in cultural and experiential tourism linked to cheese production, wool and participatory transhumant journeys, arguing that tourism can support, but not substitute, the protection of pastoral livelihoods. It concludes by outlining policy implications for island territories, emphasising the need for integrated governance that recognizes transhumance as living heritage and a strategic tool for cultural landscape management. Full article
(This article belongs to the Special Issue Revitalizing Heritage Places and Memories for Sustainable Tourism)
Show Figures

Figure 1

Back to TopTop