Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,312)

Search Parameters:
Keywords = landscape diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4537 KiB  
Article
Learning the Value of Place: Machine Learning Models for Real Estate Appraisal in Istanbul’s Diverse Urban Landscape
by Ahmet Hilmi Erciyes, Toygun Atasoy, Abdurrahman Tursun and Sibel Canaz Sevgen
Buildings 2025, 15(15), 2773; https://doi.org/10.3390/buildings15152773 - 6 Aug 2025
Abstract
The prediction of real estate values is vital for taxation, transactions, mortgages, and urban policy development. Values can be predicted more accurately by statistical or advanced methods together when the size of the data is huge. In metropolitan cities like İstanbul, where size [...] Read more.
The prediction of real estate values is vital for taxation, transactions, mortgages, and urban policy development. Values can be predicted more accurately by statistical or advanced methods together when the size of the data is huge. In metropolitan cities like İstanbul, where size of the real estate data is vast and complex, mass appraisal methods supported by Machine Learning offer a scalable and consistent alternative. This study employs six algorithms: Artificial Neural Network, Extreme Gradient Boosting, K-Nearest Neighbors, Support Vector Regression, Random Forest, and Semi-Log Regression, to estimate the values of real estate on both the Asian and European continent parts of İstanbul. In total, 168,099 residential properties were utilized along with 30 of their features from both sides of the Bosphorus. The results show that RF yielded the best performance in Beşiktaş, while XGBoost performed best in Üsküdar. ANN also produced competitive results, although slightly less accurate than those of XGBoost and RF. In contrast, traditional SVR and SLR models underperformed, especially in terms of R2 and RMSE values. With its large-scale dataset, focusing on one of the greatest metropolitan areas, Istanbul, and the usage of multiple ML algorithms, this study stands as a comprehensive and practical contribution to the field of automated real estate valuation. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

27 pages, 14923 KiB  
Article
Multi-Sensor Flood Mapping in Urban and Agricultural Landscapes of the Netherlands Using SAR and Optical Data with Random Forest Classifier
by Omer Gokberk Narin, Aliihsan Sekertekin, Caglar Bayik, Filiz Bektas Balcik, Mahmut Arıkan, Fusun Balik Sanli and Saygin Abdikan
Remote Sens. 2025, 17(15), 2712; https://doi.org/10.3390/rs17152712 - 5 Aug 2025
Abstract
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning [...] Read more.
Floods stand as one of the most harmful natural disasters, which have become more dangerous because of climate change effects on urban structures and agricultural fields. This research presents a comprehensive flood mapping approach that combines multi-sensor satellite data with a machine learning method to evaluate the July 2021 flood in the Netherlands. The research developed 25 different feature scenarios through the combination of Sentinel-1, Landsat-8, and Radarsat-2 imagery data by using backscattering coefficients together with optical Normalized Difference Water Index (NDWI) and Hue, Saturation, and Value (HSV) images and Synthetic Aperture Radar (SAR)-derived Grey Level Co-occurrence Matrix (GLCM) texture features. The Random Forest (RF) classifier was optimized before its application based on two different flood-prone regions, which included Zutphen’s urban area and Heijen’s agricultural land. Results demonstrated that the multi-sensor fusion scenarios (S18, S20, and S25) achieved the highest classification performance, with overall accuracy reaching 96.4% (Kappa = 0.906–0.949) in Zutphen and 87.5% (Kappa = 0.754–0.833) in Heijen. For the flood class F1 scores of all scenarios, they varied from 0.742 to 0.969 in Zutphen and from 0.626 to 0.969 in Heijen. Eventually, the addition of SAR texture metrics enhanced flood boundary identification throughout both urban and agricultural settings. Radarsat-2 provided limited benefits to the overall results, since Sentinel-1 and Landsat-8 data proved more effective despite being freely available. This study demonstrates that using SAR and optical features together with texture information creates a powerful and expandable flood mapping system, and RF classification performs well in diverse landscape settings. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Flood Forecasting and Monitoring)
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Viewed by 21
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

30 pages, 3430 KiB  
Article
Stage-Specific Serum Proteomic Signatures Reveal Early Biomarkers and Molecular Pathways in Huntington’s Disease Progression
by Christiana C. Christodoulou, Christiana A. Demetriou and Eleni Zamba-Papanicolaou
Cells 2025, 14(15), 1195; https://doi.org/10.3390/cells14151195 - 4 Aug 2025
Viewed by 251
Abstract
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation [...] Read more.
Background: Huntington’s Disease (HD) is a monogenic neurodegenerative disease resulting in a CAG repeat expansion in the HTT gene. Despite this genetic simplicity, its molecular mechanisms remain highly complex. Methods: In this study, untargeted serum proteomics, bioinformatics analysis, biomarker filtering and ELISA validation were implemented to characterize the proteomic landscape across the three HD stages—asymptomatic, early symptomatic and symptomatic advanced—alongside gender/age-matched controls. Results: We identified 84 over-expressed and 118 under-expressed differentially expressed proteins. Enrichment analysis revealed dysregulation in pathways including the complement cascade, LXR/RXR activation and RHOGDI signaling. Biomarker analysis highlighted key proteins with diagnostic potential, including CAP1 (AUC = 0.809), CAPZB (AUC = 0.861), TAGLN2 (AUC = 0.886), THBS1 (AUC = 0.883) and CFH (AUC = 0.948). CAP1 and CAPZB demonstrated robust diagnostic potential in linear mixed-effects models. CAP1 decreased in the asymptomatic stage, suggesting early cytoskeletal disruption, while CAPZB was consistently increased across HD stages. Conclusions: Our findings illuminate the dynamic proteomic and molecular landscape of HD. Future studies should validate these candidates in larger, more diverse cohorts and explore their mechanistic roles in HD pathology and progression. Full article
Show Figures

Figure 1

29 pages, 651 KiB  
Article
Digital Technologies to Support Sustainable Consumption: An Overview of the Automotive Industry
by Silvia Avasilcăi, Mihaela Brîndușa Tudose, George Victor Gall, Andreea-Gabriela Grădinaru, Bogdan Rusu and Elena Avram
Sustainability 2025, 17(15), 7047; https://doi.org/10.3390/su17157047 - 3 Aug 2025
Viewed by 265
Abstract
Having in view the current global disruptive social and economic landscape, sustainability becomes more important than ever. As producers become more concerned about adopting more sustainable practices, customer awareness towards sustainable behavior must be the focus of all stakeholders. Within this context, the [...] Read more.
Having in view the current global disruptive social and economic landscape, sustainability becomes more important than ever. As producers become more concerned about adopting more sustainable practices, customer awareness towards sustainable behavior must be the focus of all stakeholders. Within this context, the SHIFT framework (proposed in 2019) highlights the manner in which consumers’ traits and attitudes influence their propensity towards sustainable consumption. It consists of five factors considered to be relevant to consumer behavior: Social influence, Habit formation, Individual self, Feelings and cognition, and Tangibility. Different from previous studies, this research focuses on applying the SHIFT framework to the automotive industry, taking into consideration the contribution of digital technologies to fostering sustainable consumer behavior throughout the entire product lifecycle. Using a qualitative research approach, the most relevant digital technologies in the automotive industry were identified and mapped in relation to the three phases of consumption (choice, usage, and disposal). The research aimed to develop and test an original conceptual framework, starting from the SHIFT. The results of the study highlight the fact that the digital technologies, in their diversity, are integrated in different ways into each of the three phases, facilitating the adoption of sustainable consumption. To achieve sustainability, the two key stakeholders, consumers and producers, should share a common ground on capitalizing the opportunities offered by digital technologies. Full article
(This article belongs to the Special Issue Sustainable Consumption in the Digital Economy)
Show Figures

Figure 1

20 pages, 19537 KiB  
Article
Submarine Topography Classification Using ConDenseNet with Label Smoothing Regularization
by Jingyan Zhang, Kongwen Zhang and Jiangtao Liu
Remote Sens. 2025, 17(15), 2686; https://doi.org/10.3390/rs17152686 - 3 Aug 2025
Viewed by 217
Abstract
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not [...] Read more.
The classification of submarine topography and geomorphology is essential for marine resource exploitation and ocean engineering, with wide-ranging implications in marine geology, disaster assessment, resource exploration, and autonomous underwater navigation. Submarine landscapes are highly complex and diverse. Traditional visual interpretation methods are not only inefficient and subjective but also lack the precision required for high-accuracy classification. While many machine learning and deep learning models have achieved promising results in image classification, limited work has been performed on integrating backscatter and bathymetric data for multi-source processing. Existing approaches often suffer from high computational costs and excessive hyperparameter demands. In this study, we propose a novel approach that integrates pruning-enhanced ConDenseNet with label smoothing regularization to reduce misclassification, strengthen the cross-entropy loss function, and significantly lower model complexity. Our method improves classification accuracy by 2% to 10%, reduces the number of hyperparameters by 50% to 96%, and cuts computation time by 50% to 85.5% compared to state-of-the-art models, including AlexNet, VGG, ResNet, and Vision Transformer. These results demonstrate the effectiveness and efficiency of our model for multi-source submarine topography classification. Full article
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
Legacy and Luxury Effects: Dual Drivers of Tree Diversity Dynamics in Beijing’s Urbanizing Residential Areas (2006–2021)
by Xi Li, Jicun Bao, Yue Li, Jijie Wang, Wenchao Yan and Wen Zhang
Forests 2025, 16(8), 1269; https://doi.org/10.3390/f16081269 - 3 Aug 2025
Viewed by 169
Abstract
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. [...] Read more.
Numerous studies have demonstrated that in residential areas of Western cities, both luxury and legacy effects significantly shape tree species diversity dynamics. However, the specific mechanisms driving these diversity patterns in China, where urbanization has progressed at an unprecedented pace, remain poorly understood. In this study we selected 20 residential settlements and 7 key socio-economic properties to investigate the change trend of tree diversity (2006–2021) and its socio-economic driving factors in Beijing. Our results demonstrate significant increases in total, native, and exotic tree species richness between 2006 and 2021 (p < 0.05), with average increases of 36%, 26%, and 55%, respectively. Total and exotic tree Shannon-Wiener indices, as well as exotic tree Simpson’s index, were also significantly higher in 2021 (p < 0.05). Housing prices was the dominant driver shaping total and exotic tree diversity, showing significant positive correlations with both metrics. In contrast, native tree diversity exhibited a strong positive association with neighborhood age. Our findings highlight two dominant mechanisms: legacy effect, where older neighborhoods preserve native diversity through historical planting practices, and luxury effect, where affluent communities drive exotic species proliferation through ornamental landscaping initiatives. These findings elucidate the dual dynamics of legacy conservation and luxury-driven cultivation in urban forest development, revealing how historical contingencies and contemporary socioeconomic forces jointly shape tree diversity patterns in urban ecosystems. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

38 pages, 6505 KiB  
Review
Trends in Oil Spill Modeling: A Review of the Literature
by Rodrigo N. Vasconcelos, André T. Cunha Lima, Carlos A. D. Lentini, José Garcia V. Miranda, Luís F. F. de Mendonça, Diego P. Costa, Soltan G. Duverger and Elaine C. B. Cambui
Water 2025, 17(15), 2300; https://doi.org/10.3390/w17152300 - 2 Aug 2025
Viewed by 285
Abstract
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused [...] Read more.
Oil spill simulation models are essential for predicting the oil spill behavior and movement in marine environments. In this study, we comprehensively reviewed a large and diverse body of peer-reviewed literature obtained from Scopus and Web of Science. Our initial analysis phase focused on examining trends in scientific publications, utilizing the complete dataset derived after systematic screening and database integration. In the second phase, we applied elements of a systematic review to identify and evaluate the most influential contributions in the scientific field of oil spill simulations. Our analysis revealed a steady and accelerating growth of research activity over the past five decades, with a particularly notable expansion in the last two. The field has also experienced a marked increase in collaborative practices, including a rise in international co-authorship and multi-authored contributions, reflecting a more global and interdisciplinary research landscape. We cataloged the key modeling frameworks that have shaped the field from established systems such as OSCAR, OIL-MAP/SIMAP, and GNOME to emerging hybrid and Lagrangian approaches. Hydrodynamic models were consistently central, often integrated with biogeochemical, wave, atmospheric, and oil-spill-specific modules. Environmental variables such as wind, ocean currents, and temperature were frequently used to drive model behavior. Geographically, research has concentrated on ecologically and economically sensitive coastal and marine regions. We conclude that future progress will rely on the real-time integration of high-resolution environmental data streams, the development of machine-learning-based surrogate models to accelerate computations, and the incorporation of advanced biodegradation and weathering mechanisms supported by experimental data. These advancements are expected to enhance the accuracy, responsiveness, and operational value of oil spill modeling tools, supporting environmental monitoring and emergency response. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

27 pages, 3387 KiB  
Article
Landscape Services from the Perspective of Experts and Their Use by the Local Community: A Comparative Study of Selected Landscape Types in a Region in Central Europe
by Piotr Krajewski, Marek Furmankiewicz, Marta Sylla, Iga Kołodyńska and Monika Lebiedzińska
Sustainability 2025, 17(15), 6998; https://doi.org/10.3390/su17156998 - 1 Aug 2025
Viewed by 192
Abstract
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual [...] Read more.
This study investigates the concept of landscape services (LS), which integrate environmental and sociocultural dimensions of sustainable development. Recognizing landscapes as essential to daily life and well-being, the research aims to support sustainable spatial planning by analyzing both their potential and their actual use. The study has three main objectives: (1) to assess the potential of 16 selected landscape types to provide six key LS through expert evaluation; (2) to determine actual LS usage patterns among the local community (residents); and (3) to identify agreements and discrepancies between expert assessments and resident use. The services analyzed include providing space for daily activities; regulating spatial structure through diversity and compositional richness; enhancing physical and mental health; enabling passive and active recreation; supporting personal fulfillment; and fostering social interaction. Expert-based surveys and participatory mapping with residents were used to assess the provision and use of LS. The results indicate consistent evaluations for forest and historical urban landscapes (high potential and use) and mining and transportation landscapes (low potential and use). However, significant differences emerged for mountain LS, rated highly by experts but used minimally by residents. These insights highlight the importance of aligning expert planning with community needs to promote sustainable land use policies and reduce spatial conflicts. Full article
Show Figures

Figure 1

18 pages, 4332 KiB  
Article
Soils of the Settlements of the Yamal Region (Russia): Morphology, Diversity, and Their Environmental Role
by Evgeny Abakumov, Alexandr Pechkin, Sergey Kouzov and Anna Kravchuk
Appl. Sci. 2025, 15(15), 8569; https://doi.org/10.3390/app15158569 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and [...] Read more.
The landscapes of the Arctic seem endless. But they are also subject to anthropogenic impact, especially in urbanized and industrial ecosystems. The population of the Arctic zone of Russia is extremely urbanized, and up to 84% of the population lives in cities and industrial settlements. In this regard, we studied the background soils of forests and tundras and the soils of settlements. The main signs of the urbanogenic morphogenesis of soils associated with the transportation of material for urban construction are revealed. The peculiarities of soils of recreational, residential, and industrial zones of urbanized ecosystems are described. The questions of diversity and the classification of soils are discussed. The specificity of bulk soils used in the construction of industrial structures in the context of the initial stage of soil formation is considered. For the first time, soils and soil cover of settlements in the central and southern parts of the Yamal region are described in the context of traditional pedology. It is shown that the construction of new soils and grounds can lead to both decreases and increases in biodiversity, including the appearance of protected species. Surprisingly, the forms of urban soil formation in the Arctic are very diversified in terms of morphology, as well as in the ecological functions performed by soils. The urbanization of past decades has drastically changed the local soil cover. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 - 1 Aug 2025
Viewed by 194
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

18 pages, 1618 KiB  
Article
Native Grass Enhances Bird, Dragonfly, Butterfly and Plant Biodiversity Relative to Conventional Crops in Midwest, USA
by Steven I. Apfelbaum, Susan M. Lehnhardt, Michael Boston, Lea Daly, Gavin Pinnow, Kris Gillespie and Donald M. Waller
Agriculture 2025, 15(15), 1666; https://doi.org/10.3390/agriculture15151666 - 1 Aug 2025
Viewed by 201
Abstract
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus [...] Read more.
Conspicuous declines in native grassland habitats have triggered sharp reductions in grassland birds, dragonflies, butterflies, and native plant populations and diversity. We compared these biotic groups among three crop type treatments: corn, alfalfa, and a perennial native grass, Virginia wild rye, (Elymus virginicus L.) or VWR. This crop type had 2-3X higher bird, dragonfly, butterfly and plant species richness, diversity, and faunal abundance relative to alfalfa and corn types. VWR crop fields also support more obligate grassland bird species and higher populations of dragonfly and butterfly species associated with grasslands and wet meadows. In contrast, the corn and alfalfa types support few or no obligatory grassland birds and mostly non-native insects such as the white cabbage looper (Artogeia rapae L.), the common yellow sulfur butterfly (Colias philodice Godart.), and the mobile and migratory common green darner dragonfly (Anax junius Drury.). In sum, the VWR perennial native grass crop type offers a special opportunity to improve the diversity and abundance of grassland bird species, beneficial insect species, and many native plant species within agricultural landscapes. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

21 pages, 1133 KiB  
Review
Beyond Docetaxel: Targeting Resistance Pathways in Prostate Cancer Treatment
by Tayo Alex Adekiya
BioChem 2025, 5(3), 24; https://doi.org/10.3390/biochem5030024 - 1 Aug 2025
Viewed by 198
Abstract
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as [...] Read more.
Prostate cancer continues to be the most common cause of cancer-related disease and mortality among men worldwide, especially in the advanced stages, notably metastatic castration-resistant prostate cancer (mCRPC), which poses significant treatment challenges. Docetaxel, a widely used chemotherapeutic agent, has long served as the standard treatment, offering survival benefits and mitigation. However, its clinical impact is frequently undermined by the development of chemoresistance, which is a formidable challenge that leads to treatment failure and disease progression. The mechanisms driving docetaxel resistance are diverse and complex, encompassing modifications in androgen receptor signaling, drug efflux transporters, epithelial-mesenchymal transition (EMT), microtubule alterations, apoptotic pathway deregulation, and tumor microenvironmental influences. Recent evidence suggests that extracellular RNAs influence drug responses, further complicating the resistance landscape. This review offers a broad discussion on the mechanisms of resistance and explores novel therapeutic approaches to address them. These include next-generation taxanes, targeted molecular inhibitors, immunotherapies, and combination regimens that can be designed to counteract specific resistance pathways. By broadening our understanding of docetaxel resistance, this review highlights potential strategies to improve therapeutic efficacy and the potential to enhance outcomes in patients with advanced treatment-resistant prostate cancer. Full article
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 365
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

Back to TopTop