Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (853)

Search Parameters:
Keywords = land classification system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11501 KiB  
Article
Comparative Chloroplast Genomics, Phylogenomics, and Divergence Times of Sassafras (Lauraceae)
by Zhiyuan Li, Yunyan Zhang, David Y. P. Tng, Qixun Chen, Yahong Wang, Yongjing Tian, Jingbo Zhou and Zhongsheng Wang
Int. J. Mol. Sci. 2025, 26(15), 7357; https://doi.org/10.3390/ijms26157357 - 30 Jul 2025
Viewed by 163
Abstract
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled [...] Read more.
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled the complete cp genomes of Sassafras, and conducted the comparative cp genomics, phylogenomics, and divergence time estimation of this ecological and economic important genus. The whole length of cp genomes of the 10 Sassafras ranged from 151,970 bp to 154,011 bp with typical quadripartite structure, conserved gene arrangements and contents. Variations in length of cp were observed in the inverted repeat regions (IRs) and a relatively high usage frequency of codons ending with T/A was detected. Four hypervariable intergenic regions (ccsA-ndhD, trnH-psbA, rps15-ycf1, and petA-psbJ) and 672 cp microsatellites were identified for Sassafras. Phylogenetic analysis based on 106 cp genomes from 30 genera within the Lauraceae family demonstrated that Sassafras constituted a monophyletic clade and grouped a sister branch with the Cinnamomum sect. Camphora within the tribe Cinnamomeae. Divergence time between S. albidum and its East Asian siblings was estimated at the Middle Miocene (16.98 Mya), S. tzumu diverged from S. randaiense at the Pleistocene epoch (3.63 Mya). Combined with fossil evidence, our results further revealed the crucial role of the Bering Land Bridge and glacial refugia in the speciation and differentiation of Sassafras. Overall, our study clarified the evolution pattern of Sassafras cp genomes and elucidated the phylogenetic position and divergence time framework of Sassafras. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 10615 KiB  
Article
Cultivated Land Quality Evaluation and Constraint Factor Identification Under Different Cropping Systems in the Black Soil Region of Northeast China
by Changhe Liu, Yuzhou Sun, Xiangjun Liu, Shengxian Xu, Wentao Zhou, Fengkui Qian, Yunjia Liu, Huaizhi Tang and Yuanfang Huang
Agronomy 2025, 15(8), 1838; https://doi.org/10.3390/agronomy15081838 - 29 Jul 2025
Viewed by 122
Abstract
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of [...] Read more.
Cultivated land quality is a key factor in ensuring sustainable agricultural development. Exploring differences in cultivated land quality under distinct cropping systems is essential for developing targeted improvement strategies. This study takes place in Shenyang City—located in the typical black soil region of Northeast China—as a case area to construct a cultivated land quality evaluation system comprising 13 indicators, including organic matter, effective soil layer thickness, and texture configuration. A minimum data set (MDS) was separately extracted for paddy and upland fields using principal component analysis (PCA) to conduct a comprehensive evaluation of cultivated land quality. Additionally, an obstacle degree model was employed to identify the limiting factors and quantify their impact. The results indicated the following. (1) Both MDSs consisted of seven indicators, among which five were common: ≥10 °C accumulated temperature, available phosphorus, arable layer thickness, irrigation capacity, and organic matter. Parent material and effective soil layer thickness were unique to paddy fields, while landform type and soil texture were unique to upland fields. (2) The cultivated land quality index (CQI) values at the sampling point level showed no significant difference between paddy (0.603) and upland (0.608) fields. However, their spatial distributions diverged significantly; paddy fields were dominated by high-grade land (Grades I and II) clustered in southern areas, whereas uplands were primarily of medium quality (Grades III and IV), with broader spatial coverage. (3) Major constraint factors for paddy fields were effective soil layer thickness (21.07%) and arable layer thickness (22.29%). For upland fields, the dominant constraints were arable layer thickness (27.57%), organic matter (25.40%), and ≥10 °C accumulated temperature (23.28%). Available phosphorus and ≥10 °C accumulated temperature were identified as shared constraint factors affecting quality classification in both systems. In summary, cultivated land quality under different cropping systems is influenced by distinct limiting factors. The construction of cropping-system-specific MDSs effectively improves the efficiency and accuracy of cultivated land quality assessment, offering theoretical and methodological support for land resource management in the black soil regions of China. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

34 pages, 56730 KiB  
Article
Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China
by Ziyi Xie, Siying Wu, Xin Liu, Hejia Shi, Mintong Hao, Weiwei Zhao, Xin Fu and Yepeng Liu
Sustainability 2025, 17(15), 6887; https://doi.org/10.3390/su17156887 - 29 Jul 2025
Viewed by 187
Abstract
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis [...] Read more.
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis (PCA), Entropy Weight Method (EWM), Attribute-Weighting Method (AWM), Linear Weighted Sum Method (LWSM), Threshold-Verification Coefficient Method (TVCM), Jenks Natural Breaks (JNB) classification, and the Obstacle Degree Model (ODM). The framework is applied to Qian County, located in the Guanzhong Plain in Shaanxi Province. The results reveal three key findings: (1) PLE efficiency exhibits significant spatial heterogeneity. Production efficiency shows a spatial pattern characterized by high values in the central region that gradually decrease toward the surrounding areas. In contrast, the living efficiency demonstrates higher values in the eastern and western regions, while remaining relatively low in the central area. Moreover, ecological efficiency shows a marked advantage in the northern region, indicating a distinct south–north gradient. (2) Integrated efficiency consolidation potential zones present distinct spatial distributions. Preliminary consolidation zones are primarily located in the western region; priority zones are concentrated in the south; and intensive consolidation zones are clustered in the central and southeastern areas, with sporadic distributions in the west and north. (3) Five primary obstacle factors hinder land use efficiency: intensive utilization of production land (PC1), agricultural land reutilization intensity (PC2), livability of living spaces (PC4), ecological space security (PC7), and ecological space fragmentation (PC8). These findings provide theoretical insights and practical guidance for formulating tar-gated LC strategies, optimizing rural spatial structures, and advancing sustainable development in similar regions. Full article
Show Figures

Figure 1

25 pages, 8105 KiB  
Article
Monitoring Critical Mountain Vertical Zonation in the Surkhan River Basin Based on a Comparative Analysis of Multi-Source Remote Sensing Features
by Wenhao Liu, Hong Wan, Peng Guo and Xinyuan Wang
Remote Sens. 2025, 17(15), 2612; https://doi.org/10.3390/rs17152612 - 27 Jul 2025
Viewed by 290
Abstract
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is [...] Read more.
Amidst the intensification of global climate change and the increasing impacts of human activities, ecosystem patterns and processes have undergone substantial transformations. The distribution and evolutionary dynamics of mountain ecosystems have become a focal point in ecological research. The Surkhan River Basin is located in the transitional zone between the arid inland regions of Central Asia and the mountain systems, where its unique physical and geographical conditions have shaped distinct patterns of vertical zonation. Utilizing Landsat imagery, this study applies a hierarchical classification approach to derive land cover classifications within the Surkhan River Basin. By integrating the NDVI (normalized difference vegetation index) and DEM (digital elevation model (30 m SRTM)), an “NDVI-DEM-Land Cover” scatterplot is constructed to analyze zonation characteristics from 1980 to 2020. The 2020 results indicate that the elevation boundary between the temperate desert and mountain grassland zones is 1100 m, while the boundary between the alpine cushion vegetation zone and the ice/snow zone is 3770 m. Furthermore, leveraging DEM and LST (land surface temperature) data, a potential energy analysis model is employed to quantify potential energy differentials between adjacent zones, enabling the identification of ecological transition areas. The potential energy analysis further refines the transition zone characteristics, indicating that the transition zone between the temperate desert and mountain grassland zones spans 1078–1139 m with a boundary at 1110 m, while the transition between the alpine cushion vegetation and ice/snow zones spans 3729–3824 m with a boundary at 3768 m. Cross-validation with scatterplot results confirms that the scatterplot analysis effectively delineates stable zonation boundaries with strong spatiotemporal consistency. Moreover, the potential energy analysis offers deeper insights into ecological transition zones, providing refined boundary identification. The integration of these two approaches addresses the dimensional limitations of traditional vertical zonation studies, offering a transferable methodological framework for mountain ecosystem research. Full article
(This article belongs to the Special Issue Temporal and Spatial Analysis of Multi-Source Remote Sensing Images)
Show Figures

Figure 1

20 pages, 7640 KiB  
Article
Land Cover Mapping Using High-Resolution Satellite Imagery and a Comparative Machine Learning Approach to Enhance Regional Water Resource Management
by János Tamás, Angura Louis, Zsolt Zoltán Fehér and Attila Nagy
Remote Sens. 2025, 17(15), 2591; https://doi.org/10.3390/rs17152591 - 25 Jul 2025
Viewed by 239
Abstract
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), [...] Read more.
Accurate land cover classification is vital for informed water resource management, especially in irrigation-dependent regions facing increased climate variability. Using fused multi-sensor remote sensing imagery from Landsat 8 and Sentinel-2, this study assesses the effectiveness of three machine learning classifiers: Random Forest (RF), Gradient Tree Boosting (GTB), and Naive Bayes (NB) in creating land cover maps for the Tisza-Körös Valley Irrigation System (TIKEVIR) in Hungary. Water bodies, built-up areas, forests, grasslands, and major crops were among the important land cover categories that were classified for the two agricultural seasons (2018 and 2022). RF performed consistently in 2022 and reached its best accuracy in 2018 (OA = 0.87, KC = 0.83, PI = 0.94). While NB’s performance in 2022 remained less consistent, GTB’s performance increased. The findings show that RF works effectively for generating accurate land cover data, providing useful information for regional monitoring, and assisting in water and environmental management decision-making. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

26 pages, 11237 KiB  
Article
Reclassification Scheme for Image Analysis in GRASS GIS Using Gradient Boosting Algorithm: A Case of Djibouti, East Africa
by Polina Lemenkova
J. Imaging 2025, 11(8), 249; https://doi.org/10.3390/jimaging11080249 - 23 Jul 2025
Viewed by 436
Abstract
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping [...] Read more.
Image analysis is a valuable approach in a wide array of environmental applications. Mapping land cover categories depicted from satellite images enables the monitoring of landscape dynamics. Such a technique plays a key role for land management and predictive ecosystem modelling. Satellite-based mapping of environmental dynamics enables us to define factors that trigger these processes and are crucial for our understanding of Earth system processes. In this study, a reclassification scheme of image analysis was developed for mapping the adjusted categorisation of land cover types using multispectral remote sensing datasets and Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS) software. The data included four Landsat 8–9 satellite images on 2015, 2019, 2021 and 2023. The sequence of time series was used to determine land cover dynamics. The classification scheme consisting of 17 initial land cover classes was employed by logical workflow to extract 10 key land cover types of the coastal areas of Bab-el-Mandeb Strait, southern Red Sea. Special attention is placed to identify changes in the land categories regarding the thermal saline lake, Lake Assal, with fluctuating salinity and water levels. The methodology included the use of machine learning (ML) image analysis GRASS GIS modules ‘r.reclass’ for the reclassification of a raster map based on category values. Other modules included ‘r.random’, ‘r.learn.train’ and ‘r.learn.predict’ for gradient boosting ML classifier and ‘i.cluster’ and ‘i.maxlik’ for clustering and maximum-likelihood discriminant analysis. To reveal changes in the land cover categories around the Lake of Assal, this study uses ML and reclassification methods for image analysis. Auxiliary modules included ‘i.group’, ‘r.import’ and other GRASS GIS scripting techniques applied to Landsat image processing and for the identification of land cover variables. The results of image processing demonstrated annual fluctuations in the landscapes around the saline lake and changes in semi-arid and desert land cover types over Djibouti. The increase in the extent of semi-desert areas and the decrease in natural vegetation proved the processes of desertification of the arid environment in Djibouti caused by climate effects. The developed land cover maps provided information for assessing spatial–temporal changes in Djibouti. The proposed ML-based methodology using GRASS GIS can be employed for integrating techniques of image analysis for land management in other arid regions of Africa. Full article
(This article belongs to the Special Issue Self-Supervised Learning for Image Processing and Analysis)
Show Figures

Figure 1

16 pages, 2720 KiB  
Communication
Wildland and Forest Fire Emissions on Federally Managed Land in the United States, 2001–2021
by Coeli M. Hoover and James E. Smith
Forests 2025, 16(8), 1205; https://doi.org/10.3390/f16081205 - 22 Jul 2025
Viewed by 256
Abstract
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in [...] Read more.
In the United States, ecosystems regularly experience wildfires and as fire seasons lengthen, fires are becoming a more important disturbance. While all types of disturbance have impacts on the carbon cycle, fires result in immediate emissions into the atmosphere. To assist managers in assessing wildland fire impacts, particularly on federally managed land, we developed estimates of area burned and related emissions for a 21-year period. These estimates are based on wildland fires defined by the interagency Monitoring Trends in Burn Severity database; emissions are simulated through the Wildland Fire Emissions Inventory System; and the classification of public land is performed according to the US Geological Survey’s Protected Areas Database of the United States. Wildland fires on federal land contributed 62 percent of all annual CO2 emissions from wildfires in the United States between 2001 and 2021. During this period, emissions from the forest fire subset of wildland fires ranged from 328 Tg CO2 in 2004 to 37 Tg CO2 in 2001. While forest fires averaged 38 percent of burned area, they represent the majority—59 to 89 percent of annual emissions—relative to fires in all ecosystems, including non-forest. Wildland fire emissions on land belonging to the federal government accounted for 44 to 77 percent of total annual fire emissions for the entire United States. Land managed by three federal agencies—the Forest Service, the Bureau of Land Management, and the Fish and Wildlife Service—accounted for 93 percent of fire emissions from federal land over the course of the study period, but year-to-year contributions varied. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

30 pages, 12494 KiB  
Article
Satellite-Based Approach for Crop Type Mapping and Assessment of Irrigation Performance in the Nile Delta
by Samar Saleh, Saher Ayyad and Lars Ribbe
Earth 2025, 6(3), 80; https://doi.org/10.3390/earth6030080 - 16 Jul 2025
Viewed by 430
Abstract
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations [...] Read more.
Water scarcity, exacerbated by climate change, population growth, and competing sectoral demands, poses a major threat to agricultural sustainability, particularly in irrigated regions such as the Nile Delta in Egypt. Addressing this challenge requires innovative approaches to evaluate irrigation performance despite the limitations in ground data availability. Traditional assessment methods are often costly, labor-intensive, and reliant on field data, limiting their scalability, especially in data-scarce regions. This paper addresses this gap by presenting a comprehensive and scalable framework that employs publicly accessible satellite data to map crop types and subsequently assess irrigation performance without the need for ground truthing. The framework consists of two parts: First, crop mapping, which was conducted seasonally between 2015 and 2020 for the four primary crops in the Nile Delta (rice, maize, wheat, and clover). The WaPOR v2 Land Cover Classification layer was used as a substitute for ground truth data to label the Landsat-8 images for training the random forest algorithm. The crop maps generated at 30 m resolution had moderate to high accuracy, with overall accuracy ranging from 0.77 to 0.80 in summer and 0.87–0.95 in winter. The estimated crop areas aligned well with national agricultural statistics. Second, based on the mapped crops, three irrigation performance indicators—adequacy, reliability, and equity—were calculated and compared with their established standards. The results reveal a good level of equity, with values consistently below 10%, and a relatively reliable water supply, as indicated by the reliability indicator (0.02–0.08). Average summer adequacy ranged from 0.4 to 0.63, indicating insufficient supply, whereas winter values (1.3 to 1.7) reflected a surplus. A noticeable improvement gradient was observed for all indicators toward the north of the delta, while areas located in the delta’s new lands consistently displayed unfavorable conditions in all indicators. This approach facilitates the identification of regions where agricultural performance falls short of its potential, thereby offering valuable insights into where and how irrigation systems can be strategically improved to enhance overall performance sustainably. Full article
Show Figures

Figure 1

27 pages, 7624 KiB  
Article
A Multi-Task Learning Framework with Enhanced Cross-Level Semantic Consistency for Multi-Level Land Cover Classification
by Shilin Tao, Haoyu Fu, Ruiqi Yang and Leiguang Wang
Remote Sens. 2025, 17(14), 2442; https://doi.org/10.3390/rs17142442 - 14 Jul 2025
Viewed by 220
Abstract
The multi-scale characteristics of remote sensing imagery have an inherent correspondence with the hierarchical structure of land cover classification systems, providing a theoretical foundation for multi-level land cover classification. However, most existing methods treat classification tasks at different semantic levels as independent processes, [...] Read more.
The multi-scale characteristics of remote sensing imagery have an inherent correspondence with the hierarchical structure of land cover classification systems, providing a theoretical foundation for multi-level land cover classification. However, most existing methods treat classification tasks at different semantic levels as independent processes, overlooking the semantic relationships among these levels, which leads to semantic inconsistencies and structural conflicts in classification results. We addressed this issue with a deep multi-task learning (MTL) framework, named MTL-SCH, which enables collaborative classification across multiple semantic levels. MTL-SCH employs a shared encoder combined with a feature cascade mechanism to boost information sharing and collaborative optimization between two levels. A hierarchical loss function is also embedded that explicitly models the semantic dependencies between levels, enhancing semantic consistency across levels. Two new evaluation metrics, namely Semantic Alignment Deviation (SAD) and Enhancing Semantic Alignment Deviation (ESAD), are also proposed to quantify the improvement of MTL-SCH in semantic consistency. In the experimental section, MTL-SCH is applied to different network models, including CNN, Transformer, and CNN-Transformer models. The results indicate that MTL-SCH improves classification accuracy in coarse- and fine-level segmentation tasks, significantly enhancing semantic consistency across levels and outperforming traditional flat segmentation methods. Full article
Show Figures

Figure 1

15 pages, 1051 KiB  
Article
Land Use Land Cover (LULC) Mapping for Assessment of Urbanization Impacts on Cropping Patterns and Water Availability in Multan, Pakistan
by Khawaja Muhammad Zakariya, Tahir Sarwar, Hafiz Umar Farid, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Abrar Ahmad and Matlob Ahmad
Earth 2025, 6(3), 79; https://doi.org/10.3390/earth6030079 - 14 Jul 2025
Viewed by 914
Abstract
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing [...] Read more.
Urbanization is causing a decrease in agricultural land. This leads to changes in cropping patterns, irrigation water availability, and water allowance. Therefore, change in cropping pattern, irrigation water availability, and water allowance were investigated in the Multan region of Pakistan using remote sensing and GIS techniques. The multi-temporal Landsat images with 30 m resolution were acquired for both Rabi (winter) and Kharif (summer) seasons for the years of 1988, 1999 and 2020. The image processing tasks including layer stacking, sub-setting, land use/land cover (LULC) classification, and accuracy assessment were performed using ERDAS Imagine (2015) software. The LULC maps showed a considerable shift of orchard area to urban settlements and other crops. About 82% of orchard areas have shifted to urban settlements and other crops from 1988 to 2020. The LULC maps for Kharif season indicated that cropped areas for cotton have decreased by 42.5% and the cropped areas for rice have increased by 718% in the last 32 years (1988–2020). During the rabi season, the cropped areas for wheat (Triticum aestivum L.) have increased by 27% from 1988 to 2020. The irrigation water availability and water allowance have increased up to 125 and 110% due to decrease in agricultural land, respectively. The overall average accuracies were found as 87 and 89% for Rabi and Kharif crops, respectively. The LULC mapping technique may be used to develop a decision support system for evaluating the changes in cropping pattern and their impacts on net water availability and water allowances. Full article
Show Figures

Figure 1

30 pages, 34212 KiB  
Article
Spatiotemporal Mapping and Driving Mechanism of Crop Planting Patterns on the Jianghan Plain Based on Multisource Remote Sensing Fusion and Sample Migration
by Pengnan Xiao, Yong Zhou, Jianping Qian, Yujie Liu and Xigui Li
Remote Sens. 2025, 17(14), 2417; https://doi.org/10.3390/rs17142417 - 12 Jul 2025
Viewed by 253
Abstract
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud [...] Read more.
The accurate mapping of crop planting patterns is vital for sustainable agriculture and food security, particularly in regions with complex cropping systems and limited cloud-free observations. This research focuses on the Jianghan Plain in southern China, where diverse planting structures and persistent cloud cover make consistent monitoring challenging. We integrated multi-temporal Sentinel-2 and Landsat-8 imagery from 2017 to 2021 on the Google Earth Engine platform and applied a sample migration strategy to construct multi-year training data. A random forest classifier was used to identify nine major planting patterns at a 10 m resolution. The classification achieved an average overall accuracy of 88.3%, with annual Kappa coefficients ranging from 0.81 to 0.88. A spatial analysis revealed that single rice was the dominant pattern, covering more than 60% of the area. Temporal variations in cropping patterns were categorized into four frequency levels (0, 1, 2, and 3 changes), with more dynamic transitions concentrated in the central-western and northern subregions. A multiscale geographically weighted regression (MGWR) model revealed that economic and production-related factors had strong positive associations with crop planting patterns, while natural factors showed relatively weaker explanatory power. This research presents a scalable method for mapping fine-resolution crop patterns in complex agroecosystems, providing quantitative support for regional land-use optimization and the development of agricultural policies. Full article
Show Figures

Figure 1

20 pages, 10558 KiB  
Article
Spatial–Spectral Feature Fusion and Spectral Reconstruction of Multispectral LiDAR Point Clouds by Attention Mechanism
by Guoqing Zhou, Haoxin Qi, Shuo Shi, Sifu Bi, Xingtao Tang and Wei Gong
Remote Sens. 2025, 17(14), 2411; https://doi.org/10.3390/rs17142411 - 12 Jul 2025
Viewed by 380
Abstract
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical [...] Read more.
High-quality multispectral LiDAR (MSL) data are crucial for land cover (LC) classification. However, the Titan MSL system encounters challenges of inconsistent spatial–spectral information due to its unique scanning and data saving method, restricting subsequent classification accuracy. Existing spectral reconstruction methods often require empirical parameter settings and involve high computational costs, limiting automation and complicating application. To address this problem, we introduce the dual attention spectral optimization reconstruction network (DossaNet), leveraging an attention mechanism and spatial–spectral information. DossaNet can adaptively adjust weight parameters, streamline the multispectral point cloud acquisition process, and integrate it into classification models end-to-end. The experimental results show the following: (1) DossaNet exhibits excellent generalizability, effectively recovering accurate LC spectra and improving classification accuracy. Metrics across the six classification models show some improvements. (2) Compared with the method lacking spectral reconstruction, DossaNet can improve the overall accuracy (OA) and average accuracy (AA) of PointNet++ and RandLA-Net by a maximum of 4.8%, 4.47%, 5.93%, and 2.32%. Compared with the inverse distance weighted (IDW) and k-nearest neighbor (KNN) approach, DossaNet can improve the OA and AA of PointNet++ and DGCNN by a maximum of 1.33%, 2.32%, 0.86%, and 2.08% (IDW) and 1.73%, 3.58%, 0.28%, and 2.93% (KNN). The findings further validate the effectiveness of our proposed method. This method provides a more efficient and simplified approach to enhancing the quality of multispectral point cloud data. Full article
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Cited by 1 | Viewed by 348
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

21 pages, 5716 KiB  
Article
Urban Allotment Gardens with Turf Reduce Biodiversity and Provide Limited Regulatory Ecosystem Services
by Marta Melon, Tomasz Dzieduszyński, Beata Gawryszewska, Maciej Lasocki, Adrian Hoppa, Arkadiusz Przybysz and Piotr Sikorski
Sustainability 2025, 17(13), 6216; https://doi.org/10.3390/su17136216 - 7 Jul 2025
Viewed by 312
Abstract
Urban gardens, including family allotment gardens (FAGs) and community gardens (CGs), play an increasingly important role in urban resilience to climate change—particularly through the delivery of regulatory ecosystem services. They occupy as much as 2.6% of Warsaw’s land area and thus have a [...] Read more.
Urban gardens, including family allotment gardens (FAGs) and community gardens (CGs), play an increasingly important role in urban resilience to climate change—particularly through the delivery of regulatory ecosystem services. They occupy as much as 2.6% of Warsaw’s land area and thus have a tangible impact on the entire metropolitan system. These gardens are used in different ways, and each use affects the magnitude of the provided ecosystem services. This preliminary study explores how different types of allotment garden uses affect biodiversity and ecosystem services, addressing a critical knowledge gap in the classification and ecological functioning of urban gardens. We surveyed 44 plots in Warsaw, categorizing them into five vegetation use types: turf, flower, vegetable, orchard, and abandoned. For each plot, we assessed the floristic diversity, vegetation structure (leaf area index, LAI), and six regulatory services: air and soil cooling, water retention, humidity regulation, PM 2.5 retention, and nectar provision. Flower gardens had the highest species diversity (Shannon index = 1.93), while turf gardens had the lowest (1.43) but the highest proportion of native species (92%). Abandoned plots stood out due to the densest vegetation (LAI = 4.93) and ecological distinctiveness. Principal component analysis showed that the selected ecosystem services explained 25% of the variation in vegetation types. We propose a use-based classification of urban gardens and highlight abandoned plots as a functionally unique and overlooked ecological category. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

28 pages, 13059 KiB  
Article
Transformation of Arable Lands in Russia over Last Half Century—Analysis Based on Detailed Mapping and Retrospective Monitoring of Soil–Land Cover and Decipherment of Big Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Dmitry A. Shapovalov, Mikhail A. Komissarov and Tung Gia Pham
Sustainability 2025, 17(13), 6203; https://doi.org/10.3390/su17136203 - 7 Jul 2025
Viewed by 505
Abstract
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in [...] Read more.
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in sown areas by 38% (from 119.7 to 74.7 million ha) and a synchronous drop in gross harvests of grain and leguminous crops by 48% (from 117 to 61 million tons). The situation stabilized in 2020, with a sowing area of 80.2 million ha and gross harvests of grain and leguminous crops of 120–150 million tons. This process was not formalized legally, and the official (legal) area of arable land decreased by only 8% from 132.8 to 122.3 million ha. Legal conflict arose for 35 million ha for unused arable land, for which there was no classification of its condition categories and no monitoring of the withdrawal time of the arable land from actual agricultural use. The aim of this study was to resolve the challenges in the method of retrospective monitoring of soil–land cover, which allowed for the achievement of the aims of the investigation—to elucidate the history of land use on arable lands from 1985 to 2025 with a time step of 5 years and to obtain a detailed classification of the arable lands’ abandonment degrees. It was also established that on most of the abandoned arable land, carbon sequestration occurs in the form of secondary forests. In the course of this work, it was shown that the reasons for the formation of an array of abandoned arable land and the stabilization of agricultural production turned out to be interrelated. The abandonment of arable land occurred proportionally to changes in the soil’s natural fertility and the degree of land degradation. Economically unprofitable lands spontaneously (without centralized planning) left the sowing zone. The efficiency of land use on the remaining lands has increased and has allowed for the mass application of modern farming systems (smart, precise, landscape-adaptive, differentiated, no-till, strip-till, etc.), which has further increased the profitability of crop production. The prospect of using abandoned lands as a carbon sequestration zone in areas of forest overgrowth has arisen. Full article
Show Figures

Figure 1

Back to TopTop