Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Keywords = laminar flow tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12509 KiB  
Article
Tuned Generalised k-ω (GEKO) Turbulence Model Parameters for Predicting Transitional Flow Through Stenosis Geometries of Various Degrees
by Jake Emmerling, Sara Vahaji, David A. V. Morton, Svetlana Stevanovic, David F. Fletcher and Kiao Inthavong
Fluids 2025, 10(7), 168; https://doi.org/10.3390/fluids10070168 - 28 Jun 2025
Viewed by 544
Abstract
Stenosis geometries are constrictions of a biological tube that can be found in many forms in the human body. Capturing the flow field in such geometries is important. For this purpose, simulations were performed using the generalised k-ω (GEKO) turbulence model [...] Read more.
Stenosis geometries are constrictions of a biological tube that can be found in many forms in the human body. Capturing the flow field in such geometries is important. For this purpose, simulations were performed using the generalised k-ω (GEKO) turbulence model to study flow through stenosis geometries with throat constrictions of 75, 50 and 25% area reduction. Laminar flow conditions of Re = 2000 and 1000 were applied and the results were compared with experimental data. The effect of four GEKO parameters (CSEP, CNW, CJET and CMIX) on flow in the post-stenotic region was investigated by simulating a wide range of parameter values. Results showed that the CMIX parameter, combined with a modified GEKO blending function, had the greatest effect on axial velocity, velocity fluctuations and the location of the jet breakdown region. A CMIX value of 0.4 closely matched the experimental results for a 75% area reduction stenosis at Re=2000 and showed significant improvements over existing Reynolds-averaged Navier–Stokes models. The GEKO model was also able to closely match the axial velocity results predicted by previously published large-eddy simulation models under the same flow conditions. Furthermore, the GEKO model was applied to a realistic oral-to-tracheal airway model for a Reynolds number of 2000 and produced results consistent with the idealised stenotic tube. Full article
(This article belongs to the Section Mathematical and Computational Fluid Mechanics)
Show Figures

Figure 1

22 pages, 7959 KiB  
Article
Numerical Investigation of Transitional Oscillatory Boundary Layers: Turbulence Quantities
by Selman Baysal and V. S. Ozgur Kirca
Fluids 2025, 10(6), 143; https://doi.org/10.3390/fluids10060143 - 28 May 2025
Viewed by 888
Abstract
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous [...] Read more.
This study investigates the organized flow structures and turbulence quantities in a transitional oscillatory boundary-layer flow over a smooth bed using a DNS model set up by the open-source framework Nektar++ (v5.2.0). The present model was validated against the results of a previous study involving a bypass transition mechanism in the intermittently turbulent regime. To trigger the initial perturbations, a roughness element was placed on the bed and removed at the very moment a two-dimensional vortex tube, caused by an inflectional-point shear-layer instability, was observed on it. Then, the turbulent spots where the flow experienced intense fluctuations in an otherwise laminar boundary layer were identified from the bed shear-stress distribution on the bed, which served as a reliable indicator of turbulence. These flow features emerged as the first sign of the initiation of turbulence. Several measurement points were selected to follow the bed shear-stress variations and to observe the spatial and temporal development of turbulent spots at a low-wave Reynolds number, Re=1.8×105. Along with these observations, phase-resolved turbulence quantities were also investigated over successive half-cycles for the first time in the literature to understand how turbulence develops and spreads over the flow domain. The results show that the turbulence generated in the near-bed region becomes stronger in the deceleration stage due to the adverse pressure gradient and diffuses away from the bed during the subsequent phases of the developing oscillatory boundary-layer flow. The findings related to the turbulence quantities also indicate that the turbulence gradually evolves and spreads into the fluid domain in successive half-cycles. Full article
(This article belongs to the Section Turbulence)
Show Figures

Figure 1

12 pages, 1929 KiB  
Article
Experimental Studies on the Critical Reynolds Number in the Flow of a Microencapsulated Phase Change Material Slurry
by Krzysztof Dutkowski and Marcin Kruzel
Energies 2025, 18(6), 1520; https://doi.org/10.3390/en18061520 - 19 Mar 2025
Viewed by 432
Abstract
The disadvantage of phase change materials (PCMs) that store thermal energy is their low thermal conductivity. The macro-, micro-, and nanoencapsulation of PCMs are some of the ways to eliminate this drawback. Liquids with micro- and nanometer-sized capsules containing PCMs have become innovative [...] Read more.
The disadvantage of phase change materials (PCMs) that store thermal energy is their low thermal conductivity. The macro-, micro-, and nanoencapsulation of PCMs are some of the ways to eliminate this drawback. Liquids with micro- and nanometer-sized capsules containing PCMs have become innovative working fluids for heat transfer—a slurry of encapsulated PCMs. This paper shows the results of in-depth studies on the nature of fluid movement (slurry of microencapsulated PCMs) in pipe channels. The slurry flowed inside a tube with a diameter of 4 mm in the range of Re = 350–11,000. The PCM microcapsule (mPCM) concentration ranged from 4.30% to 17.2%. A pressure loss measurement was carried out on a section of 400 mm. The temperature of the flowing slurry was selected so that the PCMs in the microcapsules were in a liquid state and were solid during subsequent measurement series after undergoing a phase transformation. It was found that the boundary of the transition from laminar to turbulent flow is influenced by both the mPCM concentration in the slurry and the state of matter of the PCMs in the microcapsules. The influence of the slurry concentration and the state of matter of the PCMs in the microcapsules on changes such as fluid movement is presented (in terms of the critical Reynolds number). Full article
Show Figures

Figure 1

18 pages, 3199 KiB  
Article
Heat Transfer in U-Tubes: Simulating the Performance of Delta Winglet Pairs in Laminar and Turbulent Flows
by Fotis Naoumis, Harris Linardos, Giouli Mihalakakou, John A. Paravantis and Vassilis Kostopoulos
Energies 2025, 18(2), 293; https://doi.org/10.3390/en18020293 - 10 Jan 2025
Viewed by 880
Abstract
As the environmental crisis intensifies, the demand for energy-efficient systems has never been greater. Vortex generators have emerged as an effective method for enhancing heat transfer within tubes. While extensive research has been conducted on their application in straight tubes, studies focusing on [...] Read more.
As the environmental crisis intensifies, the demand for energy-efficient systems has never been greater. Vortex generators have emerged as an effective method for enhancing heat transfer within tubes. While extensive research has been conducted on their application in straight tubes, studies focusing on their performance in curved tubes remain limited. This simulation study examined three different arrangements of triangular vortex generators in a common flow-down configuration within a U-turn tube to optimize heat transfer. The analysis conducted under constant wall temperature conditions across a range of Reynolds numbers spans both laminar and turbulent flow regimes to evaluate the broader impacts of vortex generators on flow and thermal fields. The efficiency of each arrangement was evaluated based on the Nusselt number and friction factor. Results show a remarkable increase in the Nusselt number, reaching up to 115% for the configuration with the highest number of vortex generators. However, this enhancement was accompanied by a significant increase in the friction factor, rising by up to 383% at higher Reynolds numbers. Overall, vortex generators demonstrated their highest effectiveness in curved tubes during the laminar-to-turbulent flow transition. In fully turbulent flow, the friction factor increased disproportionately to the modest gains in heat transfer. Despite these limitations, the use of vortex generators in curved tubes offers promising efficiency improvements and merits further exploration. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 11233 KiB  
Article
Comparative Performance Assessment between Incompressible and Compressible Solvers to Simulate a Cavitating Wake
by Jian Chen, Linlin Geng, Esteve Jou and Xavier Escaler
Fluids 2024, 9(9), 218; https://doi.org/10.3390/fluids9090218 - 18 Sep 2024
Viewed by 921
Abstract
To study the effects of fluid compressibility on the dynamics of a cavitating vortex street flow in a regime where the vortex shedding frequency increases as a result of the cavitation increase, the cavitating wake behind a wedge was simulated employing both incompressible [...] Read more.
To study the effects of fluid compressibility on the dynamics of a cavitating vortex street flow in a regime where the vortex shedding frequency increases as a result of the cavitation increase, the cavitating wake behind a wedge was simulated employing both incompressible and compressible solvers. To do this, a compressible cavitation model was implemented, modifying the Zwart-Gerber-Belamri (ZGB) incompressible solver and including a pressure limit and absorbing boundary conditions to prevent a non-physical pressure field. To validate the performance of the compressible model, preliminary simulations were carried out on a 1D Sod cavitating tube and the cavitating vortex shedding behind a circular body at laminar flow conditions. The results of the cavitating wake behind the wedge with the incompressible and the compressible solvers showed similar predictions in terms of pressure, vortex shedding frequency, and instantaneous and average vapor volume fraction profiles. In spite of this, differences were obtained in the energy content of the fluid force fluctuations on the body at higher frequencies, which appear to be better resolved and amplified when the compressibility model is considered. Overall, both solvers provided comparable results in terms of cavitation phenomena that are well aligned with experimental observations. Full article
Show Figures

Figure 1

12 pages, 3022 KiB  
Article
Generation of Large-Scale Plasma Jet with Excitation of Bipolar Nanosecond Pulse Voltage in Single-Spiral Electrode Configuration
by Wenxiao Sun, Qianqian Yu, Yao Li, Hao Yuan and Dezheng Yang
Appl. Sci. 2024, 14(17), 8013; https://doi.org/10.3390/app14178013 - 7 Sep 2024
Viewed by 1051
Abstract
In this study, a single-outer-spiral electrode with inductance of 20 μH is employed to couple the energy input of a bipolar nanosecond pulse for the purpose of generating a large-scale atmospheric pressure plasma jet. When the spiral electrode is wrapped around a plasma [...] Read more.
In this study, a single-outer-spiral electrode with inductance of 20 μH is employed to couple the energy input of a bipolar nanosecond pulse for the purpose of generating a large-scale atmospheric pressure plasma jet. When the spiral electrode is wrapped around a plasma jet tube with a length of 35 cm, the electrical field can be optimized, resulting in a stable laminar flow field, and a plasma jet with a length and diameter larger than 14 cm and 1.2 cm can be generated. A comparative study of the bipolar and unipolar pulse excitation voltages is also conducted, showing that the maximum lengths of the plasma jet excited by a bipolar pulse voltage, positive pulse voltage, and negative are 14 cm, 10 cm, and 7 cm, respectively. The temporal and spatially resolved spectra of the plasma jets excited by both bipolar and unipolar pulses are investigated, respectively, and the main physiochemical processes of the active species and the plasma dynamics’ evolution are discussed. Full article
Show Figures

Figure 1

22 pages, 7914 KiB  
Article
Computational Fluid Dynamics Analysis of Slip Flow and Heat Transfer at the Entrance Region of a Circular Pipe
by Jumana Matouq, Rafat Al-Waked, Ma’en Al-Rashdan, Diala Bani Mustafa and Mohammad S. Nasif
Appl. Sci. 2024, 14(15), 6528; https://doi.org/10.3390/app14156528 - 26 Jul 2024
Cited by 2 | Viewed by 1951
Abstract
In the era of sustainable development goals (SDGs), energy efficient heat transfer systems are a must. Convective heat transfer within circular pipes is an important field of research on a rarely addressed limitation of fluid flows. Vacuum solar tubes is one of many [...] Read more.
In the era of sustainable development goals (SDGs), energy efficient heat transfer systems are a must. Convective heat transfer within circular pipes is an important field of research on a rarely addressed limitation of fluid flows. Vacuum solar tubes is one of many applications that could benefit from the existence of nanoparticles, Al2O3, for example, to enhance the heating of air or water steam. The current research investigates the impacts of the Reynolds number (Re), Prandtl number (Pr), Knudsen number (Kn), aspect ratio (x/Dh), and volume fraction of Al2O3 nanoparticles (ϕ) on the Nusselt number (Nu) under constant wall heat flux conditions. An axisymmetric computational fluid dynamics (CFD) analysis of the nanofluid flowing at the entrance region of a circular pipe was conducted under a slip flow at steady-state developing laminar conditions using the Ansys-Fluent 2018 software package. A mesh sensitivity analysis was conducted, and a proper number of mesh elements was selected. The results showed that an increasing Re and/or ϕ would result in an increasing Nu. The dependance of Nu on Kn was strong due to the high slip values and temperature jump. An increasing x/Dh ratio resulted in reduced Nu values. The major impact was due to Kn, which caused a reduction of up to 40% in the Nu value due to slip conditions. However, there was an enhancement of 2.5% in the heat transfer due to the addition of nanoparticles, which was found at Re = 250, Kn = 0.1, and ϕ = 0.1 (Pr = 0.729). Finally, Nuavg, Nux, U/Um, and ReCf were corelated with Kn, Pr, Re, and x/Dh with proper coefficient of determination (R2) values. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

19 pages, 6527 KiB  
Article
Correction Factors for the Use of 1D Solution Methods for Dynamic Laminar Liquid Flow through Curved Tubes
by Travis Wiens
Fluids 2024, 9(6), 138; https://doi.org/10.3390/fluids9060138 - 6 Jun 2024
Cited by 4 | Viewed by 1526
Abstract
The modeling of transient flows of liquids through tubes is required for studies in water hammer, switched inertance hydraulic converters, and noise reduction in hydraulic equipment. While 3D gridded computational fluid dynamics (CFD) methods exist for the prediction of dynamic flows and pressures [...] Read more.
The modeling of transient flows of liquids through tubes is required for studies in water hammer, switched inertance hydraulic converters, and noise reduction in hydraulic equipment. While 3D gridded computational fluid dynamics (CFD) methods exist for the prediction of dynamic flows and pressures in these applications, they are computationally costly, and it is more common to use 1D methods such as the method of characteristics (MOC), transmission line method (TLM), or frequency domain methods. These 1D methods give good approximations of results but require many orders of magnitude less computation time. While these tubes are typically curved or coiled in practical applications, existing 1D solution methods assume straight tubes, often with unknown deviation from the curved tube solution. This paper uses CFD simulations to determine the correction factors that can be used for existing 1D methods with curved tubes. The paper also presents information that can be used to help evaluate the expected errors resulting from this approximation. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications)
Show Figures

Figure 1

22 pages, 23452 KiB  
Article
Investigation of Fluid Flow and Heat Transfer Characteristics of an Internally Channeled Tube Heat Exchanger under Laminar Flow Conditions
by Abbas J. S. Al-Lami and Eugeny Y. Kenig
Energies 2024, 17(11), 2637; https://doi.org/10.3390/en17112637 - 29 May 2024
Viewed by 1448
Abstract
The so-called internally channeled tube (ICT) is an innovative heat exchanger design proposed in our recent publications based on a channels-in-tube principle. A general, three-dimensional numerical model was suggested to describe fluid dynamics and heat transfer in the ICT. This model has already [...] Read more.
The so-called internally channeled tube (ICT) is an innovative heat exchanger design proposed in our recent publications based on a channels-in-tube principle. A general, three-dimensional numerical model was suggested to describe fluid dynamics and heat transfer in the ICT. This model has already been validated for turbulent flow. The current paper presents an experimental investigation of the ICT and the model validation under laminar flow conditions. The experimental set-up and measurement procedure are given in detail and the maldistribution issue is addressed. The deviation between simulated and measured values is below 11% for the pressure drop and below 8% for the wall and bulk temperatures. Furthermore, the ICT performance was evaluated using performance evaluation criterion (PEC) including both heat transfer rate and pressure drop. Enhanced heat transfer in the ICT surpasses the associated pressure drop increase, yielding a PEC greater than one. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 8866 KiB  
Article
Study on Flow Characteristics of Venturi Accelerated Vortex Drainage Tool in Horizontal Gas Well
by Hongtao Zhang, Yan Xu, Meng Cai, Junliang Li, Mingxi Feng and Xiaochuan Zhang
Appl. Sci. 2024, 14(7), 2944; https://doi.org/10.3390/app14072944 - 31 Mar 2024
Cited by 1 | Viewed by 1305
Abstract
Vortex drainage gas recovery has been used to carry liquid from gas wells. However, the traditional vortex tools in gas wells cannot produce long effective distance spiral flow at a low gas flow rate, and their operating mechanism has not been thoroughly analyzed. [...] Read more.
Vortex drainage gas recovery has been used to carry liquid from gas wells. However, the traditional vortex tools in gas wells cannot produce long effective distance spiral flow at a low gas flow rate, and their operating mechanism has not been thoroughly analyzed. In this paper, the venturi acceleration vortex tool for a horizontal gas well is designed to improve drainage performance. The tube drainage, the vortex tool, and the venturi accelerated vortex tool were applied in a horizontal tube to investigate their drainage capacities by a horizontal well multiphase flow experimental device. The influence of different gas flow rates and liquid flow rates on the length of the spiral flow and pressure drop produced by the three tools was analyzed. The results show that the vortex tool can convert the gas–liquid mixing flow into the gas–liquid separation flow, that is, the liquid flows spirally along the wall and the gas flows in the center of the horizontal tube. Compared with the vortex tool, the venturi accelerated vortex tool can form a longer and more stable spiral flow. The laminar spiral flow reduces the total pressure drop in the tube. The length of the spiral flow increases with the increase in the gas flow rate. With the increase in the liquid flow rate, the spiral flow is not clear because of the turbulent flow. The length of the spiral flow and the pressure drop for the venturi accelerated vortex tool with different gas and liquid flow rates are analyzed to guide the application of the tool. This study provides a new means for the drainage of a horizontal gas well and further clarifies the working mechanism of the vortex drainage tool. Full article
(This article belongs to the Special Issue Novel Advances in Computational Fluid Mechanics (CFM))
Show Figures

Figure 1

17 pages, 2039 KiB  
Article
Multivariate Peristalsis in a Straight Rectangular Duct for Carreau Fluids
by Iosif C. Moulinos, Christos Manopoulos and Sokrates Tsangaris
Computation 2024, 12(3), 62; https://doi.org/10.3390/computation12030062 - 20 Mar 2024
Cited by 1 | Viewed by 1656
Abstract
Peristaltic flow in a straight rectangular duct is examined imposed by contraction pulses implemented by pairs of horizontal cylindrical segments with their axes perpendicular to the flow direction. The wave propagation speed is considered in such a range that triggers a laminar fluid [...] Read more.
Peristaltic flow in a straight rectangular duct is examined imposed by contraction pulses implemented by pairs of horizontal cylindrical segments with their axes perpendicular to the flow direction. The wave propagation speed is considered in such a range that triggers a laminar fluid motion. The setting is analyzed over a set of variables which includes the propagation speed, the relative occlusion, the modality of the squeezing pulse profile and the Carreau power index. The numerical solution of the equations of motion on Cartesian meshes is grounded in the immersed boundary method. An increase in the peristaltic pulse modality leads to the reduction in the shear rate levels on the central tube axis and to the movement of the peristaltic characteristics to higher pressure values. The effect of the no slip side walls (NSSWs) is elucidated by the collation with relevant results for the flow field produced under the same assumptions though with slip side walls (SSWs). Shear thinning behavior exhibits a significantly larger effect on transport efficiency for the NSSWs duct than on the SSWs duct. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

14 pages, 2853 KiB  
Article
Experimental Estimation of Turbulent Flame Velocity in Gasoline Vapor Explosion in Multi-Branch Pipes
by Keyu Lin, Peili Zhang, Jimao Duan, Shuo Xiang, Ting’ao Shen and Chaoshan Yang
Fire 2024, 7(2), 37; https://doi.org/10.3390/fire7020037 - 25 Jan 2024
Cited by 1 | Viewed by 2077
Abstract
The overpressure characteristics of gasoline explosions in multi-branch pipes are caused by various factors, with flame velocity as a particularly significant determinant. Overlooking the impact of turbulent flow in the branch pipes can induce a significant discrepancy in the outcome when using laminar [...] Read more.
The overpressure characteristics of gasoline explosions in multi-branch pipes are caused by various factors, with flame velocity as a particularly significant determinant. Overlooking the impact of turbulent flow in the branch pipes can induce a significant discrepancy in the outcome when using laminar flame velocity to determine the maximum rate of overpressure rise. To quantify the impact of turbulent flame velocity on the rate of overpressure rise in the gasoline explosions within branch pipes, the laminar flame velocity was replaced with its turbulent counterpart. Additionally, modifications to the formula for calculating the maximum overpressure rise rate were implemented. Then, experimental data of peak explosion overpressure and overpressure rise rate under different numbers of branches were obtained. Finally, the empirical data were inputted into the modified formula to determine the maximum rate of overpressure rise, thus enabling the calculation of the turbulent flame velocity across varying numbers of branches. The findings reveal a positive correlation between the number of branches and the turbulent flame velocity during tube explosions. When the number of branch pipes increased from 0 to 4, the turbulent flame velocity was found to range from 8.29 to 13.39 m/s. The increase in the number of branches did not consistently enhance the turbulent flame velocity. As the number of branches increased from zero to three, the turbulent flame velocity rose accordingly. Differently, as the number of branches exceeds three, the turbulent flame velocity exhibits fluctuations and peaks at a level approximately 1.8 times higher. The research method of this paper can provide a reference for estimating the turbulent flame velocity in the combustion process of flammable gas explosions in multi-branch tunnels. Full article
Show Figures

Figure 1

16 pages, 4271 KiB  
Article
Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes
by Kai Huang, Louis Benteux, Wenhu Han and Damir M. Valiev
Fluids 2024, 9(1), 28; https://doi.org/10.3390/fluids9010028 - 19 Jan 2024
Viewed by 2224
Abstract
The understanding of the boundary layer flame flashback (BLF) has considerably improved in recent decades, driven by the increasing focus on clean energy and the need to address the operational issues associated with flashback. This study investigates the influence of the Lewis number [...] Read more.
The understanding of the boundary layer flame flashback (BLF) has considerably improved in recent decades, driven by the increasing focus on clean energy and the need to address the operational issues associated with flashback. This study investigates the influence of the Lewis number (Le) on symmetric flame shapes under the critical conditions for a laminar boundary layer flashback in cylindrical tubes. It has been found that the transformation of the flame shape from a mushroom to a tulip happens in a tube of a given radius, as the thermal expansion coefficient and Le are modified. A smaller Lewis number results in a local increase in the burning rate at the flame tip, with the flame being able to propagate closer to the wall, which significantly increases the flashback propensity, in line with previous findings. In cases with a Lewis number smaller than unity, a higher thermal expansion results in a flame propagation happening closer to the wall, thus facing a weaker oncoming flow and, consequently, becoming more prone to flashback. For Le > 1, the effect of the increase in the thermal expansion coefficient on the flashback tendency is much less pronounced. Full article
(This article belongs to the Collection Challenges and Advances in Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 5873 KiB  
Article
A Minimum Entropy Production Approach to Optimization of Tubular Chemical Reactors with Nature-Inspired Design
by Natalya Kizilova, Akash Shankar and Signe Kjelstrup
Energies 2024, 17(2), 432; https://doi.org/10.3390/en17020432 - 16 Jan 2024
Cited by 4 | Viewed by 1632
Abstract
The problem of the shape optimization of tubular-type plug-flow chemical reactors equipped with a fluid flow-based cooling system is considered in this work. The hydraulic radius Rh(z) = 2A(z)/P(z) and an equivalent [...] Read more.
The problem of the shape optimization of tubular-type plug-flow chemical reactors equipped with a fluid flow-based cooling system is considered in this work. The hydraulic radius Rh(z) = 2A(z)/P(z) and an equivalent surface area-based radius Rs = P(z)/() were computed from the cross-sectional area A(z) and perimeter P(z) measured along the nasal duct of Northern reindeer and used for shape optimization as nature-inspired design. The laminar flow in the cooling system was modeled using the Navier–Stokes equations for an incompressible liquid. In the central tube, a set of chemical reactions with temperature-dependent rates was considered. The temperature and flow velocity fields, pumping pressure, mass flow rate, and total heat flux Jth were obtained by numerical methods. Comparative analyses of the efficiency of different geometries were conducted on Pareto frontiers for hydraulic resistivity Zh, thermal resistivity Zth, thermal inlet length Lth, and entropy production Sirr as a sum of contributions from chemical reactions, thermal, and viscous dissipation. It was shown that the tube with Rs(z) as an interface between the reactor and cooler has the best Pareto efficiency using the (Zh,Zth,Lth) objective functions. Surprisingly, this design also exhibits the lowest Sirr and a more uniform distribution Sirr(z) (i.e., equipartition) among other designs. This geometry is suggested for densely packed tubular reactors. Full article
(This article belongs to the Special Issue Research on Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

14 pages, 3464 KiB  
Article
Experimental Studies of the Pressure Drop in the Flow of a Microencapsulated Phase-Change Material Slurry in the Range of the Critical Reynolds Number
by Krzysztof Dutkowski, Marcin Kruzel and Martyna Kochanowska
Energies 2023, 16(19), 6926; https://doi.org/10.3390/en16196926 - 2 Oct 2023
Cited by 2 | Viewed by 1551
Abstract
Phase-change materials (PCMs) are attractive materials for storing thermal energy thanks to the energy supplied/returned during the change in matter state. The encapsulation of PCMs prevent them from connecting into large clusters, prevents the chemical interaction of the PCM with the walls of [...] Read more.
Phase-change materials (PCMs) are attractive materials for storing thermal energy thanks to the energy supplied/returned during the change in matter state. The encapsulation of PCMs prevent them from connecting into large clusters, prevents the chemical interaction of the PCM with the walls of the tank and the exchanger material, and allows the phase change to be initiated in parallel in each capsule. The microencapsulation of PCMs (mPCMs) and the nanoencapsulation of PCMs (nPCMs) entail that these particles added to the base liquid can act as a slurry used in heat exchange systems. PCM micro-/nanocapsules or mPCM (nPCM) slurry are subjected to numerous physical, mechanical, and rheological tests. However, flow tests of mPCM (nPCM) slurries are significantly limited. This paper describes the results of detailed adiabatic flow tests of mPCM slurry in a tube with an internal diameter of d = 4 mm and a length of L = 400 mm. The tests were conducted during laminar, transient, and turbulent flows (Re < 11,250) of mPCM aqueous slurries with concentrations of 4.30%, 6.45%, 8.60%, 10.75%, 12.90%, 15.05%, and 17.20%. The mPCM slurry had a temperature of T = 7 °C (the microcapsule PCM was a solid), T = 24 °C (the microcapsule PCM was undergoing a phase change), and T = 44 °C (the microcapsule PCM was a liquid). This work aims to fill the research gap on the effect of the mPCM slurry concentration on the critical Reynolds number. It was found that the concentration of the mPCM has a significant effect on the critical Reynolds number, and the higher the concentration of mPCM in the base liquid, the more difficult it was to keep the laminar flow. Additionally, it was observed that, as yet unknown in the literature, the temperature of the slurry (and perhaps the physical state of the PCM in the microcapsule) may affect the critical Reynolds number. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

Back to TopTop