Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes
Abstract
:1. Introduction
2. Basic Equations and Numerical Setup
3. Results and Discussion
3.1. Tubes of Small Radius
3.2. Tubes of Medium Radius
4. Summary
- In tubes with smaller radii R, an increase in R prompts a transformation of the flame shape from a mushroom to a tulip configuration. For a given radius, flames at critical condition exhibit a tendency to approach the tube walls as the Lewis number decreases. In contrast, flames with a higher Lewis number, indicative of the increased relative role of thermal diffusivity, tend to be less concave at the tube axis.
- In tubes of moderate radii, the flame at the critical condition progressively shifts towards the wall with an increase in tube radius, adopting a tulip-like shape. For larger , this is accompanied by a saturation of the critical velocity gradient with the tube radius. The radial consumption speed profiles demonstrate noticeable local maxima when the Lewis number is below unity, and both the consumption speed and the flow velocity near the wall are influenced by the changes in both the Lewis number and the thermal expansion coefficient. A higher is correlated with a suppression of flame flashback occurrences.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
BLF | boundary layer flashback |
CGM | critical gradient model |
sound speed, m/s | |
heat capacity at constant pressure, | |
heat capacity at constant volume, | |
activation energy, J/mol | |
g | velocity gradient, |
l | cell size, scaled by |
Lewis number | |
flame propagation Mach number | |
P | pressure, Pa |
order of truncation error decay | |
Prandtl number | |
energy diffusion vector | |
Q | energy release from the reaction |
R | tube radius, scaled by |
universal gas constant, | |
Schmidt number | |
consumption speed, scaled by | |
unstretched laminar burning velocity, m/s | |
t | time, , scaled by |
T | temperature, K |
velocity, scaled by | |
w | reaction rate, |
z | axial coordinate, scaled by |
r | radial coordinate, scaled by |
Y | mass fraction of fuel |
Zeldovich number | |
Kronecker delta | |
laminar flame thickness, m | |
quenching distance, scaled by | |
penetration distance, scaled by | |
total energy per unit volume | |
Arrhenius number | |
stress tensor | |
adiabatic index | |
gas expansion ratio | |
dynamic viscosity, | |
density, | |
factor of time dimension in the Arrhenius law, s | |
Subscripts | |
0 | initial value |
b | burnt gas |
c | consumption |
maximum (centerline) | |
flame tip | |
L | laminar unstretched flame |
Other designations | |
scaled value | |
normalized value |
References
- Kalantari, A.; McDonell, V. Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances. Prog. Energy Combust. Sci. 2017, 61, 249–292. [Google Scholar] [CrossRef]
- Gruber, A.; Chen, J.H.; Valiev, D.; Law, C.K. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 2012, 709, 516–542. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y. Progress in Mechanisms and Numerical Simulation of Flame Flashback for Gas Turbine. J. Combust. Sci. Technol. 2016, 22, 385–401. [Google Scholar]
- Jiang, X.; Tang, Y.; Liu, Z.; Raman, V. Computational Modeling of Boundary Layer Flashback in a Swirling Stratified Flame Using a LES-Based Non-Adiabatic Tabulated Chemistry Approach. Entropy 2021, 23, 567. [Google Scholar] [CrossRef] [PubMed]
- Vigueras-Zuniga, M.O.; Tejeda-del Cueto, M.E.; Vasquez-Santacruz, J.A.; Herrera-May, A.L.; Valera-Medina, A. Numerical Predictions of a Swirl Combustor Using Complex Chemistry Fueled with Ammonia/Hydrogen Blends. Energies 2020, 13, 288. [Google Scholar] [CrossRef]
- Benim, A.; Syed, K. Flashback Mechanisms in Lean Premixed Gas Turbine Combustion; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- de Vries, H.; Mokhov, A.V.; Levinsky, H.B. The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances. Appl. Energy 2017, 208, 1007–1019. [Google Scholar] [CrossRef]
- Fursenko, R.; Sereshchenko, E.; Uriupin, G.; Odintsov, E.; Tezuka, T.; Minaev, S.; Maruta, K. Experimental and numerical study of premixed flame penetration and propagation in multichannel system. Combust. Sci. Technol. 2018, 190, 1023–1040. [Google Scholar] [CrossRef]
- Goldmann, A.; Dinkelacker, F. Experimental investigation and modeling of boundary layer flashback for non-swirling premixed hydrogen/ammonia/air flames. Combust. Flame 2021, 226, 362–379. [Google Scholar] [CrossRef]
- Gruber, A.; Kerstein, A.R.; Valiev, D.; Law, C.K.; Kolla, H.; Chen, J.H. Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers. Proc. Combust. Inst. 2015, 35, 1485–1492. [Google Scholar] [CrossRef]
- Gruber, A.; Richardson, E.S.; Aditya, K.; Chen, J.H. Direct numerical simulations of premixed and stratified flame propagation in turbulent channel flow. Phys. Rev. Fluids 2018, 3, 110507. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, H.; Chen, G.; Luo, K.; Fan, J. Interactions of turbulence and flame during turbulent boundary layer premixed flame flashback under isothermal and adiabatic wall conditions using direct numerical simulation. Phys. Fluids 2023, 35, 125106. [Google Scholar] [CrossRef]
- Endres, A.; Sattelmayer, T. Large Eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames. Int. J. Heat Fluid Flow 2018, 72, 151–160. [Google Scholar] [CrossRef]
- Endres, A.; Sattelmayer, T. Numerical Investigation of Pressure Influence on the Confined Turbulent Boundary Layer Flashback Process. Fluids 2019, 4, 146. [Google Scholar] [CrossRef]
- Endres, A.Ö. Numerical Modelling of Boundary Layer Flashback in Premixed Hydrogen-Air Combustion Systems. Ph.D. Thesis, Technische Universität München, München, Germany, 2020. [Google Scholar]
- Xia, H.; Han, W.; Wei, X.; Zhang, M.; Wang, J.; Huang, Z.; Hasse, C. Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff-body swirl burner. Proc. Combust. Inst. 2023, 39, 4541–4551. [Google Scholar] [CrossRef]
- Vance, F.H.; De Goey, L.; van Oijen, J.A. Development of a flashback correlation for burner-stabilized hydrogen-air premixed flames. Combust. Flame 2022, 243, 112045. [Google Scholar] [CrossRef]
- Kıymaz, T.B.; Böncü, E.; Güleryüz, D.; Karaca, M.; Yılmaz, B.; Allouis, C.; Gökalp, İ. Numerical investigations on flashback dynamics of premixed methane-hydrogen-air laminar flames. Int. J. Hydrogen Energy 2022, 47, 25022–25033. [Google Scholar] [CrossRef]
- Fruzza, F.; Lamioni, R.; Tognotti, L.; Galletti, C. Flashback of H2-enriched premixed flames in perforated burners: Numerical prediction of critical velocity. Int. J. Hydrogen Energy 2023, 48, 31790–31801. [Google Scholar] [CrossRef]
- Fruzza, F.; Lamioni, R.; Mariotti, A.; Salvetti, M.V.; Galletti, C. Flashback propensity due to hydrogen blending in natural gas: Sensitivity to operating and geometrical parameters. Fuel 2024, 362, 130838. [Google Scholar] [CrossRef]
- Leask, S.; McDonell, V.; Samuelsen, G.S. Neural Network Prediction of Boundary Layer Flashback. J. Eng. Gas Turbines Power 2021, 143, 054501. [Google Scholar] [CrossRef]
- Lewis, B.; von Elbe, G. Stability and structure of burner flames. J. Chem. Phys. 1943, 11, 75–97. [Google Scholar] [CrossRef]
- Von Elbe, G.; Mentser, M. Further studies of the structure and stability of burner flames. J. Chem. Phys. 1945, 13, 89–100. [Google Scholar] [CrossRef]
- Huang, K.; Valiev, D.M.; Zhong, H.; Han, W. Numerical Study of the Influence of the Thermal Gas Expansion on the Boundary Layer Flame Flashback in Channels with Different Wall Thermal Conditions. Energies 2023, 16, 1844. [Google Scholar] [CrossRef]
- Law, C.K. Combustion Physics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Ronney, P.D. Near-limit flame structures at low Lewis number. Combust. Flame 1990, 82, 1–14. [Google Scholar] [CrossRef]
- Lewis, B.; Von Elbe, G. Combustion, Flames and Explosions of Gases; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Alliche, M.; Haldenwang, P.; Chikh, S. Extinction conditions of a premixed flame in a channel. Combust. Flame 2010, 157, 1060–1070. [Google Scholar] [CrossRef]
- Kurdyumov, V.; Fernández, E.; Linan, A. Flame flashback and propagation of premixed flames near a wall. Proc. Combust. Inst. 2000, 28, 1883–1889. [Google Scholar] [CrossRef]
- Kurdyumov, V.N.; Fernandez-Tarrazo, E. Lewis number effect on the propagation of premixed laminar flames in narrow open ducts. Combust. Flame 2002, 128, 382–394. [Google Scholar] [CrossRef]
- Kurdyumov, V.; Fernández-Tarrazo, E.; Truffaut, J.M.; Quinard, J.; Wangher, A.; Searby, G. Experimental and numerical study of premixed flame flashback. Proc. Combust. Inst. 2007, 31, 1275–1282. [Google Scholar] [CrossRef]
- Feng, R.; Gruber, A.; Chen, J.H.; Valiev, D.M. Influence of gas expansion on the propagation of a premixed flame in a spatially periodic shear flow. Combust. Flame 2021, 227, 421–427. [Google Scholar] [CrossRef]
- Wohl, K.; Kapp, N.M.; Gazley, C. The stability of open flames. Symp. Combust. Flame Explos. Phenom. 1948, 3, 3–21. [Google Scholar] [CrossRef]
- Hackert, C.L.; Ellzey, J.L.; Ezekoye, O.A. Effects of thermal boundary conditions on flame shape and quenching in ducts. Combust. Flame 1998, 112, 73–84. [Google Scholar] [CrossRef]
- Tsai, C.H. The Asymmetric Behavior of Steady Laminar Flame Propagation in Ducts. Combust. Sci. Technol. 2008, 180, 533–545. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, B.O. Effects of channel width and Lewis number on the multiple flame regimes and propagation limits in mesoscale. Combust. Sci. Technol. 2006, 178, 1723–1753. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mukhopadhyay, A.; Sen, S. Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel. Int. J. Therm. Sci. 2008, 47, 84–92. [Google Scholar] [CrossRef]
- Bioche, K.; Vervisch, L.; Ribert, G. Premixed flame-wall interaction in a narrow channel: Impact of wall thermal conductivity and heat losses. J. Fluid Mech. 2018, 856, 5–35. [Google Scholar] [CrossRef]
- Eriksson, L.E. A Third Order Accurate Upwind-Biased Finite-Volume Scheme for Unsteady Compressible Viscous Flow; Volvo Aero Corporation: Trollhättan, Sweden, 1993. [Google Scholar]
- Eriksson, L.E. Flow solution on a dual-block grid around an airplane. Comput. Methods Appl. Mech. Eng. 1987, 64, 79–93. [Google Scholar] [CrossRef]
- Demirgok, B.; Ugarte, O.; Valiev, D.; Akkerman, V. Effect of thermal expansion on flame propagation in channels with nonslip walls. Proc. Combust. Inst. 2015, 35, 929–936. [Google Scholar] [CrossRef]
- Valiev, D.; Bychkov, V.; Akkerman, V.; Eriksson, L.E.; Law, C.K. Quasi-steady stages in the process of premixed flame acceleration in narrow channels. Phys. Fluids 2013, 25, 096101. [Google Scholar] [CrossRef]
- Alkhabbaz, M.; Abidakun, O.; Valiev, D.; Akkerman, V. Impact of the Lewis number on finger flame acceleration at the early stage of burning in channels and tubes. Phys. Fluids 2019, 31, 083606. [Google Scholar] [CrossRef]
- Akkerman, V.; Valiev, D. Moderation of flame acceleration in obstructed cylindrical pipes due to gas compression. Phys. Fluids 2018, 30, 106101. [Google Scholar] [CrossRef]
- Wu, M.H.; Wang, C.Y. Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures. Proc. Combust. Inst. 2011, 33, 2287–2293. [Google Scholar] [CrossRef]
- Poinsot, T.; Veynante, D. Theoretical and Numerical Combustion; RT Edwards, Inc.: Dallas, TX, USA, 2005. [Google Scholar]
- Adebiyi, A.; Abidakun, O.; Akkerman, V. Acceleration of Premixed Flames in Obstructed Pipes with Both Extremes Open. Energies 2020, 13, 4094. [Google Scholar] [CrossRef]
- Attili, A.; Lamioni, R.; Berger, L.; Kleinheinz, K.; Lapenna, P.E.; Pitsch, H.; Creta, F. The effect of pressure on the hydrodynamic stability limit of premixed flames. Proc. Combust. Inst. 2021, 38, 1973–1981. [Google Scholar] [CrossRef]
- Ding, S.; Huang, K.; Han, Y.; Valiev, D. Numerical study of the influence of wall roughness on laminar boundary layer flashback. Phys. Rev. Fluids 2021, 6, 023201. [Google Scholar] [CrossRef]
- Feng, R.; Valiev, D. Influence of gas expansion on the velocity and stability limits of stationary curved flames in channels. Combust. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory, 9th ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zeldovich, I.B.; Barenblatt, G.I.; Librovich, V.B.; Makhviladze, G.M. Mathematical Theory of Combustion and Explosions; Consultants Bureau: New York, NY, USA, 1985. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method; Pearson Education: London, UK, 2007. [Google Scholar]
- Abidakun, O.; Adebiyi, A.; Valiev, D.; Akkerman, V. Nonequidiffusive premixed-flame propagation in obstructed channels with open, nonreflecting ends. Phys. Rev. E 2022, 105, 015104. [Google Scholar] [CrossRef]
- Wan, J.; Fan, A. Recent progress in flame stabilization technologies for combustion-based micro energy and power systems. Fuel 2021, 286, 119391. [Google Scholar] [CrossRef]
Nomenclature | Symbol | Value |
---|---|---|
Dynamic viscosity | ||
Gas constant | ||
Lewis number | 0.2–1.4 | |
Flame Mach number | 0.004 | |
Maximum centerline velocity | 0– | |
Molar mass | m | |
Prandtl number | Pr | 0.75 |
Specific heat ratio | 1.4 | |
Radius of tube | R | 4–100 |
Thermal expansion coefficient | 4–12 | |
Unburnt density | ||
Unburnt pressure | ||
Unburnt temperature |
0.40 | 0.778 | N/A |
0.20 | 0.839 | 7.28% |
0.10 | 0.855 | 1.87% |
0.05 | 0.864 | 1.04% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Benteux, L.; Han, W.; Valiev, D.M. Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes. Fluids 2024, 9, 28. https://doi.org/10.3390/fluids9010028
Huang K, Benteux L, Han W, Valiev DM. Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes. Fluids. 2024; 9(1):28. https://doi.org/10.3390/fluids9010028
Chicago/Turabian StyleHuang, Kai, Louis Benteux, Wenhu Han, and Damir M. Valiev. 2024. "Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes" Fluids 9, no. 1: 28. https://doi.org/10.3390/fluids9010028
APA StyleHuang, K., Benteux, L., Han, W., & Valiev, D. M. (2024). Combined Impact of the Lewis Number and Thermal Expansion on Laminar Flame Flashback in Tubes. Fluids, 9(1), 28. https://doi.org/10.3390/fluids9010028