Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = lacto-fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3832 KiB  
Article
Novel Probiotic Strain Lactiplantibacillus plantarum CNTA 628 Modulates Lipid Metabolism and Improves Healthspan in C. elegans
by Ignacio Goyache, Lorena Valdés-Varela, Raquel Virto, Miguel López-Yoldi, Noelia López-Giral, Ana Sánchez-Vicente, Fermín I. Milagro and Paula Aranaz
Appl. Sci. 2025, 15(14), 8007; https://doi.org/10.3390/app15148007 - 18 Jul 2025
Viewed by 308
Abstract
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, [...] Read more.
The call for new approaches to prevent and treat metabolic syndrome-related diseases has led to research on the use of lacto-fermentative probiotics with beneficial metabolic properties like Lactobacilli. Here, we characterize the probiotic properties of a novel strain, Lactiplantibacillus plantarum CNTA 628, and investigate its potential anti-obesity and health-promoting activities in the Caenorhabditis elegans model, additionally elucidating the molecular mechanisms involved. Lactiplantibacillus plantarum CNTA 628 exhibited sensitivity to the entire spectrum of antibiotics analyzed, gastric and intestinal resistance in vitro, β-galactosidase and bile-salt hydrolysate activities, and the capacity to form biofilms and produce SCFAs. In addition, it reduced the binding of the pathogenic E. coli O157:H7 to intestinal epithelial cells (Caco-2) and exerted immune-modulating effects in cellular models. Supplementation with this probiotic significantly reduced C. elegans fat accumulation by more than 18% under control and high-glucose conditions, lowered senescence, improved oxidative stress, and significantly enhanced lifespan without affecting the development of the worms. Gene expression analyses evidenced that L. plantarum CNTA 628 plays a role in regulating daf-22 and maoc-1 gene expression, both linked to beta-oxidation pathways. Our results demonstrate the health-benefiting properties of this novel strain and suggest its potential as probiotic candidate for the prevention and treatment of metabolic syndrome-related conditions. Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, Postbiotics: From Mechanisms to Applications)
Show Figures

Figure 1

18 pages, 4952 KiB  
Article
Physicochemical and Structural Properties of Freeze-Dried Lacto-Fermented Peach Snacks
by Emilia Janiszewska-Turak, Szymon Ossowski, Zuzanna Domżalska, Klaudia Gregorek, Joanna Sękul, Katarzyna Pobiega and Katarzyna Rybak
Appl. Sci. 2025, 15(11), 6347; https://doi.org/10.3390/app15116347 - 5 Jun 2025
Viewed by 526
Abstract
The snack market is shifting toward healthier options, leading to a growing interest in organic snacks. Dried fruits are particularly popular due to their long shelf life and convenience. Freeze-drying helps preserve both the taste and nutrients of these fruits. Among them, peaches [...] Read more.
The snack market is shifting toward healthier options, leading to a growing interest in organic snacks. Dried fruits are particularly popular due to their long shelf life and convenience. Freeze-drying helps preserve both the taste and nutrients of these fruits. Among them, peaches are noteworthy for their antioxidant and anti-inflammatory properties. The research assessed the impact of lactic fermentation using Lactiplantibacillus plantarum (P_LP) and Fructilactobacillus fructivorans (P_FF), followed by freeze-drying, on the physicochemical, structural, and sensory properties of peach slices. Fermentation increased acidity (>22 mg/kg), decreased sugars (up to 43.5%), and raised salt content (to ~0.5%), effectively altering the fruit’s chemical profile. Dry matter content decreased by 6.0% (P_LP) and 7.2% (P_FF), while water activity remained low (0.13–0.15). Color parameters changed notably: L* values decreased, and a* values increased, with total color differences (ΔE) exceeding 15. Structural changes included higher porosity (to 71.4% in P_LP and 72.8% in P_FF) and reduced hardness from 50.1 N (control) to 35.7 N (P_LP) and 28.2 N (P_FF), which may benefit processing. Water sorption isotherms suggested improved stability under elevated humidity. However, sensory analysis showed lower consumer acceptance of the fermented samples due to reduced sweetness, crunchiness, and overall palatability, along with undesirable flavors from F. fructivorans. While lactic fermentation holds the potential for creating fruit snacks with better functional value, further optimization is needed to enhance sensory appeal and market potential. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Graphical abstract

2 pages, 149 KiB  
Retraction
RETRACTED: Starkutė et al. Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals 2023, 13, 3154
by Vytautė Starkutė, Ernestas Mockus, Dovilė Klupšaitė, Eglė Zokaitytė, Saulius Tušas, Ramutė Mišeikienė, Rolandas Stankevičius, João Miguel Rocha and Elena Bartkienė
Animals 2025, 15(7), 955; https://doi.org/10.3390/ani15070955 - 27 Mar 2025
Viewed by 531
Abstract
The Journal Animals retracts the article titled “Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles” [...] Full article
19 pages, 1683 KiB  
Article
Safety and Quality Improvement of NaCl-Reduced Banana and Apple Fermented with Lacticaseibacillus paracasei
by Jose M. Martín-Miguélez, Josué Delgado, Irene Martín, Alberto González-Mohino and Lary Souza Olegario
Foods 2025, 14(1), 51; https://doi.org/10.3390/foods14010051 - 27 Dec 2024
Viewed by 885
Abstract
Food preservation techniques changed during the industrial revolution, as safer techniques were developed and democratized. However, one of the simplest techniques, adding salt, is still employed in a wide variety of products, not only as a flavor enhancer but as a method to [...] Read more.
Food preservation techniques changed during the industrial revolution, as safer techniques were developed and democratized. However, one of the simplest techniques, adding salt, is still employed in a wide variety of products, not only as a flavor enhancer but as a method to allow for the controlled fermentation of products such as fruits. The objective of the present study consists of evaluating the quality of different salt-reduced fermented fruits through the application of the lactic acid bacteria (LAB) Lacticaseibacillus paracasei and vacuum, as well as assessing the LAB as a preventive measure against Escherichia coli O157:H7. To achieve this goal, microbial plate count techniques, the evaluation of the physicochemical characteristics, and Check-All-That-Apply/Rate-All-That-Apply sensory analyses were performed on bananas and apples individually fermented at 30 °C for 2 and 7 days, respectively. Additionally, a challenge test using E. coli as pathogenic bacteria was performed. The characteristics of each fruit determined the efficiency of the LAB’s protective activity. LAB-inoculated batches controlled the growth of E. coli in both salted fruits, but this pathogenic bacterium in the apple case was controlled even in the salt-reduced batch. Sensorially, only inoculated fermented apples found a reduction in off-flavor and old fruit smell; however, higher acceptability was found in the salt-reduced with LAB batches of both fruits. Thus, Lacticaseibacillus paracasei proved to be a cheap, easy, and feasible protective method that can ensure a protective strategy on salt-reduced fermented apples and should be studied particularly for different fruits. Full article
Show Figures

Figure 1

13 pages, 5701 KiB  
Article
Non-Destructive Monitoring of Sweet Pepper Samples After Selected Periods of Lacto-Fermentation
by Ewa Ropelewska, Justyna Szwejda-Grzybowska, Anna Wrzodak and Monika Mieszczakowska-Frąc
Agriculture 2024, 14(11), 1855; https://doi.org/10.3390/agriculture14111855 - 22 Oct 2024
Cited by 2 | Viewed by 1231
Abstract
Fermented food is characterized by positive health-promoting properties. The objective of this study was to distinguish and assess the changes in the flesh structure of sweet bell pepper samples after specific periods of fermentation in a non-destructive manner. Two cultivars of pepper, red [...] Read more.
Fermented food is characterized by positive health-promoting properties. The objective of this study was to distinguish and assess the changes in the flesh structure of sweet bell pepper samples after specific periods of fermentation in a non-destructive manner. Two cultivars of pepper, red and yellow, were subjected to lacto-fermentation. The experiments lasted 56 days and the samples were taken for analysis at the beginning of the study (0 days) and after 3, 7, 10, 14, 21, 28, and 56 days. The fermentation process was monitored based on image features, which were used to develop machine learning models distinguishing samples before and after various periods of lacto-fermentation (0, 3, 7, 10, 14, 21, 28, and 56 days). The average accuracy of the classification of red bell pepper samples was up to 93% for the model built using IBk (Lazy group). The yellow bell pepper samples were distinguished up to 90% accuracy by the LMT algorithm (Trees group). The performed study allowed us to determine the changes in pepper flesh in terms of image textures during lacto-fermentation. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

17 pages, 884 KiB  
Article
Impact of Lactic Acid Bacteria Fermentation on (Poly)Phenolic Profile and In Vitro Antioxidant and Anti-Inflammatory Properties of Herbal Infusions
by Tarik Ozturk, María Ángeles Ávila-Gálvez, Sylvie Mercier, Fernando Vallejo, Alexis Bred, Didier Fraisse, Christine Morand, Ebru Pelvan, Laurent-Emmanuel Monfoulet and Antonio González-Sarrías
Antioxidants 2024, 13(5), 562; https://doi.org/10.3390/antiox13050562 - 2 May 2024
Cited by 8 | Viewed by 3237
Abstract
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the [...] Read more.
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders. Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods and Food Microorganisms)
Show Figures

Graphical abstract

19 pages, 2508 KiB  
Article
HMOs Impact the Gut Microbiome of Children and Adults Starting from Low Predicted Daily Doses
by Danica Bajic, Frank Wiens, Eva Wintergerst, Stef Deyaert, Aurélien Baudot and Pieter Van den Abbeele
Metabolites 2024, 14(4), 239; https://doi.org/10.3390/metabo14040239 - 20 Apr 2024
Cited by 4 | Viewed by 4070
Abstract
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower [...] Read more.
Recent studies suggest that the dietary intake of human milk oligosaccharides (HMOs) provides health benefits from infancy up to adulthood. Thus far, beneficial changes in the adult gut microbiome have been observed at oral doses of 5–20 g/day of HMOs. Efficacy of lower doses has rarely been tested. We assessed four HMO molecular species—2′Fucosyllactose (2′FL), Lacto-N-neotetraose (LNnT), 3′Sialyllactose (3′SL), and 6′Sialyllactose (6′SL)—at predicted doses from 0.3 to 5 g/day for 6-year-old children and adults (n = 6 each), using ex vivo SIFR® technology (Cryptobiotix, Ghent, Belgium). This technology employing bioreactor fermentation on fecal samples enables us to investigate microbial fermentation products that are intractable in vivo given their rapid absorption/consumption in the human gut. We found that HMOs significantly increased short-chain fatty acids (SCFAs), acetate, propionate (in children/adults), and butyrate (in adults) from predicted doses of 0.3–0.5 g/day onwards, with stronger effects as dosing increased. The fermentation of 6′SL had the greatest effect on propionate, LNnT most strongly increased butyrate, and 2′FL and 3′SL most strongly increased acetate. An untargeted metabolomic analysis revealed that HMOs enhanced immune-related metabolites beyond SCFAs, such as aromatic lactic acids (indole-3-lactic acid/3-phenyllactic acid) and 2-hydroxyisocaproic acid, as well as gut–brain-axis-related metabolites (γ-aminobutyric acid/3-hydroxybutyric acid/acetylcholine) and vitamins. The effects of low doses of HMOs potentially originate from the highly specific stimulation of keystone species belonging to, for example, the Bifidobacteriaceae family, which had already significantly increased at doses of only 0.5 g/day LNnT (adults) and 1 g/day 2′FL (children/adults). Full article
Show Figures

Graphical abstract

24 pages, 1591 KiB  
Article
Changes in Chemical Composition of Lentils, Including Gamma-Aminobutyric Acid and Volatile Compound Formation during Submerged and Solid-State Fermentation with Pediococcus acidilactici
by Ernestas Mockus, Vytaute Starkute, Dovile Klupsaite, Vadims Bartkevics, Anastasija Borisova, Lina Sarunaite, Ausra Arlauskiene, João Miguel Rocha and Elena Bartkiene
Foods 2024, 13(8), 1249; https://doi.org/10.3390/foods13081249 - 19 Apr 2024
Cited by 3 | Viewed by 2282
Abstract
The aim of this study was to evaluate and compare the characteristics of non-treated and fermented [via submerged (SMF) and solid-state (SSF) fermentation using Pediococcus acidilactici] lentils (Lens culinaris) grown either in pure stands (L) or relay intercropped with winter [...] Read more.
The aim of this study was to evaluate and compare the characteristics of non-treated and fermented [via submerged (SMF) and solid-state (SSF) fermentation using Pediococcus acidilactici] lentils (Lens culinaris) grown either in pure stands (L) or relay intercropped with winter rye (LR). It was observed that the lentils were suitable substrate for lacto-fermentation. Most of the free amino acid concentrations increased in lentils after both fermentations. The highest concentration of γ-aminobutyric acid was found in SSF LR samples. However, fermentation led to higher biogenic amines (BA) content in lentils. The most abundant fatty acid in lentils was C18:2. SSF lentils showed more complex volatile compound (VC) profiles (with between nine and seventeen new VCs formed), whereas, in SMF samples, between two and five newly VCs were formed. When comparing lentil grown types, L contained significantly higher concentrations of Na, K, Ca, P, Mn, and Se, while LR contained significantly higher concentrations of Fe and Ni. To sum up, fermentation with lactic acid bacteria (LAB) contributed to the improved biological value of lentils; still, the quantity of BA needs to be considered. Further investigations into the P. acidilactici metabolism of certain compounds (such as phenolic and antinutritional compounds) in lentils during fermentation ought to be carried out. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 5285 KiB  
Article
An In Vitro Colonic Fermentation Study of the Effects of Human Milk Oligosaccharides on Gut Microbiota and Short-Chain Fatty Acid Production in Infants Aged 0–6 Months
by Menglu Li, Han Lu, Yuling Xue, Yibing Ning, Qingbin Yuan, Huawen Li, Yannan He, Xianxian Jia and Shijie Wang
Foods 2024, 13(6), 921; https://doi.org/10.3390/foods13060921 - 18 Mar 2024
Cited by 9 | Viewed by 3372
Abstract
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of [...] Read more.
The impact of five human milk oligosaccharides (HMOs)—2′-fucosyllactose (2FL), 3′-sialyllactose (3SL), 6′-sialyllactose (6SL), lacto-N-tetraose (LNT), and lacto-N-neotetraose (LNnT)—on the gut microbiota and short-chain fatty acid (SCFA) metabolites in infants aged 0–6 months was assessed through in vitro fermentation. Analyses of the influence of different HMOs on the composition and distribution of infant gut microbiota and on SCFA levels were conducted using 16S rRNA sequencing, quantitative real-time PCR (qPCR), and gas chromatography (GC), respectively. The findings indicated the crucial role of the initial microbiota composition in shaping fermentation outcomes. Fermentation maintained the dominant genera species in the intestine but influenced their abundance and distribution. Most of the 10 Bifidobacteria strains effectively utilized HMOs or their degradation products, particularly demonstrating proficiency in utilizing 2FL and sialylated HMOs compared to non-fucosylated neutral HMOs. Moreover, our study using B. infantis-dominant strains and B. breve-dominant strains as inocula revealed varying acetic acid levels produced by Bifidobacteria upon HMO degradation. Specifically, the B. infantis-dominant strain yielded notably higher acetic acid levels than the B. breve-dominant strain (p = 0.000), with minimal propionic and butyric acid production observed at fermentation’s conclusion. These findings suggest the potential utilization of HMOs in developing microbiota-targeted foods for infants. Full article
Show Figures

Figure 1

39 pages, 10595 KiB  
Article
RETRACTED: Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles
by Vytautė Starkutė, Ernestas Mockus, Dovilė Klupšaitė, Eglė Zokaitytė, Saulius Tušas, Ramutė Mišeikienė, Rolandas Stankevičius, João Miguel Rocha and Elena Bartkienė
Animals 2023, 13(19), 3154; https://doi.org/10.3390/ani13193154 - 9 Oct 2023
Cited by 2 | Viewed by 2286 | Retraction
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 [...] Read more.
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor’s interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies. Full article
Show Figures

Graphical abstract

20 pages, 1023 KiB  
Article
Changes in Lacto-Fermented Agaricus bisporus (White and Brown Varieties) Mushroom Characteristics, including Biogenic Amine and Volatile Compound Formation
by Elena Bartkiene, Paulina Zarovaite, Vytaute Starkute, Ernestas Mockus, Egle Zokaityte, Gintare Zokaityte, João Miguel Rocha, Romas Ruibys and Dovile Klupsaite
Foods 2023, 12(13), 2441; https://doi.org/10.3390/foods12132441 - 21 Jun 2023
Cited by 12 | Viewed by 2485
Abstract
This study aimed to evaluate the changes in Agaricus bisporus (white and brown) characteristics (colour and acidity parameters, lactic acid bacteria (LAB) and mould/yeast counts, biogenic amine content, fatty acid (FA) and volatile compound (VC) profiles, overall acceptability, and emotions induced for consumers) [...] Read more.
This study aimed to evaluate the changes in Agaricus bisporus (white and brown) characteristics (colour and acidity parameters, lactic acid bacteria (LAB) and mould/yeast counts, biogenic amine content, fatty acid (FA) and volatile compound (VC) profiles, overall acceptability, and emotions induced for consumers) during a 48 h lactic acid fermentation with Lacticaseibacillus casei No. 210, Lactiplantibacillus plantarum No. 135, Lacticaseibacillus paracasei No. 244, and Pediococcus acidilactici No. 29 strains. Fermented white and brown A. bisporus showed higher LAB count and lower pH, lightness, redness, and yellowness than non-fermented ones. Yeast and fungi counts were similar between non-fermented and fermented samples. All samples contained spermidine (on average, 191.5 mg/kg) and some of the fermented samples had tyramine (on average, 80.7 mg/kg). Saturated FA was the highest in non-fermented brown A. bisporus. The highest monounsaturated and polyunsaturated FA contents were found in Lp. plantarum No. 135 fermented white and brown A. bisporus, respectively. For the first time, the VC profile of fermented A. bisporus was analysed. 1-Octen-3-ol content significantly decreased while benzyl alcohol, acetoin, and 2,3-butanediol increased in most fermented samples. Fermented A. bisporus received good acceptability scores. The emotional evaluation showed that the LAB strain and the interaction of the LAB strain and A. bisporus variety were significant on the intensity of emotions “happy” and “sad”, while all analysed factors and their interactions were significant on the intensity of “angry” and “disgusted” (p ≤ 0.05). The findings of this study show the potential of the selected LAB strains and contribute to the increasing body of research on fermented mushrooms. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

22 pages, 2334 KiB  
Article
Changes in the Physicochemical Properties of Chia (Salvia hispanica L.) Seeds during Solid-State and Submerged Fermentation and Their Influence on Wheat Bread Quality and Sensory Profile
by Elena Bartkiene, Arnoldas Rimsa, Egle Zokaityte, Vytaute Starkute, Ernestas Mockus, Darius Cernauskas, João Miguel Rocha and Dovile Klupsaite
Foods 2023, 12(11), 2093; https://doi.org/10.3390/foods12112093 - 23 May 2023
Cited by 8 | Viewed by 4283
Abstract
This study aimed at investigating the impacts of 24 h of either solid-state fermentation (SSF) or submerged fermentation (SMF) with Lactiplantibacillus plantarum strain No. 122 on the physico-chemical attributes of chia seeds (CS). Furthermore, this study examined how adding fermented chia seeds (10, [...] Read more.
This study aimed at investigating the impacts of 24 h of either solid-state fermentation (SSF) or submerged fermentation (SMF) with Lactiplantibacillus plantarum strain No. 122 on the physico-chemical attributes of chia seeds (CS). Furthermore, this study examined how adding fermented chia seeds (10, 20, and 30% concentrations) affected the properties and sensory profile of wheat bread. Acidity, lactic acid bacteria (LAB) viable counts, biogenic amine (BA), and fatty acid (FA) profiles of fermented chia seeds were analysed. The main quality parameters, acrylamide concentration, FA and volatile compound (VC) profiles, sensory characteristics, and overall acceptability of the obtained breads, were analysed. A decline in the concentration of certain BA and saturated FA and an increase in polyunsaturated FA and omega-3 (ω-3) were found in fermented CS (FCS). The same tendency in the FA profile was observed in both breads, i.e., breads with non-fermented CS (NFCS) or FCS. The quality parameters, VC profile, and sensory attributes of wheat bread were significantly affected by the addition of NFCS or FCS to the main bread formula. All supplemented breads had reduced specific volume and porosity, but SSF chia seeds increased moisture and decreased mass loss after baking. The lowest acrylamide content was found in bread with a 30% concentration of SSF chia seeds (11.5 µg/kg). The overall acceptance of supplemented breads was lower than the control bread, but breads with 10 and 20% SMF chia seed concentrations were still well accepted (on average, 7.4 score). Obtained results highlight that fermentation with Lp. plantarum positively contributes to chia seed nutritional value, while incorporation of NFCS and FCS at certain levels results in an improved FA profile, certain sensory attributes, and reduced acrylamide content in wheat bread. Full article
(This article belongs to the Section Grain)
Show Figures

Graphical abstract

22 pages, 1581 KiB  
Article
Characterisation of Lacto-Fermented Cricket (Acheta domesticus) Flour and Its Influence on the Quality Parameters and Acrylamide Formation in Wheat Biscuits
by Elena Bartkiene, Egle Zokaityte, Evaldas Kentra, Vytaute Starkute, Dovile Klupsaite, Ernestas Mockus, Gintare Zokaityte, Darius Cernauskas, João Miguel Rocha and Raquel P. F. Guiné
Fermentation 2023, 9(2), 153; https://doi.org/10.3390/fermentation9020153 - 3 Feb 2023
Cited by 12 | Viewed by 3239
Abstract
The aim of this study was to evaluate the influence of different amounts (40, 80 and 100 g) of non-fermented and fermented (with Lactiplantibacillus plantarum No. 122 and Lacticaseibacillus casei No. 210) cricket flour (Cr) on the quality characteristics and acrylamide formation in [...] Read more.
The aim of this study was to evaluate the influence of different amounts (40, 80 and 100 g) of non-fermented and fermented (with Lactiplantibacillus plantarum No. 122 and Lacticaseibacillus casei No. 210) cricket flour (Cr) on the quality characteristics and acrylamide formation in wheat biscuits (WB). The main formula for WB preparation consisted of 280 g of wheat flour, 100 g of margarine, 50 g of saccharose, 3 g of vanilla sugar, 50 g of eggs, 1.5 g of salt and 2.0 g of baking powder. It was established that the highest lactic acid bacteria (LAB) number was achieved in 48 h with No. 122 fermented Cr (11.8 log10 CFU/g) and the lowest pH (4.34) was obtained after 48 h of Cr fermentation with both the tested LAB strains. The total colour differences were in the range of 17.54 to 22.08 and, in every case, fermented samples were clearly distinguished from untreated ones. Fermentation increased tyramine content in Cr (from 13.0 to 29.2 times). The main FAs in Cr were palmitic acid, stearic acid, octadec-9-enoic acid and linoleic acid. The lowest acrylamide content (84.1 µg/kg) was found in WB with 40 g of Cr fermented with No. 210. Significant differences in WB overall acceptability were not found. However, the highest intensity of emotion “happy” was elicited by WB with 80 g of Cr fermented with No. 122. Due to the demonstrated decrease of acrylamide content, fermented Cr can be considered a beneficial ingredient for the manufacture of WB. Full article
(This article belongs to the Special Issue Nutritional Significance of Fermented Foods)
Show Figures

Graphical abstract

14 pages, 2615 KiB  
Article
Lacto-Fermented and Unfermented Soybean Differently Modulate Serum Lipids, Blood Pressure and Gut Microbiota during Hypertension
by Eric Banan-Mwine Daliri, Fred Kwame Ofosu, Ramachandran Chelliah and Deog-Hwan Oh
Fermentation 2023, 9(2), 152; https://doi.org/10.3390/fermentation9020152 - 3 Feb 2023
Cited by 2 | Viewed by 3774
Abstract
Soy consumption may reduce hypertension but the impact of food processing on the antihypertensive effect is unclear. Hence, we ascertained the effects of lacto-fermented (FSB) and unfermented soybean (USB) consumption on serum atherogenic lipids, hypertension and gut microbiota of spontaneous hypertensive rats (SHR). [...] Read more.
Soy consumption may reduce hypertension but the impact of food processing on the antihypertensive effect is unclear. Hence, we ascertained the effects of lacto-fermented (FSB) and unfermented soybean (USB) consumption on serum atherogenic lipids, hypertension and gut microbiota of spontaneous hypertensive rats (SHR). FSB displayed a strong in vitro angiotensin converting enzyme (ACE) inhibitory ability of 70 ± 5% while USB inhibited 5 ± 3% of the enzyme activity. Consumption of USB reduced serum ACE activity by 19.8 ± 12.85 U while FSB reduced the enzyme activity by 47.6 ± 11.35 U, respectively. FSB significantly improved cholesterol levels and reduced systolic and diastolic blood pressures by 14 ± 3 mmHg and 10 ± 3 mmHg, respectively, while USB only had a marginal impact on blood pressure. Analysis of FSB showed the abundance of ACE inhibitory peptides EGEQPRPFPFP and AIPVNKP (which were absent in USB) and 30 phenolic compounds (only 12 were abundant in USB). Feeding SHR with FSB promoted the growth of Akkermansia, Bacteroides, Intestinimonas, Phocaeicola, Lactobacillus and Prevotella (short chain fatty acid producers) while USB promoted only Prevotellamassilia, Prevotella and Intestimonas levels signifying the prebiotic ability of FSB. Our results show that, relative to USB, FSB are richer in bioactive compounds that reduce hypertension by inhibiting ACE, improving cholesterol levels and mitigating gut dysbiosis. Full article
Show Figures

Graphical abstract

19 pages, 4212 KiB  
Article
Changes in Spirulina’s Physical and Chemical Properties during Submerged and Solid-State Lacto-Fermentation
by Ernesta Tolpeznikaite, Vadims Bartkevics, Anna Skrastina, Romans Pavlenko, Ernestas Mockus, Egle Zokaityte, Vytaute Starkute, Dovile Klupsaite, Romas Ruibys, João Miguel Rocha, Antonello Santini and Elena Bartkiene
Toxins 2023, 15(1), 75; https://doi.org/10.3390/toxins15010075 - 13 Jan 2023
Cited by 5 | Viewed by 3092
Abstract
The aim of this study was to select a lactic acid bacteria (LAB) strain for bio-conversion of Spirulina, a cyanobacteria (“blue-green algae”), into an ingredient with a high concentration of gamma-aminobutyric acid (GABA) for human and animal nutrition. For this purpose, ten different [...] Read more.
The aim of this study was to select a lactic acid bacteria (LAB) strain for bio-conversion of Spirulina, a cyanobacteria (“blue-green algae”), into an ingredient with a high concentration of gamma-aminobutyric acid (GABA) for human and animal nutrition. For this purpose, ten different LAB strains and two different fermentation conditions (SMF (submerged) and SSF (solid state fermentation)) were tested. In addition, the concentrations of fatty acids (FA) and biogenic amines (BA) in Spirulina samples were evaluated. It was established that Spirulina is a suitable substrate for fermentation, and the lowest pH value (4.10) was obtained in the 48 h SSF with Levilactobacillus brevis. The main FA in Spirulina were methyl palmitate, methyl linoleate and gamma-linolenic acid methyl ester. Fermentation conditions were a key factor toward glutamic acid concentration in Spirulina, and the highest concentration of GABA (2395.9 mg/kg) was found in 48 h SSF with Lacticaseibacillus paracasei samples. However, a significant correlation was found between BA and GABA concentrations, and the main BA in fermented Spirulina samples were putrescine and spermidine. Finally, the samples in which the highest GABA concentrations were found also displayed the highest content of BA. For this reason, not only the concentration of functional compounds in the end-product must be controlled, but also non-desirable substances, because both of these compounds are produced through similar metabolic pathways of the decarboxylation of amino acids. Full article
Show Figures

Figure 1

Back to TopTop