Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (126)

Search Parameters:
Keywords = label-free Immunosensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2877 KiB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 361
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

18 pages, 4954 KiB  
Article
In Situ Growth of Au NPs on Nitrogen-Doped Graphene Quantum Dots Decorated Graphene Composites for the Construction of an Electrochemical Immunosensor and Its Application in CEA Detection
by Zhengzheng Yan, Lujie Wang and Fei Yan
Molecules 2025, 30(6), 1347; https://doi.org/10.3390/molecules30061347 - 17 Mar 2025
Cited by 2 | Viewed by 1033
Abstract
Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) [...] Read more.
Carcinoembryonic antigen (CEA) is an important tumor biomarker for the early clinical diagnosis of various cancers, and, therefore, the accurate and sensitive quantitative determination of CEA is of vital significance. In this study, we demonstrated the in situ growth of Au nanoparticles (AuNPs) on nitrogen-doped graphene quantum dots (N-GQDs) decorated reduced graphene oxide (rGO) nanocomposites by using simple drop-coating and electrochemical deposition methods. N-GQDs@rGO can be formed through the π–π stacking interaction and possesses a high specific surface area and many functional groups, providing lots of anchor sites (amino moieties in NGQDs) for the in situ electrochemical growth of AuNPs without the addition of reductants and protective agents. Such AuNPs/N-GQDs@rGO ternary nanocomposites combine the characteristics of three nanomaterials, showing a large surface area, excellent solubility, good conductivity, catalytic activity, a simple fabrication process, and notable stability, which are further used to construct a label-free electrochemical immunosensor for the determination of CEA. Under the optimized experimental conditions, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor achieves a broad linear response, ranging from 1 pg/mL to 0.5 μg/mL and a low detection limit of 0.13 pg/mL. Moreover, the AuNPs/N-GQDs@rGO-based electrochemical immunosensor shows exceptional selectivity, anti-interference, and anti-fouling capabilities for the direct analysis of CEA amounts in fetal bovine serum samples, showing vast potential in the clinical screening of cancer. Full article
Show Figures

Figure 1

16 pages, 5491 KiB  
Article
Point-of-Care Detection of Carcinoembryonic Antigen (CEA) Using a Smartphone-Based, Label-Free Electrochemical Immunosensor with Multilayer CuONPs/CNTs/GO on a Disposable Screen-Printed Electrode
by Supada Khonyoung, Praphatsorn Mangkronkaew, Puttaporn Klayprasert, Chanida Puangpila, Muthukumaran Palanisami, Mani Arivazhagan and Jaroon Jakmunee
Biosensors 2024, 14(12), 600; https://doi.org/10.3390/bios14120600 - 7 Dec 2024
Cited by 2 | Viewed by 2895
Abstract
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was [...] Read more.
In order to identify carcinoembryonic antigen (CEA) in serum samples, an innovative smartphone-based, label-free electrochemical immunosensor was created without the need for additional labels or markers. This technology presents a viable method for on-site cancer diagnostics. The novel smartphone-integrated, label-free immunosensing platform was constructed by nanostructured materials that utilize the layer-by-layer (LBL) assembly technique, allowing for meticulous control over the interface. Detection relies on direct interactions without extra tagging agents, where ordered graphene oxide (GO), carbon nanotubes (CNTs), and copper oxide nanoparticles (CuONPs) were sequentially deposited onto a screen-printed carbon electrode (SPCE), designated as CuONPs/CNTs/GO/SPCE. This significantly amplifies the electrochemical signal, allowing for the detection of low concentrations of target molecules of CEA. The LBL approach enables the precise construction of multi-layered structures on the sensor surface, enhancing their activity and optimizing the electrochemical performance for CEA detection. These nanostructured materials serve as efficient carriers to significantly increase the surface area, conductivity, and structural support for antibody loading, thus improving the sensitivity of detection. The detection of carcinoembryonic antigen (CEA) in this electrochemical immunosensing transducer is based on a decrease in the current response of the [Fe(CN)6]3−/4− redox probes, which occurs in proportion to the amount of the immunocomplex formed on the sensor surface. Under the optimized conditions, the immunosensor exhibited good detection of CEA with a linear range of 0.1–5.0 ng mL−1 and a low detection limit of 0.08 ng mL−1. This label-free detection approach, based on signal suppression due to immunocomplex formation, is highly sensitive and efficient for measuring CEA levels in serum samples, with higher recovery ranges of 101% to 112%, enabling early cancer diagnosis. The immunosensor was successfully applied to determine CEA in serum samples. This immunosensor has several advantages, including simple fabrication, portability, rapid analysis, high selectivity and sensitivity, and good reproducibility with long-term stability over 21 days. Therefore, it has the potential for point-of-care diagnosis of lung cancer. Full article
(This article belongs to the Special Issue Immunosensors: Design and Applications)
Show Figures

Figure 1

13 pages, 5707 KiB  
Article
Photonic Dipstick Immunosensor to Detect Adulteration of Ewe, Goat, and Donkey Milk with Cow Milk through Bovine κ-Casein Detection
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Sensors 2024, 24(17), 5688; https://doi.org/10.3390/s24175688 - 31 Aug 2024
Cited by 1 | Viewed by 1574
Abstract
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a [...] Read more.
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach–Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Figure 1

30 pages, 9347 KiB  
Article
Targeted FT-NIR and SERS Detection of Breast Cancer HER-II Biomarkers in Blood Serum Using PCB-Based Plasmonic Active Nanostructured Thin Film Label-Free Immunosensor Immobilized with Directional GNU-Conjugated Antibody
by Mohammad E. Khosroshahi, Yesha Patel and Vithurshan Umashanker
Sensors 2024, 24(16), 5378; https://doi.org/10.3390/s24165378 - 20 Aug 2024
Cited by 2 | Viewed by 1741
Abstract
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via [...] Read more.
This work describes our recent PCB-based plasmonic nanostructured platform patent (US 11,828,747B2) for the detection of biomarkers in breast cancer serum (BCS). A 50 nm thin gold film (TGF) was immersion-coated on PCB (i.e., PCB-TGF) and immobilized covalently with gold nanourchin (GNU) via a 1,6-Hexanedithiol (HDT) linkage to produce a plasmonic activated nanostructured thin film (PANTF) platform. A label-free SERS immunosensor was fabricated by conjugating the platform with monoclonal HER-II antibodies (mAb) in a directional orientation via adipic acid dihydrazide (ADH) to provide higher accessibility to overexpressed HER-II biomarkers (i.e., 2+ (early), 3+ (locally advanced), and positive (meta) in BCS. An enhancement factor (EF) of 0.3 × 105 was achieved for PANTF using Rhodamine (R6G), and the morphology was studied by scanning electron microscopy (SEM) and atomic force microscope (AFM). UV-vis spectroscopy showed the peaks at 222, 231, and 213 nm corresponding to ADH, mAb, and HER-II biomarkers, respectively. The functionalization and conjugation were investigated by Fourier Transform Near Infrared (FT-NIR) where the most dominant overlapped spectra of 2+, 3+, and Pos correspond to OH-combination of carbohydrate, RNH2 1st overtone, and aromatic CH 1st overtone of mAb, respectively. SERS data were filtered using the filtfilt filter from scipy.signals, baseline corrected using the Improved Asymmetric Least Squares (isals) function from the pybaselines.Whittaker library. The results showed the common peaks at 867, 1312, 2894, 3026, and 3258 cm−1 corresponding to glycine, alanine ν (C-N-C) assigned to the symmetric C-N-C stretch mode; tryptophan and α helix; C-H antisymmetric and symmetric stretching; NH3+ in amino acids; and N-H stretch primary amide, respectively, with the intensity of Pos > 3+ > 2+. This trend is justifiable considering the stage of each sample. Principal Component Analysis (PCA) and Linear Discrimination Analysis (LDA) were employed for the statistical analysis of data. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

13 pages, 1653 KiB  
Article
Surface Plasmon Resonance Immunosensor for Direct Detection of Antibodies against SARS-CoV-2 Nucleocapsid Protein
by Viktorija Lisyte, Asta Kausaite-Minkstimiene, Benediktas Brasiunas, Anton Popov and Almira Ramanaviciene
Int. J. Mol. Sci. 2024, 25(16), 8574; https://doi.org/10.3390/ijms25168574 - 6 Aug 2024
Cited by 3 | Viewed by 1817
Abstract
The strong immunogenicity of the SARS-CoV-2 nucleocapsid protein is widely recognized, and the detection of specific antibodies is critical for COVID-19 diagnostics in patients. This research proposed direct, label-free, and sensitive detection of antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SCoV2-rN). Recombinant SARS-CoV-2 nucleocapsid [...] Read more.
The strong immunogenicity of the SARS-CoV-2 nucleocapsid protein is widely recognized, and the detection of specific antibodies is critical for COVID-19 diagnostics in patients. This research proposed direct, label-free, and sensitive detection of antibodies against the SARS-CoV-2 nucleocapsid protein (anti-SCoV2-rN). Recombinant SARS-CoV-2 nucleocapsid protein (SCoV2-rN) was immobilized by carbodiimide chemistry on an SPR sensor chip coated with a self-assembled monolayer of 11-mercaptoundecanoic acid. When immobilized under optimal conditions, a SCoV2-rN surface mass concentration of 3.61 ± 0.52 ng/mm2 was achieved, maximizing the effectiveness of the immunosensor for the anti-SCoV2-rN determination. The calculated KD value of 6.49 × 10−8 ± 5.3 × 10−9 M confirmed the good affinity of the used monoclonal anti-SCoV2-rN antibodies. The linear range of the developed immunosensor was from 0.5 to 50 nM of anti-SCoV2-rN, where the limit of detection and the limit of quantification values were 0.057 and 0.19 nM, respectively. The immunosensor exhibited good reproducibility and specificity. In addition, the developed immunosensor is suitable for multiple anti-SCoV2-rN antibody detections. Full article
Show Figures

Graphical abstract

23 pages, 2057 KiB  
Article
Specific and Simultaneous Detection of E. coli O157:H7 and Shiga-like Toxins Using a Label-Free Photonic Immunosensor
by Ana Fernández, Manuel Hernández, Yolanda Moreno and Jorge García-Hernández
Photonics 2024, 11(4), 374; https://doi.org/10.3390/photonics11040374 - 16 Apr 2024
Cited by 1 | Viewed by 2506
Abstract
The current study outlines the advancement of an innovative technique for the simultaneous detection of E. coli O157:H7 and its Shiga-like toxins in food samples by utilizing a photonic label-free biosensor coupled with a microfluidic system. This detection method relies on ring resonator [...] Read more.
The current study outlines the advancement of an innovative technique for the simultaneous detection of E. coli O157:H7 and its Shiga-like toxins in food samples by utilizing a photonic label-free biosensor coupled with a microfluidic system. This detection method relies on ring resonator transduction that is functionalized with specific bioreceptors against O157:H7 on silicon nitride surfaces capable of binding specifically to the antigen bacterium and its verotoxins. This experiment included the characterization of selected monoclonal and polyclonal antibodies employed as detection probes through ELISA immunoassays exposed to target bacterial antigens. A thorough validation of photonic immunosensor detection was conducted on inoculated minced beef samples using reference standards for E. coli O157:H7 and its verotoxins (VTx1 and VTx2) and compared to gold-standard quantification. The lowest limit-of-detection values of 10 CFU/mL and 1 ppm were achieved for the detection of bacteria and its verotoxins. In this study, the lowest limit of quantification (LoQ) achieved for bacterial quantification was 100 CFU/mL, and, for verotoxins, it was 2 ppm. This study confirmed the effectiveness of a new quality control and food hygiene method, demonstrating the rapid and sensitive detection of E. coli O157:H7 and its verotoxins. This innovative approach has the potential to be applied in food production environments. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

3 pages, 423 KiB  
Abstract
Rational Design of a Planar Junctionless Field-Effect Transistor for Sensing Biomolecular Interactions
by Rajendra P. Shukla, Johan G. Bomer, Daniel Wijnperle, Naveen Kumar, Janwa El Maiss, Divya Balakrishanan, Aruna Chandra Singh, Vihar P. Georgiev, Cesar Pascual Garcia, Sivashankar Krishnamoorthy and Sergii Pud
Proceedings 2024, 97(1), 121; https://doi.org/10.3390/proceedings2024097121 - 29 Mar 2024
Viewed by 1216
Abstract
In the ElectroMed project, we are interested in screening certain peptide sequences for their ability to selectively interact with antibodies or MHC proteins. This poses a combinatorial challenge that requires a highly multiplexed setup of label-free immunosensors. Label-free FET-based immunosensors are good candidates [...] Read more.
In the ElectroMed project, we are interested in screening certain peptide sequences for their ability to selectively interact with antibodies or MHC proteins. This poses a combinatorial challenge that requires a highly multiplexed setup of label-free immunosensors. Label-free FET-based immunosensors are good candidates due to their high multiplexing capability and fast response time. Nanowire-based FET sensors have shown high sensitivity but are unreliable for clinical applications due to drift and gate stability issues. To address this, a label-free immuno-FET architecture based on planar junctionless FET devices is proposed. This geometry can improve the signal-to-noise ratio due to its larger planar structure, which is less prone to defects that cause noise and is better suited to the functionalization of different receptor molecules. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

16 pages, 5314 KiB  
Review
Phage Display’s Prospects for Early Diagnosis of Prostate Cancer
by Valery A. Petrenko
Viruses 2024, 16(2), 277; https://doi.org/10.3390/v16020277 - 10 Feb 2024
Cited by 6 | Viewed by 2779
Abstract
Prostate cancer (PC) is the second most diagnosed cancer among men. It was observed that early diagnosis of disease is highly beneficial for the survival of cancer patients. Therefore, the extension and increasing quality of life of PC patients can be achieved by [...] Read more.
Prostate cancer (PC) is the second most diagnosed cancer among men. It was observed that early diagnosis of disease is highly beneficial for the survival of cancer patients. Therefore, the extension and increasing quality of life of PC patients can be achieved by broadening the cancer screening programs that are aimed at the identification of cancer manifestation in patients at earlier stages, before they demonstrate well-understood signs of the disease. Therefore, there is an urgent need for standard, sensitive, robust, and commonly available screening and diagnosis tools for the identification of early signs of cancer pathologies. In this respect, the “Holy Grail” of cancer researchers and bioengineers for decades has been molecular sensing probes that would allow for the diagnosis, prognosis, and monitoring of cancer diseases via their interaction with cell-secreted and cell-associated PC biomarkers, e.g., PSA and PSMA, respectively. At present, most PSA tests are performed at centralized laboratories using high-throughput total PSA immune analyzers, which are suitable for dedicated laboratories and are not readily available for broad health screenings. Therefore, the current trend in the detection of PC is the development of portable biosensors for mobile laboratories and individual use. Phage display, since its conception by George Smith in 1985, has emerged as a premier tool in molecular biology with widespread application. This review describes the role of the molecular evolution and phage display paradigm in revolutionizing the methods for the early diagnosis and monitoring of PC. Full article
(This article belongs to the Special Issue Phage Display in Cancer Research)
Show Figures

Figure 1

12 pages, 3001 KiB  
Article
A Novel Label-Free Electrochemical Immunosensor for the Detection of Thyroid Transcription Factor 1 Using Ribbon-like Tungsten Disulfide-Reduced Graphene Oxide Nanohybrids and Gold Nanoparticles
by Wenjing Wang, Huabiao Tang, Leiji Zhou and Zhaohui Li
Molecules 2024, 29(2), 552; https://doi.org/10.3390/molecules29020552 - 22 Jan 2024
Cited by 4 | Viewed by 2364
Abstract
Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2 [...] Read more.
Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2-rGO) and gold nanoparticles (AuNPs). The proposed immunosensor employed H2O2 as the electrochemical probe because of the excellent peroxidase-like activity of ribbon-like WS2-rGO. The introduction of AuNPs not only enhanced the electrocatalytic activity of the immunosensor, but also provided immobilization sites for binding TTF1 antibodies. The electrochemical signals can be greatly amplified due to their excellent electrochemical performance, which realized the sensitive determination of TTF1 with a wide linear range of 0.025–50 ng mL−1 and a lower detection limit of 0.016 ng mL−1 (S/N = 3). Moreover, the immunosensor exhibited high selectivity, good reproducibility, and robust stability, as well as the ability to detect TTF1 in human serum with satisfactory results. These observed properties of the immunosensor enhance its potential practicability in clinical applications. This method can also be used for the detection of other tumor biomarkers by using the corresponding antigen–antibody complex. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

19 pages, 4182 KiB  
Article
Faradaic Impedimetric Immunosensor for Label-Free Point-of-Care Detection of COVID-19 Antibodies Using Gold-Interdigitated Electrode Array
by Lian C. T. Shoute, Carmen L. Charlton, Jamil N. Kanji, Shawn Babiuk, Lorne Babiuk and Jie Chen
Biosensors 2024, 14(1), 6; https://doi.org/10.3390/bios14010006 - 22 Dec 2023
Cited by 5 | Viewed by 2715
Abstract
Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease [...] Read more.
Label-free electrochemical biosensors have many desirable characteristics in terms of miniaturization, scalability, digitization, and other attributes associated with point-of-care (POC) applications. In the era of COVID-19 and pandemic preparedness, further development of such biosensors will be immensely beneficial for rapid testing and disease management. Label-free electrochemical biosensors often employ [Fe(CN)6]−3/4 redox probes to detect low-concentration target analytes as they dramatically enhance sensitivity. However, such Faradaic-based sensors are reported to experience baseline signal drift, which compromises the performance of these devices. Here, we describe the use of a mecaptohexanoic (MHA) self-assembled monolayer (SAM) modified Au-interdigitated electrode arrays (IDA) to investigate the origin of the baseline signal drift, developed a protocol to resolve the issue, and presented insights into the underlying mechanism on the working of label-free electrochemical biosensors. Using this protocol, we demonstrate the application of MHA SAM-modified Au-IDA for POC analysis of human serum samples. We describe the use of a label-free electrochemical biosensor based on covalently conjugated SARS-CoV-2 spike protein for POC detection of COVID-19 antibodies. The test requires a short incubation time (10 min), and has a sensitivity of 35.4/decade (35.4%/10 ng mL−1) and LOD of 21 ng/mL. Negligible cross reactivity to seasonal human coronavirus or other endogenous antibodies was observed. Our studies also show that Faradaic biosensors are ~17 times more sensitive than non-Faradaic biosensors. We believe the work presented here contributes to the fundamental understanding of the underlying mechanisms of baseline signal drift and will be applicable to future development of electrochemical biosensors for POC applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

19 pages, 5511 KiB  
Article
Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies
by Jarid du Plooy, Branham Kock, Nazeem Jahed, Emmanuel Iwuoha and Keagan Pokpas
Molecules 2023, 28(24), 8022; https://doi.org/10.3390/molecules28248022 - 9 Dec 2023
Cited by 3 | Viewed by 1801
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent [...] Read more.
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings. Full article
(This article belongs to the Special Issue Carbon Nanomaterials: Synthesis and Application)
Show Figures

Graphical abstract

22 pages, 2625 KiB  
Article
A Photonic Label-Free Biosensor to Detect Salmonella spp. in Fresh Vegetables and Meat
by Ana Fernández Blanco, Manuel Hernández Pérez, Yolanda Moreno Trigos and Jorge García-Hernández
Appl. Sci. 2023, 13(24), 13103; https://doi.org/10.3390/app132413103 - 8 Dec 2023
Cited by 2 | Viewed by 2237
Abstract
This paper presents a method that can be used to detect and identify Salmonella spp. in fresh meat and vegetable samples using a photonic biosensor with specialized bioreceptors. Detection was based on photon transduction. Silicon-nitride-based resonant cavities were used to capture the change [...] Read more.
This paper presents a method that can be used to detect and identify Salmonella spp. in fresh meat and vegetable samples using a photonic biosensor with specialized bioreceptors. Detection was based on photon transduction. Silicon-nitride-based resonant cavities were used to capture the change in light response when there is specific binding of the immobilized antibody to the sensor surface against the target antigen. A control immobilization experiment was conducted to validate the immobilization process on the biosensor surface prior to biofunctionalization for Salmonella spp. detection. This experiment involved immobilization of pre-selected antibodies on silicon nitride surfaces. Two types of antibodies were suitable. The first was a specific polyclonal antibody with superior antigen-binding capacity across a wide range of concentrations. The second was a monoclonal antibody designed for effective binding at lower concentrations. Rigorous validation was performed. The outcomes were compared with those of the habitual method used to detect Salmonella spp. (reference method). Replicates from different batches of contaminated meat and vegetable samples were analyzed. This comprehensive approach provides a methodologically robust, highly sensitive, and accurate way of rapidly detecting Salmonella spp. in food samples. It has potential implications for improved food safety and quality control. Full article
(This article belongs to the Special Issue Microorganisms in Foods and Food Processing Environments)
Show Figures

Figure 1

12 pages, 2705 KiB  
Article
Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor
by Wei Chen, Miaomiao Chi, Miaomiao Wang, Yage Liu, Shu Kong, Liping Du, Jian Wang and Chunsheng Wu
Sensors 2023, 23(24), 9693; https://doi.org/10.3390/s23249693 - 8 Dec 2023
Cited by 6 | Viewed by 2079
Abstract
Evaluating the levels of the biomarker carbohydrate antigen 19-9 (CA19-9) is crucial in early cancer diagnosis and prognosis assessment. In this study, an antifouling electrochemical immunosensor was developed for the label-free detection of CA19-9, in which bovine serum albumin (BSA) and graphene were [...] Read more.
Evaluating the levels of the biomarker carbohydrate antigen 19-9 (CA19-9) is crucial in early cancer diagnosis and prognosis assessment. In this study, an antifouling electrochemical immunosensor was developed for the label-free detection of CA19-9, in which bovine serum albumin (BSA) and graphene were cross-linked with the aid of glutaraldehyde to form a 3D conductive porous network on the surface of an electrode. The electrochemical immunosensor was characterized through the use of transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscope (AFM), UV spectroscopy, and electrochemical methods. The level of CA19-9 was determined through the use of label-free electrochemical impedance spectroscopy (EIS) measurements. The electron transfer at the interface of the electrode was well preserved in human serum samples, demonstrating that this electrochemical immunosensor has excellent antifouling performance. CA19-9 could be detected in a wide range from 13.5 U/mL to 1000 U/mL, with a detection limit of 13.5 U/mL in human serum samples. This immunosensor also exhibited good selectivity and stability. The detection results of this immunosensor were further validated and compared using an enzyme-linked immunosorbent assay (ELISA). All the results confirmed that this immunosensor has a good sensing performance in terms of CA19-9, suggesting its promising application prospects in clinical applications. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

18 pages, 2478 KiB  
Article
Development and Comparative Evaluation of Two Highly Sensitive Immunosensor Platforms for Trace Determination of Copper Ions in Drinking Water Using a Monoclonal Antibody Specific to Copper-EDTA Complex
by Ibrahim A. Darwish, Zongzhi Wang and Ryhan J. Darling
Molecules 2023, 28(20), 7017; https://doi.org/10.3390/molecules28207017 - 10 Oct 2023
Cited by 2 | Viewed by 1711
Abstract
This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. [...] Read more.
This study describes the development of two highly sensitive immunosensor platforms for the trace determination of copper ions, Cu(II), in drinking water. These platforms were a microwell-based enzyme-linked immunosorbent assay (ELISA) and a kinetic exclusion assay (KinExA) with a KinExATM 3200 immunosensor. Both ELISA and KinExA were developed utilizing the same antibody and coating reagent. The antibody was a mouse monoclonal antibody, designated as 8D66, that specifically recognized Cu(II)-ethylenediamine tetraacetic acid complex (Cu(II)-EDTA) but did not recognize Cu(II)-free EDTA. The 8D66 monoclonal antibody was generated by the fusion of spleen cells of an immunized BALB/c mouse with SP2/0-Ag14 myeloma cells. The immunogen was a protein conjugate of Cu(II)-EDTA with keyhole limpet hemocyanin protein. The coating reagent was Cu(II)-EDTA covalently linked to bovine serum albumin protein (Cu(II)-EDTA-BSA). Both assays involved the competitive binding reaction between Cu(II)-EDTA complexes, formed in the sample solution, and Cu(II)-EDTA-BSA conjugate which has been immobilized onto ELISA plates (in ELISA) or polymethylmethacrylate beads (in KinExA) for a limited quantity of binding sites of the 8D66 antibody. In ELISA, color signals were generated by a peroxidase-labeled secondary antibody and 3,3′,5,5′-tetramethylbenzidine substrate. In KinExA, a fluorescein isothiocyanate-labeled secondary antibody was used to generate KinExAgram (trend-line fluorescence responses vs. time). The conditions of both ELISA and KinExA were investigated, and the optimum procedures were established. Both ELISA and KinExA were validated, and all validation parameters were acceptable. Many different metal ions that are commonly encountered in drinking water did not interfere with the Cu(II) analysis by both ELISA and KinExA. Both assays were applied to the determination of Cu(II) in drinking water with satisfactory accuracy and precision. Both assays were compared favorably with inductively coupled plasma atomic emission spectroscopy in terms of their abilities to accurately and precisely determine Cu(II) in drinking water samples. A comparative evaluation of ELISA and KinExA revealed that KinExA had a higher sensitivity and better precision than ELISA, whereas both assays had comparable accuracy. Both ELISA and KinExA were superior to the existing atomic spectrometric methods for Cu(II) in terms of sensitivity, convenience, and analysis throughputs. The proposed ELISA and KinExA are anticipated to effectively contribute to assessing Cu(II) concentrations and control the exposure of humans to its potential toxicities. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop