Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (319)

Search Parameters:
Keywords = kinetic program

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 745 KiB  
Article
Effect of Recombinant NGF Encapsulated in Chitosan on Rabbit Sperm Traits and Main Metabolic Pathways
by Luigia Bosa, Simona Mattioli, Anna Maria Stabile, Desirée Bartolini, Alessia Tognoloni, Alessandra Pistilli, Mariangela Ruggirello, Mario Rende, Silvia Gimeno-Martos, Daniela Jordán-Rodríguez, Maria Arias-Álvarez, Pilar García Rebollar, Rosa M. García-García and Cesare Castellini
Biology 2025, 14(8), 974; https://doi.org/10.3390/biology14080974 (registering DOI) - 1 Aug 2025
Abstract
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways [...] Read more.
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways associated with either cell survival, such as protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), or programmed cell death, such as c-Jun N-terminal kinase (JNK), were also analyzed. The results confirmed the effect of rrβNGFch on capacitation and AR, whereas a longer storage time (2 h) decreased all qualitative sperm traits. AKT and JNK did not show treatment-dependent activation and lacked a correlation with functional traits, as shown by ERK1/2. These findings suggest that rrβNGFch may promote the functional activation of sperm cells, particularly during early incubation. The increase in capacitation and AR was not linked to significant changes in pathways related to cell survival or death, indicating a specific action of the treatment. In contrast, prolonged storage negatively affected all sperm parameters. ERK1/2 activation correlated with capacitation, AR, and apoptosis, supporting its role as an NGF downstream mediator. Further studies should analyze other molecular mechanisms of sperm and the potential applications of NGF in assisted reproduction. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

15 pages, 1849 KiB  
Article
Evolution of Gait Biomechanics During a Nine-Month Exercise Program for Parkinson’s Disease: An Interventional Cohort Study
by Dielise Debona Iucksch, Elisangela Ferretti Manffra and Vera Lucia Israel
Biomechanics 2025, 5(3), 53; https://doi.org/10.3390/biomechanics5030053 (registering DOI) - 1 Aug 2025
Abstract
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, [...] Read more.
It is well established that combining exercise with medication may benefit functionality in individuals with PD (Parkinson’s disease). However, the long-term evolution of gait biomechanics under this combination remains poorly understood. Objectives: This study aims to analyze the evolution of spatiotemporal gait parameters, kinetics, and kinematics throughout a long-term exercise program conducted in water and on dry land. Methods: We have compared the trajectories of biomechanical variables across the treatment phases using statistical parametric mapping (SPM). A cohort of fourteen individuals with PD (mean age: 65.6 ± 12.1 years) participated in 24 sessions of aquatic exercises over three months, followed by a three-month retention phase, and then 24 additional sessions of land-based exercises. Three-dimensional gait data and spatiotemporal parameters were collected before and after each phase. Two-way ANOVA with repeated measures was used to compare spatiotemporal parameters. Results: The walking speed increased while the duration of the double support phase decreased. Additionally, the knee extensor moment consistently increased in the entire interval from midstance to midswing (20% to 70% of the stride period), approaching normal gait patterns. Regarding kinematics, significant increases were observed in both hip and knee flexion angles. Furthermore, the abnormal ankle dorsiflexion observed at the foot strike disappeared. Conclusions: These findings collectively suggest positive adaptations in gait biomechanics during the observation period. Full article
(This article belongs to the Special Issue Gait and Balance Control in Typical and Special Individuals)
Show Figures

Figure 1

21 pages, 518 KiB  
Study Protocol
Development and Implementation of a Core Training Protocol: Effects on Muscle Activation, Hypertrophy, Balance, and Quality of Life in Recreationally Active Adults
by Ioannis Tsartsapakis, Aglaia Zafeiroudi, Ioannis Trigonis, Christos Lyrtzis and Konstantinos Astrapellos
Methods Protoc. 2025, 8(4), 77; https://doi.org/10.3390/mps8040077 - 8 Jul 2025
Viewed by 737
Abstract
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, [...] Read more.
Core stability is fundamental to posture, balance, and force transmission throughout the kinetic chain. Although traditionally associated with athletic performance, emerging research highlights its broader applicability to recreational fitness. This study investigates the effects of an eight-week core training program on muscle hypertrophy, static balance, and neuromuscular control in recreationally active, non-athletic adults. Participants will undertake a structured intervention comprising progressive triads targeting core stability, strength, and power. Assessment methods include surface electromyography (EMG), ultrasound imaging, three-dimensional force plates, Kinovea motion analysis, and the Satisfaction With Life Scale (SWLS) questionnaire. Expected outcomes include enhanced core muscle activation, improved static balance, and increased core-generated force during overhead medicine ball slam trials. Additionally, the intervention aims to facilitate hypertrophy of the transverse abdominis, internal oblique, and lumbar multifidus muscles, contributing to spinal resilience and motor control. This protocol bridges gaps in core training methodologies and advances their scalability for recreational populations. The proposed model offers a structured, evidence-informed framework for improving core activation, postural stability, muscle adaptation, movement efficiency, and perceived quality of life in recreationally active individuals. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

15 pages, 2040 KiB  
Article
Research on the Flame-Retardant Performance of Antioxidant Gel Foam in Preventing Spontaneous Coal Combustion
by Hu Wen, Ziqi Wang and Maoxia Liu
Fire 2025, 8(7), 247; https://doi.org/10.3390/fire8070247 - 26 Jun 2025
Viewed by 305
Abstract
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal [...] Read more.
Antioxidant gel foams are promising materials for coal mine fire prevention due to their unique physicochemical properties. To address the limitations of conventional suppression methods under high-temperature conditions, this study investigates a newly developed antioxidant gel foam and its mechanism in inhibiting coal spontaneous combustion. A novel antioxidant gel foam was formulated by incorporating TBHQ and modified montmorillonite into a sodium alginate-based gel system. This formulation enhances the thermal stability, water retention, and free radical scavenging capacity of the gel. This study uniquely combines multi-scale experimental methods to evaluate the performance of this material in coal fire suppression. Multi-scale experiments, including FTIR, leakage air testing, programmed temperature rise, and small-scale fire extinction, were conducted to evaluate its performance. Experimental results indicate that the antioxidant gel foam exhibits excellent thermal stability in the temperature range of 200–500 °C. Its relatively high decomposition temperature enables it to effectively resist structural damage in high-temperature environments. During thermal decomposition, the gel releases only a small amount of gas, while maintaining the integrity of its internal micro-porous structure. This characteristic significantly delays the kinetics of coal oxidation reactions. Further research revealed that the spontaneous combustion ignition temperature of coal samples treated with the gel was significantly higher, and the oxygen consumption rate during spontaneous combustion was significantly reduced, indicating that the gel not only effectively suppressed the acceleration of the combustion reaction but also significantly reduced the release of harmful gases such as HCl. Scanning electron microscope analysis confirmed that the gel maintained a good physical structure under high temperatures, forming an effective oxygen barrier, which further enhanced the suppression of coal spontaneous combustion. These findings provide important theoretical and practical guidance for the application of antioxidant gel foams in coal mine fire prevention and control, confirming that this material has great potential in coal mine fire safety, offering a new technological approach to improve coal mine safety. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

28 pages, 5643 KiB  
Article
Jasmine Flower Color Degradation User-Coded Computer Vision Image Analysis Tool and Kinetics Modeling
by Humeera Tazeen, Astina Joice, Talha Tufaique, C. Igathinathane, Ademola Ajayi-Banji, Zhao Zhang, Craig W. Whippo, Drew A. Scott, John R. Hendrickson, David W. Archer, Lestero O. Pordesimo and Shahab Sokhansanj
AgriEngineering 2025, 7(6), 193; https://doi.org/10.3390/agriengineering7060193 - 16 Jun 2025
Viewed by 714
Abstract
Jasmine (Jasminum sambac (L.) Ait.) flowers, valued for their fragrance and essential oils, are extensively used in the flavor, cosmetics, and pharmaceutical industries. However, their useful life is short due to rapid color degradation and browning caused by photo-oxidative stress induced by [...] Read more.
Jasmine (Jasminum sambac (L.) Ait.) flowers, valued for their fragrance and essential oils, are extensively used in the flavor, cosmetics, and pharmaceutical industries. However, their useful life is short due to rapid color degradation and browning caused by photo-oxidative stress induced by environmental factors like light, temperature, and humidity. Therefore, the significant reduction in the visual appeal, quality, and economic value necessitates the measurement of temporal color degradation to evaluate the shelf life for jasmine flowers. A developed open-source ImageJ plugin program quantified the color degradation of jasmine petals and pedicles over 25 h. Petal area (>19 mm2) cutoff separated the pedicles. Color degradation kinetics models, including zeroth-order, first-order, exponential decay, Page, and Peleg, using several color indices, were developed, and their performances were evaluated. VEG, hue, chroma, COM, and CIVE color indices were found suitable for kinetics modeling. Peleg and Page models (R20.99) are suitable for petals and pedicles, respectively. Jasmine petals retained their color integrity for longer periods than pedicles. This study underscores the potential of computer vision analysis and kinetic modeling for evaluating flower quality after harvest. The color degradation dynamics were accurately characterized by the kinetic models, which provide actionable insights for optimizing storage and handling practices. Full article
Show Figures

Graphical abstract

17 pages, 1134 KiB  
Article
Characterization of Heat Tolerance in Two Apple Rootstocks Using Chlorophyll Fluorescence as a Screening Method
by Ines Mihaljević, Marija Viljevac Vuletić, Vesna Tomaš, Dominik Vuković and Zvonimir Zdunić
Agronomy 2025, 15(6), 1442; https://doi.org/10.3390/agronomy15061442 - 13 Jun 2025
Viewed by 539
Abstract
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the [...] Read more.
High temperature has an adverse effect on apple production worldwide. Photosynthesis is a process especially vulnerable to heat stress, which can reduce photosynthetic efficiency, plant growth, development, and ultimately yield. Although the effects of heat stress on apples have been partially examined, the photochemical reactions and heat tolerance of specific rootstocks have still not been sufficiently investigated. Identification of rootstocks with better photosynthetic performance and adaptation to heat stress enables the selection of rootstocks, which could contribute to stable yields and good fruit quality even at elevated temperatures. In this study, chlorophyll a fluorescence (ChlF) induction kinetics was used to investigate the heat tolerance between two apple rootstocks (M.9 and G.210). In addition, we employed lipid peroxidation measurements, hydrogen peroxide quantification, proline content, and total phenolic and flavonoid assessments. Analysis of chlorophyll fluorescence parameters and OJIP curves (different steps of the polyphasic fluorescence transient; O–J–I–P phases) revealed significant differences in their responses, with higher values of the PIABS parameter indicating better PS II stability and overall photosynthetic efficiency in M.9 rootstock. The higher contents of chlorophyll, carotenoids, proline, and significant increase in the accumulation of phenolics, and flavonoids in this rootstock also contributed to its better adaptation to heat stress. Oxidative stress was more pronounced in G.210 through higher H2O2 and MDA levels, which could point to its lower capacity to adjust to heat stress conditions. This research can provide a scientific basis for further breeding programs and growing plans due to climate change and the occurrence of extremely high temperatures. Full article
Show Figures

Figure 1

14 pages, 946 KiB  
Article
Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull
by Sebastián Aliste-Flores, Luis Javier Chirosa-Ríos, Ignacio Chirosa-Ríos and Daniel Jerez-Mayorga
Appl. Sci. 2025, 15(11), 5866; https://doi.org/10.3390/app15115866 - 23 May 2025
Viewed by 447
Abstract
The application of blood flow restriction (BFR) during resistance exercise enhances muscular adaptations under low-load conditions. However, its acute effects on explosive neuromuscular performance, particularly on kinetic variables such as the rate of force development (RFD), impulse, and peak force remain poorly understood [...] Read more.
The application of blood flow restriction (BFR) during resistance exercise enhances muscular adaptations under low-load conditions. However, its acute effects on explosive neuromuscular performance, particularly on kinetic variables such as the rate of force development (RFD), impulse, and peak force remain poorly understood in women. Twenty-five participants underwent randomized sessions under three occlusion conditions (0%, 40%, and 80% limb occlusion pressure), followed by isometric mid-thigh pull (IMTP) assessments at five time points (pre-exercise; post-exercise; and 5, 10, and 15 min post-exercise). Peak force, impulse, and RFD were analyzed across early (0–50 ms), mid (51–150 ms), and late (151–250 ms) time intervals. BFR did not result in statistically significant alterations in RFD or isometric force production at any time or pressure. These findings indicate that acute BFR application, even when volitional fatigue is induced, does not substantially impair neuromuscular function in isometric settings. These findings indicate that acute exposure to BFR, even under fatiguing conditions, does not substantially impair isometric force production or explosive performance in young physically active women. These results support the task-specific and temporally dependent nature of neuromuscular responses to BFR, highlighting the need for population-specific approaches in BFR programming. Full article
Show Figures

Figure 1

18 pages, 766 KiB  
Article
Workout Duration Alters the Importance of Predictive Traits on High-Intensity Functional Training Workout Performance
by Gerald T. Mangine, Kristyn C. McGeehan, Wil King, Ashley Hines, James W. Henley, Jacob L. Grazer, Tiffany A. Esmat and John R. McLester
Sports 2025, 13(6), 156; https://doi.org/10.3390/sports13060156 - 22 May 2025
Viewed by 776
Abstract
Relevant skills and physiological traits vary between high-intensity functional training (HIFT) workouts, but it is unknown how altering each programming detail affects their importance. To examine the effect of workout duration on relationships to HIFT performance, twelve men and ten women with ≥2 [...] Read more.
Relevant skills and physiological traits vary between high-intensity functional training (HIFT) workouts, but it is unknown how altering each programming detail affects their importance. To examine the effect of workout duration on relationships to HIFT performance, twelve men and ten women with ≥2 years of HIFT experience (29.3 ± 7.1 years, 171 ± 7 cm, 80.5 ± 15.6 kg) completed a baseline visit to assess body composition and performance in vertical jump, barbell thruster, and 2000 m rowing tests. Participants returned twice to randomly complete the same circuit of rowing, barbell thrusters, and box jumps for “as many repetitions as possible” in 5 or 15 min. Performance was described by expressed kinetics on each exercise, overall and individual exercises, repetition completion rates and volume load completed, and transition times. Spearman correlation analysis revealed several expected relationships (p < 0.05) but also differences between workout durations. Performance measures, especially rowing (time: ρ = −0.89 to −0.94; power: ρ = 0.88 to 0.93), were more applicable to the 5 min workout. Experience and body composition measures (ρ = −0.47 to −0.50) were more often related to the 15 min transition strategy. These data suggest that increasing workout duration alters the importance of relevant predictive traits. Full article
Show Figures

Figure 1

18 pages, 1792 KiB  
Review
Probing Heterolytic H2 Dissociation on Heterogeneous Catalysts: A Brief Review of Experimental Strategies
by Siwen Wang, Xuanqing Lou and Bowei Liu
Processes 2025, 13(5), 1465; https://doi.org/10.3390/pr13051465 - 11 May 2025
Viewed by 636
Abstract
Hydrogen (H2) has become a more important alternative source in the current energy transition process. Beyond its role in clean energy production, it also serves as a key reactant in a wide range of industrial chemical transformations, such as hydrogenation and [...] Read more.
Hydrogen (H2) has become a more important alternative source in the current energy transition process. Beyond its role in clean energy production, it also serves as a key reactant in a wide range of industrial chemical transformations, such as hydrogenation and hydroprocessing. A fundamental step in many of these processes is the dissociation of hydrogen on catalyst surfaces. This short review provides an overview of the fundamental mechanisms involved in hydrogen dissociation over catalysts, with a specific emphasis on heterolytic pathways. Meanwhile, the influence of surface coordination environments on hydrogen activation is discussed, focusing on key factors—Lewis acid–base pairs, lattice oxygen and oxygen vacancies, and metal–support interfaces. With recognizing the significance of understanding the reaction mechanisms, we provide a critical review of experimental techniques, including spectroscopy, temperature-programmed methods, and kinetic analysis, that have been successfully applied or appear promising for probing active sites, reaction dynamics, chemisorbed intermediates, and elementary steps. Our goal is to highlight how these techniques contribute to a mechanistic understanding and to outline future directions, making this review a valuable resource for both new and experienced researchers. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

31 pages, 10054 KiB  
Article
A Conceptual Framework for Analyzing Hybridity in Architecture: A Case Study of Baghdad University
by Eman Al Braifkani and Kağan Günçe
Sustainability 2025, 17(9), 4154; https://doi.org/10.3390/su17094154 - 4 May 2025
Viewed by 1427
Abstract
This study explores the concept of hybridity in architecture, shaped by cultural exchange, globalization, and evolving socio-political contexts. In this research, hybridity in architecture is defined as a dynamic process that emerges within boundary spaces, where physical elements interact with evolving cultural, social, [...] Read more.
This study explores the concept of hybridity in architecture, shaped by cultural exchange, globalization, and evolving socio-political contexts. In this research, hybridity in architecture is defined as a dynamic process that emerges within boundary spaces, where physical elements interact with evolving cultural, social, and political forces, resulting in adaptable and multilayered architectural environments. Despite the significance of hybridity in architecture, existing research lacks a comprehensive and systematic framework for its analysis. To bridge this gap, the study develops a conceptual framework that integrates archival research, literature synthesis, and an architectural analysis. The methodology combines a qualitative analysis of historical documents and design drawings to identify eight key indicators of hybridity—form, typology, program, mixed-use, multi-layering, user mixing, border spaces, and control/resistance—and applies them to a case study of the University of Baghdad. These indicators embody the interaction between the static and kinetic aspects of hybridity. The Static Aspect refers to the tangible outcomes of hybridity—such as mixed forms and functions—that materialize in built structures. In contrast, the Kinetic Aspect reflects the intangible dimensions, including ongoing social and cultural dynamics and shifts in power relations, which continuously reshape these hybrid forms. Together, these aspects illustrate that hybridity is both a product and a process, where material expressions emerge from social negotiations and, in turn, influence future adaptations. The findings reveal that the hybrid architecture evolves through complex interactions among historical references, contemporary needs, and socio-political forces. By establishing a systematic methodology for analyzing hybridity, this study bridges theoretical discourse with practical applications, providing architects and researchers with a robust analytical tool to assess hybrid architectural spaces within culturally diverse contexts. It also reinforces the understanding of hybridity as a dynamic force—one that not only results in physical architectural expressions but also evolves through ongoing cultural, social, and political interactions. Full article
Show Figures

Figure 1

12 pages, 1042 KiB  
Perspective
Can the Discovery of High-Impact Diagnostics Be Improved by Matching the Sampling Rate of Clinical Diagnostics to the Frequency Domain of Diagnostic Information?
by Steven W. Millward, Peng Wei, David Piwnica-Worms and Seth T. Gammon
Cancers 2025, 17(9), 1387; https://doi.org/10.3390/cancers17091387 - 22 Apr 2025
Viewed by 473
Abstract
Over the past 30 years, academic and industrial research investigators have developed molecular reporters to visualize cell death in complex biological systems. In parallel, clinical researchers, chemists, biochemists, and molecular biologists have endeavored to translate these molecular tools into clinical imaging agents. Despite [...] Read more.
Over the past 30 years, academic and industrial research investigators have developed molecular reporters to visualize cell death in complex biological systems. In parallel, clinical researchers, chemists, biochemists, and molecular biologists have endeavored to translate these molecular tools into clinical imaging agents. Despite these efforts, there are no clinically approved imaging methodologies with which to image cell death consistently and quantitatively. One reason may reside in the intrinsic mismatch between the sampling frequency of translational molecular imaging and the biochemical kinetics that define cell death. Beyond cell death imaging, many active research programs are now attempting to create translational diagnostic pharmaceuticals to image immunological, fibrotic, amyloidotic, and metabolic pathways. Each of these pathways is defined by a unique set of biochemical rate constants, some of which are associated with key predictive pathways. Exhaustively sampling all permutations of pathways and kinetic constants would seem to be an intractable strategy for target identification and validation. Sampling theory, if applied to these pathways, could accelerate the translation of high-impact diagnostics through prioritization of pathways for either AI enhanced diagnostic imaging or AI-enhanced wearable devices. In this perspective, we identify the Nyquist sampling rate as a key criterion for evaluating the optimal application for novel diagnostics. Sampling theory states that to fully characterize a band-limited, stationary, temporal data set, the signal must be sampled at more than twice the rate of the fastest frequency in the signal or, for diagnostics, the discriminatory signal. Through the study of the medical imaging process chain, Nyquist sampling rates of 0.25 day−1 and, more likely, slower than 0.02 day−1 were determined to provide high quality information. By prioritizing low-frequency predictive processes, or “state changes,”, imaging researchers may improve the “hit rate” of research programs by appropriately matching the rate of change in diagnostic and predictive information with the limiting sampling rate of medical imaging. Critically, however, high-frequency diagnostic information (and therefore high-frequency biological processes) need not be ignored; these processes are simply better interrogated through continuous monitoring, e.g., by wearable devices combined with machine learning or artificial intelligence. Full article
(This article belongs to the Special Issue Medical Imaging and Artificial Intelligence in Cancer)
Show Figures

Figure 1

19 pages, 1003 KiB  
Article
The Influence of an Eight-Week Home Exercise Program on Spatiotemporal and Kinetic Characteristics of Gait and Knee Function in Women with Severe Knee Osteoarthritis Scheduled for Arthroplasty
by Monika Mets, Jelena Sokk, Jaan Ereline, Mati Pääsuke, Tiit Haviko and Helena Gapeyeva
Medicina 2025, 61(5), 774; https://doi.org/10.3390/medicina61050774 - 22 Apr 2025
Viewed by 1722
Abstract
Background and Objectives: The increased prevalence of knee osteoarthritis (OA) and need for total knee arthroplasty (TKA) indicate a growing need for effective prehabilitation. The effect of preoperative home exercise programs (HEPs) on gait in patients with severe knee OA is under-investigated. This [...] Read more.
Background and Objectives: The increased prevalence of knee osteoarthritis (OA) and need for total knee arthroplasty (TKA) indicate a growing need for effective prehabilitation. The effect of preoperative home exercise programs (HEPs) on gait in patients with severe knee OA is under-investigated. This study aimed to evaluate the influence of an 8-week preoperative HEP on gait characteristics, leg extensor muscle strength, knee function, and health status in women with severe knee OA scheduled for TKA and to compare them with healthy control data. Material and Methods: Eighteen women with severe knee OA (KOA, aged 61.8 ± 1.6 years) and ten age-matched healthy women (CON) participated in this study. The KOA group performed an HEP with 15 exercises aimed at improving lower limb muscle strength, motion, balance, and coordination. Gait spatiotemporal and kinetic characteristics during the loading response, isometric leg extensor strength, knee active range of motion (AROM), and The Western Ontario and McMaster Universities Arthritis Index (WOMAC) were investigated. Associations between characteristics were analyzed. Results: Improvements in ground reaction force (GRF) during the loading response of gait, leg extensor muscle strength, the knee AROM, and the WOMAC index were found post-HEP. The KOA group demonstrated lower (p < 0.05) spatiotemporal and GRF characteristics than the CON group. Knee extension moment (KEM) was lower pre-HEP (p < 0.05) but did not differ significantly from the CON group post-HEP. Gait characteristics and WOMAC were associated with leg extensor muscle strength and knee AROM and pain in the KOA group. Conclusions: An eight-week preoperative HEP improved GRF and KEM during the loading response of gait, muscle strength, knee function, and self-reported knee OA-related health status in women with severe knee OA. Preoperative HEP before TKA, focusing on leg extensor muscle strength, range of motion, and pain relief, is an effective alternative to supervised exercise therapy in women with severe knee OA. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

25 pages, 5368 KiB  
Article
A Prospective Controlled Study on the Longitudinal Effects of Rehabilitation in Older Women with Primary Sarcopenia
by Bianca Maria Vladutu, Daniela Matei, Anca Maria Amzolini, Constantin Kamal and Magdalena Rodica Traistaru
Life 2025, 15(4), 609; https://doi.org/10.3390/life15040609 - 6 Apr 2025
Cited by 1 | Viewed by 690
Abstract
Sarcopenia, defined as a progressive loss of skeletal muscle mass, strength, and function, is a leading contributor to disability, dependence, and reduced quality of life (HRQoL) in older adults. This study aimed to evaluate the impact of a personalized six-month rehabilitation program, centered [...] Read more.
Sarcopenia, defined as a progressive loss of skeletal muscle mass, strength, and function, is a leading contributor to disability, dependence, and reduced quality of life (HRQoL) in older adults. This study aimed to evaluate the impact of a personalized six-month rehabilitation program, centered on tailored kinetic therapy, on physical performance and HRQoL in older women with primary sarcopenia. Methods: This prospective controlled study included 80 women aged ≥65 years, allocated into a Study Group (SG, n = 40), who followed a supervised personalized kinetic program, and a control group (CG, n = 40), who received general advice regarding physical activity and nutrition. Physical performance was measured using the short physical performance battery (SPPB), while HRQoL was assessed with the disease-specific SarQoL questionnaire. Evaluations were conducted at baseline and after six months. Results: At baseline, both groups had comparable scores (SPPB: SG = 5.75 ± 0.86 vs. CG = 5.8 ± 0.88, p = 0.798; SarQoL: SG = 54.42 ± 8.76 vs. CG = 55.59 ± 4.61, p = 0.457). After six months, the SG showed significant improvements (SPPB = 8.05 ± 0.90, p < 0.001; SarQoL = 62.55 ± 7.00, p < 0.001). Significant gains were observed in domains related to physical and mental health, locomotion, functionality, and leisure activities (p < 0.05). In contrast, the CG showed only minor, non-significant changes (SPPB = 6.17 ± 0.78; SarQoL = 56.51 ± 5.51). Conclusions: A structured, personalized kinetic program significantly improves physical performance and HRQoL in older women with primary sarcopenia. These results support the need for individualized, supervised rehabilitation programs in optimizing functional recovery and enhancing patient-centered outcomes in sarcopenia management. Full article
(This article belongs to the Special Issue Muscle Wasting, Aging, and Cancer: The Effects of Physical Exercise)
Show Figures

Figure 1

19 pages, 2534 KiB  
Article
Effects of Functional Partial Body Weight Support Treadmill Training on Mobility in Children with Ataxia: A Randomized Controlled Trial
by Alexandra Lepoura, Sofia Lampropoulou, Antonis Galanos, Marianna Papadopoulou, Georgios Gkrimas, Magda Tziomaki and Vasiliki Sakellari
J. Funct. Morphol. Kinesiol. 2025, 10(2), 123; https://doi.org/10.3390/jfmk10020123 - 6 Apr 2025
Viewed by 1443
Abstract
Background/Objectives: Ataxia is quite common in pediatric neuromotor disorders and has a highly heterogeneous etiology. Mobility difficulties and functional limitations reflect the lack of coordination in this population. The aim of this study is to assess the effectiveness of an intensive program of [...] Read more.
Background/Objectives: Ataxia is quite common in pediatric neuromotor disorders and has a highly heterogeneous etiology. Mobility difficulties and functional limitations reflect the lack of coordination in this population. The aim of this study is to assess the effectiveness of an intensive program of Functional Partial Body Weight Support Treadmill Training (FPBWSTT) on the mobility and functionality of children with ataxia. Methods: Through a stratified randomized control trial, a sample of 18 children with progressive and non-progressive ataxia and GMFCS II-IV (mean age: 14 years; standard deviation: 2.5) was assessed prior to the intervention, post-intervention, and 2 months after its end. Motor and functional skills were assessed with the Gross Motor Function Measure (GMFM, items D-E), the Pediatric Balance Scale (PBS), a 10 m walk test (10 MWT), a 6 min walk test (6 MWT), the Scale for Assessment and Rating Ataxia (SARA), the TimedUp and Go (TUG) test, spatiotemporal gait parameters, and kinetic and kinematic variables of the pelvis and lower limb. Results: Statistically significant interactions and changes in favor of the FPBWSTT were found in all functional assessments and spatiotemporal gait parameters (p < 0.05), the majority of which were maintained for two months. There was no statistical interaction or change in kinematic parameters (p > 0.05), while kinetic variables were insufficiently collected and were not statistically analyzed. Conclusions: The FPBWSTT is more effective on the mobility and functionality of children with ataxia who are 8–18 years old, compared to typical physiotherapy. Kinematic variables may not be sensitive indicators of change over a short period of time and/or in this population. Full article
Show Figures

Figure 1

16 pages, 4066 KiB  
Article
Development of a Reliable Device for ‘Fluorokinetic’ Analysis Based on a Portable Diode Array MEMS Fluorimeter
by Domingo González-Arjona and Germán López-Pérez
Chemosensors 2025, 13(4), 128; https://doi.org/10.3390/chemosensors13040128 - 3 Apr 2025
Viewed by 2615
Abstract
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding [...] Read more.
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding the optimization of acquisition speed, memory, and computer interface have been analyzed and optimized. As a result, a very versatile device with great adaptability, reduced dimensions, portability, and a low budget (under EUR 500) has been built. The sensitivity, controlled by the integration time of the photodiodes, can be adjusted between 10 µs and 20 s, thus allowing sampling times ranging from 10 ms to more than 10 h. Under these conditions, chemical rate constants from 20 s−1 to 10−8 s−1 can be experimentally determined. It has a very wide operating range for the kinetic rate constant determination, over six orders of magnitude. As proof of the system performance, the oxidation reaction of Thiamine in a basic medium to form fluorescent Thiochrome has been employed. The evolution of the emission spectrum has been followed, and the decomposition rate constant has been measured at 2.1 × 10−3 s−1, a value which matches those values reported in the literature for this system. A Thiochrome calibration curve has also been performed, obtaining a detection limit of 13 nM, consistent with literature data. Additionally, the stability of Thiochrome has been tested, being the photo-decomposition rate constants 1.8 × 10−4 s−1 and 3.0 × 10−7 s−1, in the presence and absence of UV light (365 nm), respectively. Finally, experiments have been designed to obtain, in a single measurement, the values of both rate constants: the formation of Thiochrome from Thiamine and its photo-decomposition under UV light to a non-fluorescent product. The rate constant values obtained are in good agreement with those previously obtained through independent experiments under the same experimental conditions. These results show that, under these conditions, Thiochrome can be considered an unstable intermediate in a chemical reaction with successive stages. Full article
Show Figures

Graphical abstract

Back to TopTop