Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Measurements
2.5. Data Analysis
2.6. Availability of Data and Materials
3. Results
3.1. Isometric Force Outcomes
3.2. Rate of Force Development (RFD)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFR | Blood Flow Restriction |
FEMD | Functional Electromechanical Dynamometer |
IMTP | Isometric Mid-Thigh Pull |
IP | Impulse |
IRB | Institutional Review Board |
IKE | Isometric Knee Extension |
LOP | Limb Occlusion Pressure |
MVIF | Maximum Voluntary Isometric Force |
PF | Peak Force |
RFD | Rate of Force Development |
SD | Standard Deviation |
References
- Maestroni, L.; Read, P.; Bishop, C.; Papadopoulos, K.; Suchomel, T.J.; Comfort, P.; Turner, A. The Benefits of Strength Training on Musculoskeletal System Health: Practical Applications for Interdisciplinary Care. Sports Med. 2020, 50, 1431–1450. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Carlock, J.M.; Hartman, M.J.; Kilgore, J.L.; Kawamori, N.; Jackson, J.R.; Morris, R.T.; Sands, W.A.; Stone, M.H. Force-Time Curve Characteristics of Dynamic and Isometric Muscle Actions of Elite Women Olympic Weightlifters. J. Strength Cond. Res. 2005, 19, 741–748. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Between-Session Reliability of Isometric Mid-Thigh Pull Kinetics and Maximal Power Clean Performance in Male Youth Athletes. J. Strength Cond. Res. 2018, 32, 336–344. [Google Scholar] [CrossRef]
- Lum, D.; Haff, G.G.; Barbosa, T.M. The Relationship between Isometric Force-Time Characteristics and Dynamic Performance: A Systematic Review. Sports 2020, 8, 63. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.P.; Tillin, N.A.; Duchateau, J. Rate of Force Development: Physiological and Methodological Considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle Performance during Maximal Isometric and Dynamic Contractions Is Influenced by the Stiffness of the Tendinous Structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef]
- Dideriksen, J.L.; Del Vecchio, A.; Farina, D. Neural and Muscular Determinants of Maximal Rate of Force Development. J. Neurophysiol. 2020, 123, 149–157. [Google Scholar] [CrossRef]
- Taber, C.; Bellon, C.; Abbott, H.; Bingham, G.E. Roles of Maximal Strength and Rate of Force Development in Maximizing Muscular Power. Strength Cond. J. 2016, 38, 71–78. [Google Scholar] [CrossRef]
- Lulic-Kuryllo, T.; Inglis, J.G. Sex Differences in Motor Unit Behaviour: A Review. J. Electromyogr. Kinesiol. 2022, 66, 102689. [Google Scholar] [CrossRef] [PubMed]
- HUNTER, S.K. The Relevance of Sex Differences in Performance Fatigability. Med. Sci. Sports Exerc. 2016, 48, 2247–2256. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef]
- Hunter, S.K. Sex Differences in Fatigability of Dynamic Contractions. Exp. Physiol. 2016, 101, 250–255. [Google Scholar] [CrossRef]
- Ansdell, P.; Brownstein, C.G.; Škarabot, J.; Hicks, K.M.; Howatson, G.; Thomas, K.; Hunter, S.K.; Goodall, S. Sex Differences in Fatigability and Recovery Relative to the Intensity–Duration Relationship. J. Physiol. 2019, 597, 5577–5595. [Google Scholar] [CrossRef] [PubMed]
- Ansdell, P.; Thomas, K.; Howatson, G.; Hunter, S.; Goodall, S. Contraction Intensity and Sex Differences in Knee-Extensor Fatigability. J. Electromyogr. Kinesiol. 2017, 37, 68–74. [Google Scholar] [CrossRef]
- Giuriato, G.; Romanelli, M.G.; Bartolini, D.; Vernillo, G.; Pedrinolla, A.; Moro, T.; Franchi, M.; Locatelli, E.; Andani, M.E.; Laginestra, F.G.; et al. Sex Differences in Neuromuscular and Biological Determinants of Isometric Maximal Force. Acta Physiol. 2024, 240, e14118. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Gusztav, F.; Wang, M.; Baker, J.S.; Gu, Y. Accurately and Effectively Predict the ACL Force: Utilizing Biomechanical Landing Pattern before and after-Fatigue. Comput. Methods Programs Biomed. 2023, 241, 107761. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Dabbs, N.C.; Jones, M.T. Isometric Mid-Thigh Pull Kinetics: Sex Differences and Response to Whole-Body Vibration. J. Strength Cond. Res. 2020, 34, 2407–2411. [Google Scholar] [CrossRef]
- Comfort, P.; Dos’Santos, T.; Beckham, G.K.; Stone, M.H.; Guppy, S.N.; Haff, G.G. Standardization and Methodological Considerations for the Isometric Midthigh Pull. Strength Cond. J. 2019, 41, 57–79. [Google Scholar] [CrossRef]
- Scott, B.R.; Loenneke, J.P.; Slattery, K.M.; Dascombe, B.J. Exercise with Blood Flow Restriction: An Updated Evidence-Based Approach for Enhanced Muscular Development. Sports Med. 2015, 45, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Lixandrão, M.E.; Ugrinowitsch, C.; Berton, R.; Vechin, F.C.; Conceição, M.S.; Damas, F.; Libardi, C.A.; Roschel, H. Magnitude of Muscle Strength and Mass Adaptations Between High-Load Resistance Training Versus Low-Load Resistance Training Associated with Blood-Flow Restriction: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 361–378. [Google Scholar] [CrossRef]
- Willis, S.J.; Alvarez, L.; Borrani, F.; Millet, G.P. Oxygenation Time Course and Neuromuscular Fatigue during Repeated Cycling Sprints with Bilateral Blood Flow Restriction. Physiol. Rep. 2018, 6, e13872. [Google Scholar] [CrossRef]
- Fatela, P.; Mendonca, G.V.; Veloso, A.P.; Avela, J.; Mil-Homens, P. Blood Flow Restriction Alters Motor Unit Behavior During Resistance Exercise. Int. J. Sports Med. 2019, 40, 555–562. [Google Scholar] [CrossRef]
- Mendonca, G.V.; Borges, A.; Teodósio, C.; Matos, P.; Correia, J.; Vila-Chã, C.; Mil-Homens, P.; Pezarat-Correia, P. Muscle Fatigue in Response to Low-Load Blood Flow-Restricted Elbow-Flexion Exercise: Are There Any Sex Differences? Eur. J. Appl. Physiol. 2018, 118, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Proppe, C.; Aldeghi, T.; Rivera, P. Neuromuscular Responses to Failure vs Non-Failure During Blood Flow Restriction Training in Untrained Females. Int. J. Exerc. Sci. 2023, 16, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Kuki, S.; Konishi, Y.; Okudaira, M.; Yoshida, T.; Exell, T.; Tanigawa, S. Asymmetry of Force Generation and Neuromuscular Activity during Multi-Joint Isometric Exercise. J. Phys. Fit Sports Med. 2019, 8, 37–44. [Google Scholar] [CrossRef]
- Kuki, S.; Yoshida, T.; Okudaira, M.; Konishi, Y.; Ohyama-Byun, K.; Tanigawa, S. Force Generation and Neuromuscular Activity in Multi-Joint Isometric Exercises: Comparison between Unilateral and Bilateral Stance. J. Phys. Fit Sports Med. 2018, 7, 289–296. [Google Scholar] [CrossRef]
- del-Cuerpo, I.; Jerez-Mayorga, D.; Delgado-Floody, P.; Morenas-Aguilar, M.D.; Chirosa-Ríos, L.J. Test–Retest Reliability of the Functional Electromechanical Dynamometer for Squat Exercise. Int. J. Environ. Res. Public Health 2023, 20, 1289. [Google Scholar] [CrossRef]
- Martinez-Garcia, D.; Rodriguez-Perea, A.; Barboza, P.; Ulloa-Díaz, D.; Jerez-Mayorga, D.; Chirosa, I.; Chirosa Ríos, L.J. Reliability of a Standing Isokinetic Shoulder Rotators Strength Test Using a Functional Electromechanical Dynamometer: Effects of Velocity. PeerJ 2020, 8, e9951. [Google Scholar] [CrossRef]
- Rodriguez-Perea, A.; Chirosa Ríos, L.J.; Martinez-Garcia, D.; Ulloa-Díaz, D.; Guede Rojas, F.; Jerez-Mayorga, D.; Chirosa Rios, I.J. Reliability of Isometric and Isokinetic Trunk Flexor Strength Using a Functional Electromechanical Dynamometer. PeerJ 2019, 7, e7883. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Perea, Á.; Jerez-Mayorga, D.; García-Ramos, A.; Martínez-García, D.; Chirosa Ríos, L.J. Reliability and Concurrent Validity of a Functional Electromechanical Dynamometer Device for the Assessment of Movement Velocity. Proc. Inst. Mech. Eng. Part J. Sport Eng. Technol. 2021, 235, 176–181. [Google Scholar] [CrossRef]
- Australian Institute of Sport (AIS). Blood Flow Restriction Training Guidelines. In Australian Government. Available online: https://www.ais.gov.au/position_statements/best_practice_content/blood-flow-restriction-training-guidelines (accessed on 20 January 2024).
- D’Emanuele, S.; Maffiuletti, N.A.; Tarperi, C.; Rainoldi, A.; Schena, F.; Boccia, G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front. Hum. Neurosci. 2021, 15, 701916. [Google Scholar] [CrossRef] [PubMed]
- Lauber, B.; König, D.; Gollhofer, A.; Centner, C. Isometric Blood Flow Restriction Exercise: Acute Physiological and Neuromuscular Responses. BMC Sports Sci. Med. Rehabil. 2021, 13, 12. [Google Scholar] [CrossRef]
- Centner, C.; Lauber, B. A Systematic Review and Meta-Analysis on Neural Adaptations Following Blood Flow Restriction Training: What We Know and What We Don’t Know. Front. Physiol. 2020, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Suga, T.; Okita, K.; Morita, N.; Yokota, T.; Hirabayashi, K.; Horiuchi, M.; Takada, S.; Omokawa, M.; Kinugawa, S.; Tsutsui, H. Dose Effect on Intramuscular Metabolic Stress during Low-Intensity Resistance Exercise with Blood Flow Restriction. J. Appl. Physiol. 2010, 108, 1563–1567. [Google Scholar] [CrossRef]
- Cook, S.B.; Scott, B.R.; Hayes, K.L.; Murphy, B.G. Neuromuscular Adaptations to Low-Load Blood Flow Restricted Resistance Training. J. Sports Sci. Med. 2018, 17, 66–73. [Google Scholar]
- Fatela, P.; Reis, J.F.; Mendonca, G.V.; Freitas, T.; Valamatos, M.J.; Avela, J.; Mil-Homens, P. Acute Neuromuscular Adaptations in Response to Low-Intensity Blood-Flow Restricted Exercise and High-Intensity Resistance Exercise: Are There Any Differences? J. Strength Cond. Res. 2018, 32, 902–910. [Google Scholar] [CrossRef]
- Jessee, M.B.; Buckner, S.L.; Mouser, J.G.; Mattocks, K.T.; Dankel, S.J.; Abe, T.; Bell, Z.W.; Bentley, J.P.; Loenneke, J.P. Muscle Adaptations to High-Load Training and Very Low-Load Training With and Without Blood Flow Restriction. Front. Physiol. 2018, 9, 1448. [Google Scholar] [CrossRef]
- Wernbom, M.; Järrebring, R.; Andreasson, M.A.; Augustsson, J. Acute Effects of Blood Flow Restriction on Muscle Activity and Endurance During Fatiguing Dynamic Knee Extensions at Low Load. J. Strength Cond. Res. 2009, 23, 2389–2395. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.A.; Gerstner, G.R.; Giuliani, H.K. Motor Unit Properties of Rapid Force Development during Explosive Contractions. J. Physiol. 2019, 597, 2335–2336. [Google Scholar] [CrossRef]
- Mornas, A.; Racinais, S.; Brocherie, F.; Alhammoud, M.; Hager, R.; Desmedt, Y.; Guilhem, G. Faster Early Rate of Force Development in Warmer Muscle: An in Vivo Exploration of Fascicle Dynamics and Muscle-Tendon Mechanical Properties. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 323, R123–R132. [Google Scholar] [CrossRef] [PubMed]
- Mckee, J.R.; Girard, O.; Peiffer, J.J.; Hiscock, D.J.; De Marco, K.; Scott, B.R. Repeated-Sprint Training With Blood-Flow Restriction Improves Repeated-Sprint Ability Similarly to Unrestricted Training at Reduced External Loads. Int. J. Sports Physiol. Perform. 2024, 19, 257–264. [Google Scholar] [CrossRef]
- Sun, D.; Yang, T. Semi-Squat Exercises with Varying Levels of Arterial Occlusion Pressure during Blood Flow Restriction Training Induce a Post-Activation Performance Enhancement and Improve Vertical Height Jump in Female Football Players. J. Sports Sci. Med. 2023, 22, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Castilla-López, C.; Romero-Franco, N. Low-Load Strength Resistance Training with Blood Flow Restriction Compared with High-Load Strength Resistance Training on Performance of Professional Soccer Players: A Randomized Controlled Trial. J. Sports Med. Phys. Fitness 2023, 63, 1146–1154. [Google Scholar] [CrossRef]
- Korkmaz Dayican, D.; Ulker Eksi, B.; Yigit, S.; Utku Umut, G.; Ozyurek, B.; Yilmaz, H.E.; Akinci, B. Immediate Effects of High-Intensity Blood Flow Restriction Training on Muscle Performance and Muscle Soreness. Res. Q. Exerc. Sport 2024, 96, 213–222. [Google Scholar] [CrossRef]
- Sánchez-Valdepeñas, J.; Cornejo-Daza, P.J.; Rodiles-Guerrero, L.; Páez-Maldonado, J.A.; Sánchez-Moreno, M.; Bachero-Mena, B.; Saez de Villarreal, E.; Pareja-Blanco, F. Acute Responses to Different Velocity Loss Thresholds during Squat Exercise with Blood-Flow Restriction in Strength-Trained Men. Sports 2024, 12, 171. [Google Scholar] [CrossRef]
- De Queiros, V.S.; Rolnick, N.; Sabag, A.; Wilde, P.; Peçanha, T.; Aniceto, R.R.; Rocha, R.F.C.; Delgado, D.Z.; Cabral, B.G.d.A.T.; Dantas, P.M.S. Effect of High-Intensity Interval Exercise versus Continuous Low-Intensity Aerobic Exercise with Blood Flow Restriction on Psychophysiological Responses: A Randomized Crossover Study. J. Sports Sci. Med. 2024, 23, 114–125. [Google Scholar] [CrossRef]
- Rivera, P.M.; Proppe, C.E.; Gonzalez-Rojas, D.; Wizenberg, A.; Hill, E.C. Effects of Load Matched Isokinetic versus Isotonic Blood Flow Restricted Exercise on Neuromuscular and Muscle Function. Eur. J. Sport Sci. 2023, 23, 1629–1637. [Google Scholar] [CrossRef]
Variable | Mean (SD) |
---|---|
Age (years) | 27.37 (10.02) |
Weight (kg) | 63.84 (12.45) |
Height (cm) | 164.23 (5.99) |
BMI (kg/m2) | 23.52 (3.75) |
LOP (mmHg) | 215.83 (26.94) |
40% LOP (mmHg) | 86.33 (10.77) |
80% LOP (mmHg) | 172.66 (21.55) |
LOP Condition | Variable | PRE | POST | 5 min | 10 min | 15 min | ANOVA (F (4, 116)) | p | ES |
---|---|---|---|---|---|---|---|---|---|
40% | PF (kg) | 100.85 (23.02) | 101.29 (24.04) | 103.57 (25.95) | 102.82 (28.76) | 105.39 (29.57) | 0.90 | 0.432 a | 0.04 |
PF (Nw) | 989.30 (225.86) | 993.68 (235.85) | 1016.00 (254.53) | 1008.70 (282.17) | 1033 (290.02) | 0.90 | 0.432 a | 0.04 | |
IP (Nw) | 4386.36 (1200.61) | 4202.66 (1002.80) | 4326.52 (977.46) | 4348.86 (1161.56) | 4404.46 (1121.59) | 0.76 | 0.490 a | 0.03 | |
80% | PF (kg) | 99.26 (15.43) | 104.13 (19.35) | 104.43 (21.04) | 103.33 (22.87) | 105.02 (21.10) | 1.70 | 0.159 | 0.08 |
PF (Nw) | 973.77 (151.34) | 1021.49 (189.79) | 1024.42 (206.39) | 1013.70 (224.34) | 1030.24 (207.01) | 1.70 | 0.159 | 0.08 | |
IP (Nw) | 4316.26 (833.05) | 4308.13 (764.27) | 4314.78 (876.33) | 4488.44 (1043.68) | 4433.14 (853.72) | 0.71 | 0.583 | 0.04 | |
0% | PF (kg) | 103.98 (22.07) | 98.01 (22.43) | 102.29 (24.69) | 104.41 (26.54) | 99.82 (26.65) | 3.07 | 0.020 * | 0.11 |
PF (Nw) | 1020.05 (216.54) | 961.52 (220.07) | 1003.45 (242.23) | 1024.27 (260.33) | 979.19 (261.46) | 3.07 | 0.020 * | 0.11 | |
IP (Nw) | 4477.08 (1001.31) | 4172.79 (1084.39) | 4344.06 (1056.19) | 4414.64 (1167.51) | 4325.49 (1152.71) | 2.41 | 0.048 * | 0.09 |
Time Window | Effect/ Comparison | Statistic | p Value | Post Hoc ** | ES | 95% CI |
---|---|---|---|---|---|---|
0–50 ms | Main effect of time | F (4, 116) = 2.82 | p = 0.032 * | - | 0.01 | |
PRE–POST | t = 2.38 | p = 0.177 | 0.35 | 0.08, 0.79 | ||
PRE–5 MIN | t = 2.83 | p = 0.058 | 0.98 | 0.39, 1.56 | ||
PRE–10 MIN | t = 2.17 | p = 0.261 | 0.28 | −0.10, 0.66 | ||
PRE–15 MIN | t = 1.62 | p = 0.756 | 0.22 | −0.17, 0.62 | ||
51–150 ms | Main effect of time | F (4, 116) = 2.96 | p > 0.026 * | - | 0.01 | |
PRE–POST | t = 2.65 | p = 0.088 | 0.36 | 0.89, 2.15 | ||
PRE–5 MIN | t = 2.68 | p = 0.088 | 0.33 | −0.03, 0.69 | ||
PRE–10 MIN | t = 2.06 | p = 0.338 | 0.29 | −0.12, 0.69 | ||
PRE–15 MIN | t = 1.58 | p = 0.824 | 0.20 | −0.17, 0.57 | ||
151–250 ms | Main effect of time | F (4, 116) = 3.80 | p = 0.009 * | - | 0.01 | |
PRE–POST | t = 3.14 | p = 0.040 * | 0.37 | 0.04, 0.69 | ||
PRE–5 MIN | t = 2.92 | p = 0.004 * | 0.33 | 0.04, 0.66 | ||
PRE–10 MIN | t = 2.74 | p = 1.000 | 0.36 | 0.03, 0.68 | ||
PRE–15 MIN | t = 2.22 | p = 1.000 | 0.25 | −0.07, 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliste-Flores, S.; Chirosa-Ríos, L.J.; Chirosa-Ríos, I.; Jerez-Mayorga, D. Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull. Appl. Sci. 2025, 15, 5866. https://doi.org/10.3390/app15115866
Aliste-Flores S, Chirosa-Ríos LJ, Chirosa-Ríos I, Jerez-Mayorga D. Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull. Applied Sciences. 2025; 15(11):5866. https://doi.org/10.3390/app15115866
Chicago/Turabian StyleAliste-Flores, Sebastián, Luis Javier Chirosa-Ríos, Ignacio Chirosa-Ríos, and Daniel Jerez-Mayorga. 2025. "Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull" Applied Sciences 15, no. 11: 5866. https://doi.org/10.3390/app15115866
APA StyleAliste-Flores, S., Chirosa-Ríos, L. J., Chirosa-Ríos, I., & Jerez-Mayorga, D. (2025). Kinetic Responses to Acute Blood Flow Restriction Exposure in Young Physically Active Women During Isometric Mid-Thigh Pull. Applied Sciences, 15(11), 5866. https://doi.org/10.3390/app15115866