Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (168)

Search Parameters:
Keywords = ketone hydrogenation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5873 KiB  
Article
Pyridine–Quinoline and Biquinoline-Based Ruthenium p-Cymene Complexes as Efficient Catalysts for Transfer Hydrogenation Studies: Synthesis and Structural Characterization
by Nikolaos Zacharopoulos, Gregor Schnakenburg, Eleni I. Panagopoulou, Nikolaos S. Thomaidis and Athanassios I. Philippopoulos
Molecules 2025, 30(14), 2945; https://doi.org/10.3390/molecules30142945 - 11 Jul 2025
Viewed by 487
Abstract
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] ( [...] Read more.
Searching for new and efficient transfer hydrogenation catalysts, a series of new organometallic ruthenium(II)-arene complexes of the formulae [Ru(η6-p-cymene)(L)Cl][PF6] (18) and [Ru(η6-p-cymene)(L)Cl][Ru(η6-p-cymene)Cl3] (911) were synthesized and fully characterized. These were prepared from the reaction of pyridine–quinoline and biquinoline-based ligands (L) with [Ru(η6-p-cymene)(μ-Cl)Cl]2, in 1:2 and 1:1, metal (M) to ligand (L) molar ratios. Characterization includes a combination of spectroscopic methods (FT-IR, UV-Vis, multi nuclear NMR), elemental analysis and single-crystal X-ray crystallography. The pyridine–quinoline organic entities encountered, were prepared in high yield either via the thermal decarboxylation of the carboxylic acid congeners, namely 2,2′-pyridyl-quinoline-4-carboxylic acid (pqca), 8-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8-Mepqca), 6′-methyl-2,2′-pyridyl-quinoline-4-carboxylic acid (6′-Mepqca) and 8,6′-dimethyl-2,2′-pyridyl-quinoline-4-carboxylic acid (8,6′-Me2pqca), affording the desired ligands pq, 8-Mepq, 6′-Mepq and 8,6′-Me2pq, or by the classical Friedländer condensation, to yield 4,6′-dimethyl-2,2′-pyridyl-quinoline (4,6′-Me2pq) and 4-methyl-2,2′-pyridyl-quinoline (4-Mepq), respectively. The solid-state structures of complexes 14, 6, 8 and 9 were determined showing a distorted octahedral coordination geometry. The unit cell of 3 contains two independent molecules (Ru-3), (Ru′-3) in a 1:1 ratio, due to a slight rotation of the arene ring. All complexes catalyze the transfer hydrogenation of acetophenone, using 2-propanol as a hydrogen donor in the presence of KOiPr. Among them, complexes 1 and 5 bearing methyl groups at the 8 and 4 position of the quinoline moiety, convert acetophenone to 1-phenylethanol quantitatively, within approximately 10 min with final TOFs of 1600 h−1. The catalytic performance of complexes 111, towards the transfer hydrogenation of p-substituted acetophenone derivatives and benzophenone, ranges from moderate to excellent. An inner-sphere mechanism has been suggested based on the detection of ruthenium(II) hydride species. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 6422 KiB  
Article
Sugarcane Bagasse Fast Pyrolysis: Pilot Plant Challenges
by Sophya de Andrade Dias, Nahieh Toscano Miranda, Rubens Maciel Filho, Leandro Alcoforado Sphaier and York Castillo Santiago
Processes 2025, 13(7), 2116; https://doi.org/10.3390/pr13072116 - 3 Jul 2025
Viewed by 1017
Abstract
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and [...] Read more.
The world’s energy demand increases daily, fostering the search for renewable fuels to reconcile production needs with environmental sustainability. To prevent the severe atmospheric impact of fossil fuels, reducing greenhouse gas emissions is both essential and urgent, reinforcing the necessity of developing and adopting renewable fuel alternatives. Therefore, this work aimed to produce bio-oil through sugarcane bagasse fast pyrolysis. The methodology is based on fast pyrolysis operation in a fluidized bed reactor (pilot plant) as a thermochemical method for bio-oil production. This research required the conditioning of the raw material for system feeding, along with optimizing key variables, operating temperature, airflow, and sugarcane bagasse feed rate, to achieve improved yields compared to previous studies conducted in this pilot plant. The sugarcane bagasse was conditioned through drying and milling, followed by characterization using various analytical methods, including calorific value, thermogravimetric analysis (TGA), particle size analysis by laser diffraction (Mastersizer—MS), and ultimate analysis (determining carbon, hydrogen, nitrogen, sulfur, and oxygen by difference). The bio-oil produced showed promising yield results, with a maximum estimated value of 61.64%. Fourier Transform Infrared Spectroscopy (FT-IR) analysis confirmed the presence of aromatic compounds, as well as ester, ether, carboxylic acid, ketone, and alcohol functional groups. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

14 pages, 2980 KiB  
Communication
Simultaneously Promoting Proton Conductivity and Mechanical Stability of SPEEK Membrane by Incorporating Porous g–C3N4
by Xiaoyao Wang and Benbing Shi
Membranes 2025, 15(7), 194; https://doi.org/10.3390/membranes15070194 - 29 Jun 2025
Viewed by 485
Abstract
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether [...] Read more.
Proton exchange membranes are widely used in environmentally friendly applications such as fuel cells and electrochemical hydrogen compression. In these applications, an ideal proton exchange membrane should have both excellent proton conductivity and mechanical strength. Polymer proton exchange membranes, such as sulfonated poly(ether ether ketone) (SPEEK) membranes with high ion exchange capacity, can lead to higher proton conductivity. However, the ionic groups may reduce the interaction between polymer segments, lower the membrane’s mechanical strength, and even cause it to dissolve in water as the temperature exceeds 55 °C. The porous graphitic C3N4 (Pg–C3N4) nanosheet is an important two–dimensional polymeric carbon–based material and has a high content of –NH2 and –NH– groups, which can interact with the sulfonic acid groups in the sulfonated SPEEK polymer, form a more continuous proton transfer channel, and inhibit the movement of the polymer segment, leading to higher proton conductivity and mechanical strength. In this study, we found that a SPEEK membrane containing 3% Pg–C3N4 nanosheets achieves the optimized proton conductivity of 138 mS/cm (80 °C and 100% RH) and a mechanical strength of 74.1 MPa, improving both proton conductivity and mechanical strength by over 50% compared to the SPEEK membrane. Full article
(This article belongs to the Special Issue Advanced Membranes for Fuel Cells and Redox Flow Batteries)
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes
by Branislav Jović, Nataša Negru, Dušan Dimić and Branko Kordić
Molecules 2025, 30(13), 2685; https://doi.org/10.3390/molecules30132685 - 21 Jun 2025
Viewed by 920
Abstract
This study investigates the structural and energetic properties of hydrogen-bonded complexes between indole and a range of aliphatic, cyclic, and aromatic ketones using a combined vibrational spectroscopic and quantum-chemical approach. FTIR measurements in CCl4 revealed redshifts in the N-H stretching vibration of [...] Read more.
This study investigates the structural and energetic properties of hydrogen-bonded complexes between indole and a range of aliphatic, cyclic, and aromatic ketones using a combined vibrational spectroscopic and quantum-chemical approach. FTIR measurements in CCl4 revealed redshifts in the N-H stretching vibration of indole upon complexation, with formation constants (Ka) ranging from 0.3 to 6.6 M−1. Cyclohexanone displayed the strongest binding, while benzophenone exhibited the weakest interaction. Quantum-chemical calculations, employing CREST and MMFF94 conformational sampling, along with M06-2X/6-311++G(d,p) optimizations, confirmed the formation of hydrogen bonds and additional weak interactions that govern the stability of the complex. QTAIM analysis revealed moderate closed-shell hydrogen bonds with electron densities at the bond critical points (ρ) ranging from 0.010 to 0.019 a.u. and potential energy densities (V) from −18.4 to −36.4 kJ mol−1. Multivariate regression analysis established strong correlations (R2 = 0.928 and 0.957) between experimental binding constants and theoretical descriptors, including binding energy, NBO charge on oxygen atom, ionization potential, and electrophilicity index, highlighting the interplay between geometric, electronic, and global reactivity factors. This comprehensive study underlines the predictive power of spectroscopic and quantum descriptors for assessing hydrogen bonding in biologically relevant systems. Full article
(This article belongs to the Special Issue Computational Chemistry Insights into Molecular Interactions)
Show Figures

Figure 1

28 pages, 6794 KiB  
Article
Diastereoselective Transfer Hydrogenation of Cyclic and Bicyclic Ketones over Selected Metal Oxides as Catalysts
by Marek Gliński, Dorota Armusiewicz, Karolina Łukasik-Kwaśniewska, Michał Materowski, Adam Rułka, Ewa M. Iwanek (nee Wilczkowska) and Monika Kucharska
Molecules 2025, 30(10), 2153; https://doi.org/10.3390/molecules30102153 - 14 May 2025
Viewed by 698
Abstract
The diastereoselectivity of the liquid- and vapor-phase Catalytic Transfer Hydrogenation (CTH) of cyclic ketones: x-methylcyclohexanones (x = 2, 3 or 4), 4-t-butylcyclohexanone, and bicyclic ketones: 2-norbornanone, camphor, fenchone, and a tricyclic ketone (2-adamantanone) with secondary alkanols (2-propanol, 2-butanol, 2-pentanol, or 2-octanol) [...] Read more.
The diastereoselectivity of the liquid- and vapor-phase Catalytic Transfer Hydrogenation (CTH) of cyclic ketones: x-methylcyclohexanones (x = 2, 3 or 4), 4-t-butylcyclohexanone, and bicyclic ketones: 2-norbornanone, camphor, fenchone, and a tricyclic ketone (2-adamantanone) with secondary alkanols (2-propanol, 2-butanol, 2-pentanol, or 2-octanol) as hydrogen donors in the presence of ten metal oxides as the catalysts was studied. Among the oxides, only four, namely, MgO, ZrO2·nH2O, ZrO2, and Al2O3, exhibited good or high activity. The reaction products are diastereoisomeric alcohols, the relative ratio of which depends on the structure of the ketone, mode of reaction, temperature, and, in the liquid-phase mode, reaction time. The results of vapor-phase CTH revealed that, in this mode of reaction, the diastereoselectivity to the trans isomer is lower than in the liquid phase. For the three x-methylcyclohexanones, the most pronounced difference between the experimental values and reference values was noted for x = 3. For bicyclic ketones, the implementation of heterogeneous catalysts allowed us to obtain a substantial excess of the less favorable diastereomer. In the case of 2-norbornanone, the thermodynamic equilibrium mixture contains 21% endo and 79% exo alcohols, whereas our product mixtures contained up to 79% of the endo isomer. Full article
Show Figures

Graphical abstract

16 pages, 2704 KiB  
Article
Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic
by Zehua Luo, Wentian Zhou, Junying Chen and Yingwei Li
Catalysts 2025, 15(5), 436; https://doi.org/10.3390/catal15050436 - 29 Apr 2025
Viewed by 765
Abstract
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism [...] Read more.
Understanding the reaction pathway of aldehyde deformylation catalyzed by natural enzymes has shown significance in developing synthetic methodologies and new catalysts in organic, biochemical, and medicinal chemistry. However, unlike other well-rationalized chemical processes catalyzed by cytochrome P450 (Cyt P450) superfamilies, the detailed mechanism of the P450-catalyzed aldehyde deformylation is still controversial. Challenges lie in establishing synthetic models to decipher the reaction pathways, which normally are homogeneous systems for precisely mimicking the structure of the active sites in P450s. Herein, we report a heterogeneous Cyt P450 aromatase mimic based on a porphyrinic metal–organic framework (MOF) PCN-224. Through post-metalation of iron(II) triflate with the porphyrin unit, a five-coordinated FeII(Porp) compound could be afforded and isolated inside the resulting PCN-224(Fe) to mimic the heme active site in P450. This MOF-based P450 mimic could efficiently catalyze the oxidative deformylation of aldehydes to the corresponding ketones under room temperature using O2 as the sole oxidant and triethylamine as the electron source, analogous to the NADPH reductase. The catalyst could be completely recovered after the catalytic reaction without undergoing structural decomposition or compromising its reactivity, representing it as one of the most valid mimics of P450 aromatase from both the structural and functional aspects. A mechanistic study reveals a strong correlation between the catalytic activity and the Cα-H bond dissociation energy of the aldehyde substrates, which, in conjunction with various trapping experiments, confirms an unconventional mechanism initiated by hydrogen atom abstraction. Full article
(This article belongs to the Special Issue Recent Advances in Metal-Organic Framework Catalysts)
Show Figures

Figure 1

22 pages, 9184 KiB  
Article
Ceria–Zirconia-Supported Pt as an Efficient Catalyst for the Sustainable Synthesis of Hydroxylamines and Primary Amines via the Hydrogenation of Oximes Under Ambient Conditions
by Elena Redina, Inna Ivanova, Olga Tkachenko, Gennady Kapustin, Igor Mishin and Leonid Kustov
Molecules 2025, 30(9), 1926; https://doi.org/10.3390/molecules30091926 - 26 Apr 2025
Viewed by 844
Abstract
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing [...] Read more.
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing C-N bonds, such as nitro compounds, nitriles, and oximes. Among these, oximes are the most readily accessible substrates easily derived from ketones and aldehydes. However, oximes are much harder to reduce compared to nitro compounds and nitriles. The catalytic heterogeneous hydrogenation of oximes often requires harsh conditions and catalysts with high precious metal loadings, while hydroxylamines are hard to be obtained by this method. In this work, we showed that Pt supported on a porous ceria–zirconia solid solution enables the selective and atom-efficient synthesis of both hydroxylamines and amines through the hydrogenation of oximes, achieving yields of up to 99% under ambient reaction conditions in a “green” THF:H2O solvent system. The high activity of the 1% Pt/CeO2-ZrO2 catalyst (TOF > 500 h−1) is due to low-temperature hydrogen activation on Pt nanoparticles with the formation of a hydride, Pt-H. The strong influence of electron-donating and electron-withdrawing groups on the hydrogenation of aromatic oximes implies the nucleophilic attack of hydridic hydrogen from Pt to the electrophilic carbon of protonated oximes. Full article
(This article belongs to the Special Issue Advanced Heterogeneous Catalysis)
Show Figures

Graphical abstract

22 pages, 2638 KiB  
Article
Computational and Experimental Studies on the α-Functionalization of Ketones Using Domino Reactions: A Strategy to Increase Chemoselectivity at the α-Carbon of Ketones
by Hui Sun, Li-Heng Yang, Meng-Yun Fu and Bin Cui
Molecules 2025, 30(5), 1114; https://doi.org/10.3390/molecules30051114 - 28 Feb 2025
Viewed by 655
Abstract
A facile strategy to increase the chemoselectivity of domino reactions was proposed and successfully applied in the α-functionalization of ketones. The strategy involved widening the activation energy of the main reaction and side reaction through intermolecular interactions, thereby increasing the chemoselectivity of the [...] Read more.
A facile strategy to increase the chemoselectivity of domino reactions was proposed and successfully applied in the α-functionalization of ketones. The strategy involved widening the activation energy of the main reaction and side reaction through intermolecular interactions, thereby increasing the chemoselectivity of the domino reaction. In the proposed α-functionalization reaction, TMSCF3 acted as an excellent reagent which increased the nucleophilicity of DMF through the Van der Waals force and reduced the nucleophilicity of H2O through a hydrogen bond. We found that TMSCF3 can increase the activation energy difference between the main reaction and side reaction using DFT calculations, which greatly increased chemoselectivity and avoided the formation of by-products. TMSCF3 was recycled by rectification, and the average recovery rate was 87.2%. DFT calculations, XRD experiments, and control experiments were performed to support this mechanism. We are confident that this strategy has the potential to deliver significant practical advancements while simultaneously fostering broader innovation in the field of domino synthesis. Full article
(This article belongs to the Special Issue Novel Methodologies of Organic Synthesis)
Show Figures

Graphical abstract

13 pages, 2700 KiB  
Article
Effect of Solvents on Electrogenerated Base-Driven Transfer Hydrogenation Reactions
by Jing-Wei Zhu, Meng-Han Li, Feng Zhang, Ya-Li Wang, Jia-Xing Lu and Huan Wang
Molecules 2025, 30(4), 910; https://doi.org/10.3390/molecules30040910 - 15 Feb 2025
Viewed by 1138
Abstract
Transfer hydrogenation is a crucial technology for synthesizing fine chemicals and pharmaceuticals, offering improved safety and convenience over traditional hydrogen methods, although it typically requires external bases. While isopropanol is commonly used as a hydrogen source, methanol is superior but faces challenges due [...] Read more.
Transfer hydrogenation is a crucial technology for synthesizing fine chemicals and pharmaceuticals, offering improved safety and convenience over traditional hydrogen methods, although it typically requires external bases. While isopropanol is commonly used as a hydrogen source, methanol is superior but faces challenges due to its high dehydrogenation energy barrier, limiting its use under mild conditions. This study focuses on investigating the differences in the electrogenerated base-driven transfer hydrogenation of aromatic ketones in isopropanol and methanol solvents, using Mn(CO)₅Br and cyclohexanediamine derivatives as the catalyst. The research demonstrates that high enantiomeric excess (ee) values were obtained in isopropanol in the presence of chiral Mn-based catalysts, while only racemic products were observed in methanol. The results indicate a strong dependence of the catalytic pathway on the choice solvent: in isopropanol, the catalyst operates via a metal–ligand cooperative transfer hydrogenation, resulting in high ee values, whereas in methanol, transfer hydrogenation occurs through metal hydride transfer with no stereoselectivity. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Graphical abstract

16 pages, 3432 KiB  
Article
Chemoselective Transfer Hydrogenation over MgO as the Catalyst: Acetylnaphthalenes, Diacylbenzenes, Acetophenone, Benzaldehyde, and Various Aliphatic Ketones as Hydrogen Acceptors
by Marek Gliński, Olga Dubinin, Klaudia Rostek and Patrycja Waniek
Reactions 2025, 6(1), 4; https://doi.org/10.3390/reactions6010004 - 4 Jan 2025
Cited by 2 | Viewed by 1115
Abstract
Liquid and vapor phase transfer hydrogenation with 2-alkanols as hydrogen donors in the presence of MgO as a catalyst was studied. A series of dicarbonyl compounds as well as the equimolar mixtures of various monocarbonyl compounds were used as hydrogen acceptors in order [...] Read more.
Liquid and vapor phase transfer hydrogenation with 2-alkanols as hydrogen donors in the presence of MgO as a catalyst was studied. A series of dicarbonyl compounds as well as the equimolar mixtures of various monocarbonyl compounds were used as hydrogen acceptors in order to determine the chemoselectivity (ChS) in the reduction of their carbonyl groups. Thus, 1,4-diacetylbenzene was reduced to 1-(4-acetylphenyl)-1-ethanol with 89% ChS and 1,3-diacetyl-4,6-dimethylbenzene with 100% ChS. Mesitylene diacyl derivatives were unreactive in the studied reaction. CTH of an equimolar mixture of benzaldehyde and acetophenone gave benzyl alcohol and 1-PhEtOH with yields of 91 and 3%, respectively (97% ChS). An equimolar mixture of acetophenone and 6-undecanone underwent CTH with yields of the corresponding alcohols of 89 and 2%, respectively, with 98% ChS towards 1-PhEtOH. Significant differences in reactivity in CTH were reported for an equimolar mixture of regioisomeric 1- and 2-acetylnaphthalenes. The yields of the corresponding alcohols were 20 and 68% with a ChS of 77% towards 2-NphCH(OH)Me. In the case of CTH of 3-oxo-2,2-dimethylbutanal and 2,4-bis(spirocyclohexyl)-1,3-cyclobutanedione with 2-propanol, only the solvolysis of the substrates was observed. The products were methyl isopropyl ketone and isopropyl formate for the former diketone and 1-(cyclohexylcarbonyl)-1-(carboisopropoxy)cyclohexane for the latter. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2024)
Show Figures

Figure 1

14 pages, 2868 KiB  
Article
Chemodiversity and Molecular Mechanism Between Per-/Polyfluoroalkyl Substance Complexation Behavior of Humic Substances in Landfill Leachate
by Jia Li, Haoqun Sha, Rongchuan Ye, Peipei Zhang, Shuhe Chen, Ganghui Zhu and Wenbing Tan
Water 2024, 16(23), 3527; https://doi.org/10.3390/w16233527 - 7 Dec 2024
Viewed by 1389
Abstract
Landfill leachate contains a range of organic and inorganic pollutants, including per-/polyfluoroalkyl substances (PFASs), which can infiltrate into surrounding soil and groundwater through leaching processes, and can pose a threat to human health via food chains and drinking water processes. Thus, the transport [...] Read more.
Landfill leachate contains a range of organic and inorganic pollutants, including per-/polyfluoroalkyl substances (PFASs), which can infiltrate into surrounding soil and groundwater through leaching processes, and can pose a threat to human health via food chains and drinking water processes. Thus, the transport of PFASs in landfill leachate is a research hotspot in environmental science. This study investigates the complexation and adsorption mechanisms between humic substances and PFASs in landfill leachate at the molecular level. Experimental results demonstrate that the binding constant logKsv of humic substances with PFASs correlates positively with specific ultraviolet absorbance (SUVA254), absorbance ratio (A250/A365), humification index (HIX), and fluorescence index (FI), while it exhibits a negative correlation with the biological index (BIX). These findings indicate that high aromaticity is a prerequisite for molecular interactions between humic substances and PFASs, with polar functional groups further facilitating the interaction. Molecular-level analysis revealed that humic substances undergo complexation and adsorption with PFASs through hydrophobic interactions, van der Waals forces, hydrogen bonding, ionic bonding, and covalent bonding, by functional groups such as hydroxyl, aliphatic C-H bonds, aromatic C=C double bonds, amides, quinones, and ketones. Future efforts should focus on enhanced co-regulation and mitigation strategies addressing the combined pollution of PFASs and humic substances in landfill leachate. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 3212 KiB  
Article
Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties
by Kira E. Vostrikova, Vladimir P. Kirin and Denis G. Samsonenko
Chemistry 2024, 6(5), 1271-1286; https://doi.org/10.3390/chemistry6050073 - 16 Oct 2024
Viewed by 1311
Abstract
Small bifunctional molecules are attractive for use as models in different areas of knowledge. How can their functional groups interact in solids? This is important to know for the prediction of the physical and chemical properties of the materials based on them. In [...] Read more.
Small bifunctional molecules are attractive for use as models in different areas of knowledge. How can their functional groups interact in solids? This is important to know for the prediction of the physical and chemical properties of the materials based on them. In this study, two new hydrogen-bonded organic frameworks (HOFs) based on sterically demanding molecular compounds, bis(1-hydroxy-2-methylpropane-2-aminium) sulfate (1) and 2-methyl-4-oxopentan-2-aminium hydrogen ethanedioate hydrate (2), were synthesized and fully characterized by means of FTIR and NMR spectroscopies, as well as by X-ray powder diffraction and thermogravimetric analyses. Their molecular and crystal structures were established through single-crystal X-ray diffraction analysis. It was shown that both compounds have a layered structure due to the formation of a 2D hydrogen-bonding network, the layers being linked by systematically arranged Van der Waals contacts between the methyl groups of organic cations. To unveil some dependencies between the chemical nature of bifunctional molecules and their solid structure, Hirschfeld surface (HS) analysis was carried out for HOFs 1, 2, and their known congeners 1-hydroxy-2-methylpropan-2-aminium hemicarbonate (3) and 1-hydroxy-2-methylpropan-2-aminium (1-hydroxy-2-methylpropan-2-yl) carbamate (4). HS was performed to quantify and visualize the close intermolecular atomic contacts in the crystal structures. It is clearly seen that H–H contacts make the highest contributions to the amino alcohol based compounds 1, 3 and 4, with a maximal value of 65.2% for compound 3 having CO32− as a counterion. A slightly lower contribution of H–H contacts (64.4%) was found for compound 4, in which the anionic part is represented by 1-hydroxy-2-methylpropan-2-yl carbamate. The significant contribution of the H–H contacts in the bifunctional moieties is due to the presence of a quaternary carbon atom with a short three-carbon chain. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Figure 1

18 pages, 3265 KiB  
Article
Oxidative Catalytic Depolymerization of Lignin into Value-Added Monophenols by Carbon Nanotube-Supported Cu-Based Catalysts
by Chen Tang, Yang Cao, Jie Gao, Gang Luo, Jiajun Fan, James H. Clark and Shicheng Zhang
Molecules 2024, 29(19), 4762; https://doi.org/10.3390/molecules29194762 - 8 Oct 2024
Viewed by 1606
Abstract
Lignin valorisation into chemicals and fuels is of great importance in addressing energy challenges and advancing biorefining in a sustainable manner. In this study, on the basis of the high microwave absorption performance of carbon nanotubes (CNTs), a series of copper-oxide-loaded CNT catalysts [...] Read more.
Lignin valorisation into chemicals and fuels is of great importance in addressing energy challenges and advancing biorefining in a sustainable manner. In this study, on the basis of the high microwave absorption performance of carbon nanotubes (CNTs), a series of copper-oxide-loaded CNT catalysts (CuO/CNT) were developed to facilitate the oxidative depolymerization of lignin under microwave heating. This catalyst can promote the activation of hydrogen peroxide and air, effectively generating a range of reactive oxygen species (ROS). Through the application of electron paramagnetic resonance techniques, these ROS generated under different oxidation conditions were detected to elucidate the oxidation mechanism. The results demonstrate that the OH and O2•− play a crucial role in the formation of aldehyde and ketone products through the cleavage of lignin Cβ-O and Cα-Cβ bonds. We further evaluated the catalytic performance of the CuO/CNT catalysts with three typical lignin feedstocks to determine their applicability for lignin biorefinery. The bio-enzymatic lignin produced a 13.9% monophenol yield at 200 °C for 20 min under microwave heating, which was higher than the 7% yield via hydrothermal heating conversion. The selectivity of G-/H-/S-type products was slightly affected, while lignin substrate had a noticeable effect on the selective production. Overall, this study explored the structural characteristics of CuO/CNT catalysts and their implications for lignin conversion and offered an efficient oxidation approach that holds promise for sustainable biorefining practices. Full article
Show Figures

Figure 1

15 pages, 11097 KiB  
Article
Structural Analysis of Coordination Cage/Guest Complexes Prepared with the ‘Crystalline Sponge’ Methodology
by Christopher G. P. Taylor, James R. Williams, Stephen P. Argent and Michael D. Ward
Crystals 2024, 14(10), 873; https://doi.org/10.3390/cryst14100873 - 2 Oct 2024
Cited by 1 | Viewed by 1592
Abstract
The crystalline sponge method has proven invaluable in the preparation and analysis of supramolecular host/guest complexes if the host can be obtained in a suitable crystalline form, allowing the analysis of guest binding modes inside host cavities which can inform other studies into [...] Read more.
The crystalline sponge method has proven invaluable in the preparation and analysis of supramolecular host/guest complexes if the host can be obtained in a suitable crystalline form, allowing the analysis of guest binding modes inside host cavities which can inform other studies into processes such as catalysis. Here, we report the structures of a set of ten host/guest complexes using an octanuclear coordination cage host with a range of small-molecule neutral organic guests including four aromatic aldehydes and ketones, three cyclic lactams, and three epoxides. In all cases, the cavity-bound guests are anchored by a collection of CH•••O hydrogen-bonding interactions between an O atom on the guest and a convergent set of CH protons at a pocket on the cage interior surface. Depending on guest size and the presence of solvent molecules as additional guests, there may be one or two cavity-bound guests, with small aromatic guests forming π-stacked pairs. Some guests (the lactams) participate in additional NH•••F H-bonding interactions with surface-bound fluoroborate anions, which indicate the type of anion/guest interactions thought to be responsible for solution-phase catalytic reactions of bound guests. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

12 pages, 2509 KiB  
Article
Ringing the Changes: Effects of Heterocyclic Ring Size on Stereoselectivity in [(η5-C5Me5)RhCl], [(η5-C5Me5)IrCl] and [Ru(η6-cymene)Cl] Complexes of Chiral 3-Amino-1-Azacycles
by Vladimir Y. Vladimirov, Matheo Charrier-Chardin, Benson M. Kariuki, Benjamin D. Ward and Paul D. Newman
Molecules 2024, 29(19), 4659; https://doi.org/10.3390/molecules29194659 - 30 Sep 2024
Viewed by 845
Abstract
Ring size-dependent diastereoselective coordination of unsymmetrical diamines containing one azacyclic nitrogen and one exocyclic nitrogen to [(η5-C5Me5)MCl]+ cores where M = Rh, Ir and [Ru(η6-cymene)Cl]+ is reported herein. Total stereoselectivity was observed with [...] Read more.
Ring size-dependent diastereoselective coordination of unsymmetrical diamines containing one azacyclic nitrogen and one exocyclic nitrogen to [(η5-C5Me5)MCl]+ cores where M = Rh, Ir and [Ru(η6-cymene)Cl]+ is reported herein. Total stereoselectivity was observed with the six- and seven-membered azacycles, whereas the five-derivative proved poorly selective. All complexes were active for transfer hydrogenation but showed no enantioselectivity with prochiral ketones. Full article
Show Figures

Graphical abstract

Back to TopTop