Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.1.1. Materials
2.1.2. Elemental Analysis
2.1.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.1.4. Nuclear Magnetic Resonance Spectroscopy
2.1.5. Investigation of the Compounds Thermal Stability
2.1.6. Powder X-ray Diffraction (PXRD)
2.1.7. Intermolecular Interactions Analysis
2.1.8. Crystal Structure Visualization
2.2. Single-Crystal X-ray Crystallography Data Collection and Refinement
2.3. Synthesis
2.3.1. Bis(1-hydroxy-2-methylpropan-2-aminium) Sulfate (1)
2.3.2. 2-Methyl-4-oxopentan-2-aminium Hydrogen Ethanedioate Hydrate (2)
3. Results and Discussion
3.1. Synthetic Aspects
3.2. FTIR Spectra
3.3. Thermal Analysis Results
3.4. NMR Spectrocopy Investigations
3.5. Crystal Structures
3.5.1. Crystal Structure of the Compound 1
3.5.2. Crystal Structure of Compound 2
3.6. Powder X-ray Diffraction Investigations
3.7. Hirschfeld Surface Analysis
3.7.1. Short Theoretical Introduction in the Hirschfeld Surface Analysis
3.7.2. Hirschfeld Surface Analysis for the Solids of 1 and 2 and Their Two Related Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrowfield, J.M. Biological Coordination Chemistry, a Confluence of Chemistry and Biochemistry. Comptes Rendus Chim. 2005, 8, 199–210. [Google Scholar] [CrossRef]
- Apfel, U.-P.; Suntharalingam, K. Bioinspired Reactivity and Coordination Chemistry. Dalt. Trans. 2019, 48, 5859–5860. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.H. Coordination Compounds in Biology. Resonance 1999, 4, 67–77. [Google Scholar] [CrossRef]
- Bergmann, E.D. The Oxazolidines. Chem. Rev. 1953, 53, 309–352. [Google Scholar] [CrossRef]
- Rassat, A.; Rey, P. Nitroxides. 23. Preparation of Amino Acid Free Radicals and Their Complex Salts. Bull. Soc. Chim. Fr. 1967, 3, 815–818. [Google Scholar] [PubMed]
- Keana, J.F.W. Newer Aspects of the Synthesis and Chemistry of Nitroxide Spin Labels. Chem. Rev. 1978, 78, 37–64. [Google Scholar] [CrossRef]
- Rassat, A.; Rey, P. Nitroxydes—LXII: Nitroxydes Oxaziniques: Synthese et Etude Conformationnelle. Tetrahedron 1974, 30, 3315–3325. [Google Scholar] [CrossRef]
- Li, P.; Ryder, M.R.; Stoddart, J.F. Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Acc. Mater. Res. 2020, 1, 77–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Exploring Multifunctional Hydrogen-Bonded Organic Framework Materials. Acc. Chem. Res. 2022, 55, 3752–3766. [Google Scholar] [CrossRef]
- Lin, R.-B.; Chen, B. Hydrogen-Bonded Organic Frameworks: Chemistry and Functions. Chem 2022, 8, 2114–2135. [Google Scholar] [CrossRef]
- Barzagli, F.; Di Vaira, M.; Mani, F.; Peruzzini, M. Improved Solvent Formulations for Efficient CO2 Absorption and Low-Temperature Desorption. ChemSusChem 2012, 5, 1724–1731. [Google Scholar] [CrossRef] [PubMed]
- Hasib-ur-Rahman, M.; Larachi, F. CO2 Capture in Alkanolamine-RTIL Blends via Carbamate Crystallization: Route to Efficient Regeneration. Environ. Sci. Technol. 2012, 46, 11443–11450. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.; Jhon, Y.H.; Choi, S.B.; Shim, J.-G.; Kim, J.-H.; Lee, J.H.; Lee, I.-Y.; Jang, K.-R.; Kim, J. Crystal Structure and Electronic Properties of 2-Amino-2-Methyl-1-Propanol (AMP) Carbamate. Chem. Commun. 2010, 46, 9158–9160. [Google Scholar] [CrossRef] [PubMed]
- Chambers, L.I.; Yufit, D.S.; Musa, O.M.; Steed, J.W. Understanding the Interaction of Gluconamides and Gluconates with Amino Acids in Hair Care. Cryst. Growth Des. 2022, 22, 6190–6200. [Google Scholar] [CrossRef] [PubMed]
- Hosten, E.C.; Betz, R. The Crystal Structure of Bis(1,3-Dihydroxy-2-Methylpropan-2-Aminium) Carbonate, C9H24N2O7. Z. Krist.-New Cryst. Struct. 2021, 236, 297–299. [Google Scholar] [CrossRef]
- Bai, X.-T.; Cao, L.-H.; Zhao, F.; Li, S.-H. Arylsulfonate Ionic Hydrogen-Bonded Organic Frameworks Enable Highly Stable and Superprotonic Conductivity for Enhancing Direct Methanol Fuel Cells. ACS Mater. Lett. 2024, 6, 3351–3357. [Google Scholar] [CrossRef]
- Xing, G.; Yan, T.; Das, S.; Ben, T.; Qiu, S. Synthesis of Crystalline Porous Organic Salts with High Proton Conductivity. Angew. Chem. Int. Ed. 2018, 57, 5345–5349. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Wu, W.; Zhou, Z.; Gao, H.; Wang, J.; Jiang, Z. Hydrogen-Bonded Organic Framework Membrane with Efficient Proton Conduction. J. Memb. Sci. 2022, 664, 121118. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Huang, J.; Zhang, H.; Lin, S.; Ye, Z.-M.; Xiang, S.; Chen, B.; Zhang, Z. Self-Healing B ← N-Based Hydrogen-Bonded Organic Framework for Exclusive Recognition and Separation of Toluene from Methyl-Cyclohexane. J. Am. Chem. Soc. 2024, 146, 19425–19433. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Song, D.; Ji, Z.; Chen, C.; Wu, M. Robust Two-Dimensional Hydrogen-Bonded Organic Framework for Efficient Separation of C1–C3 Alkanes. Chem Bio Eng. 2024. [Google Scholar] [CrossRef]
- Ma, L.; Xie, Y.; Khoo, R.S.H.; Arman, H.; Wang, B.; Zhou, W.; Zhang, J.; Lin, R.; Chen, B. An Adaptive Hydrogen-Bonded Organic Framework for the Exclusive Recognition of p-Xylene. Chem.—A Eur. J. 2022, 28, e202104269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, C.; Ji, Z.; Krishna, R.; Di, Z.; Yuan, D.; Wu, M. A Layered Hydrogen-Bonded Organic Framework with C3H6-Preferred Pores for Efficient One-Step Purification of Methanol-to-Olefins (MTO) Products. ACS Mater. Lett. 2024, 6, 1388–1395. [Google Scholar] [CrossRef]
- Soleimani Abhari, P.; Gholizadeh, S.; Rouhani, F.; Li, Y.-L.; Morsali, A.; Liu, T.-F. Recent Progress in Gas Separation Platforms Based on Hydrogen-Bonded Organic Frameworks (HOFs). Inorg. Chem. Front. 2023, 10, 6134–6159. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Wang, C.; Wang, D.; Zhuang, G.; Kirlikovali, K.O.; Li, P.; Farha, O.K. Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. J. Am. Chem. Soc. 2022, 144, 10663–10687. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, R.; Xie, L.-H.; Lin, Z.-J.; Zhang, X.; Wang, J.; Huang, H.; Zhang, Z.; Schanze, K.S.; Zhang, J.; et al. Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. J. Am. Chem. Soc. 2020, 142, 12478–12485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, D.; Yin, J.; Shang, Y.; Du, J.; Kang, Z.; Wang, R.; Chen, Y.; Sun, D.; Jiang, J. An Ultrafast Responsive NO2 Gas Sensor Based on a Hydrogen-Bonded Organic Framework Material. Chem. Commun. 2020, 56, 703–706. [Google Scholar] [CrossRef]
- Wang, C.; Song, X.; Wang, Y.; Xu, R.; Gao, X.; Shang, C.; Lei, P.; Zeng, Q.; Zhou, Y.; Chen, B.; et al. A Solution-Processable Porphyrin-Based Hydrogen-Bonded Organic Framework for Photoelectrochemical Sensing of Carbon Dioxide. Angew. Chem. Int. Ed. 2023, 62, e202311482. [Google Scholar] [CrossRef]
- Chen, G.; Tong, L.; Huang, S.; Huang, S.; Zhu, F.; Ouyang, G. Hydrogen-Bonded Organic Framework Biomimetic Entrapment Allowing Non-Native Biocatalytic Activity in Enzyme. Nat. Commun. 2022, 13, 4816. [Google Scholar] [CrossRef]
- Liang, W.; Carraro, F.; Solomon, M.B.; Bell, S.G.; Amenitsch, H.; Sumby, C.J.; White, N.G.; Falcaro, P.; Doonan, C.J. Enzyme Encapsulation in a Porous Hydrogen-Bonded Organic Framework. J. Am. Chem. Soc. 2019, 141, 14298–14305. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y. Co-encapsulating Cofactor and Enzymes in Hydrogen-Bonded Organic Frameworks for Multienzyme Cascade Reactions with Cofactor Recycling. Angew. Chem. Int. Ed. 2023, 62, e202308562. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, R.; Wang, C.; Song, X.; Wang, R.; Liu, J.; Zhang, M.; Huang, J.; You, T.; Zhang, Y.; et al. In Situ Embedding Hydrogen-Bonded Organic Frameworks Nanocrystals in Electrospinning Nanofibers for Ultrastable Broad-Spectrum Antibacterial Activity. Adv. Funct. Mater. 2023, 33, 2214388. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, K.; Bai, J.; Xu, T.; Han, W.; Wang, C.; Chen, Z.; Kirlikovali, K.O.; Li, P.; Xiao, J.; et al. Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long-Lasting Self-Cleaning Textiles. Angew. Chem. Int. Ed. 2022, 61, e202115956. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhang, H.; Ren, J.; Qu, X. Hydrogen-Bonded Organic Frameworks: New Horizons in Biomedical Applications. Chem. Soc. Rev. 2023, 52, 7504–7523. [Google Scholar] [CrossRef]
- Huang, W.; Yuan, H.; Yang, H.; Tong, L.; Gao, R.; Kou, X.; Wang, J.; Ma, X.; Huang, S.; Zhu, F.; et al. Photodynamic Hydrogen-Bonded Biohybrid Framework: A Photobiocatalytic Cascade Nanoreactor for Accelerating Diabetic Wound Therapy. JACS Au 2022, 2, 2048–2058. [Google Scholar] [CrossRef]
- Gao, X.; Lu, W.; Wang, Y.; Song, X.; Wang, C.; Kirlikovali, K.O.; Li, P. Recent Advancements of Photo- and Electro-Active Hydrogen-Bonded Organic Frameworks. Sci. China Chem. 2022, 65, 2077–2095. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Mo, G.; Gao, X.; Wu, E.; Li, B.; Bi, Y.; Li, P. Hydration/Dehydration Induced Reversible Transformation between a Porous Hydrogen-Bonded Organic Framework and a Nonporous Molecular Crystal for Highly Efficient Gas Dehydration. Chem Bio Eng. 2024, 1, 283–288. [Google Scholar] [CrossRef]
- Zhai, P.; Wang, C.; Li, Y.; Jin, D.; Shang, B.; Chang, Y.; Liu, W.; Gao, J.; Hou, J. Molecular Engineering of Hydrogen-Bonded Organic Framework for Enhanced Nitrate Electroreduction to Ammonia. Nano Lett. 2024, 24, 8687–8695. [Google Scholar] [CrossRef] [PubMed]
- Zaytseva, E.; Mazhukin, D. Spirocyclic Nitroxides as Versatile Tools in Modern Natural Sciences: From Synthesis to Applications. Part I. Old and New Synthetic Approaches to Spirocyclic Nitroxyl Radicals. Molecules 2021, 26, 677. [Google Scholar] [CrossRef] [PubMed]
- Diacetonamine Hydrogen Oxalate. Org. Synth. 1926, 6, 28. [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A Program for Hirschfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination. J. Appl. Crystallogr. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- CrysAlisPro Software System. Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.43.128a; Rigaku Corporation: Wroclaw, Poland, 2024. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mesityl Oxide. Org. Synth. 1921, 1, 53. [CrossRef]
- Moutin, M.; Rassat, A.; Bordeaux, D.; Lajerowicz-Bonnetau, J. Nitroxydes: LXXIV: Mise En Evidence de Deux Oxazolidines Nitroxydes Derivées Du Norcamphre. J. Mol. Struct. 1976, 31, 275–282. [Google Scholar] [CrossRef]
- Ito, A.; Nakano, Y.; Urabe, M.; Tanaka, K.; Shiro, M. Structural and Magnetic Studies of Copper(II) and Zinc(II) Coordination Complexes Containing Nitroxide Radicals as Chelating Ligands. Eur. J. Inorg. Chem. 2006, 2006, 3359–3368. [Google Scholar] [CrossRef]
- Perfetti, M.; Caneschi, A.; Sukhikh, T.S.; Vostrikova, K.E. Lanthanide Complexes with a Tripodal Nitroxyl Radical Showing Strong Magnetic Coupling. Inorg. Chem. 2020, 59, 16591–16598. [Google Scholar] [CrossRef]
- Rey, P.; Caneschi, A.; Sukhikh, T.S.; Vostrikova, K.E. Tripodal Oxazolidine-N-Oxyl Diradical Complexes of Dy3+ and Eu3+. Inorganics 2021, 9, 91. [Google Scholar] [CrossRef]
- Brough, P.; Chiarelli, R.; Pécaut, J.; Rassat, A.; Rey, P. A Versatile Synthesis of New Pyrimidinyl Nitronyl Nitroxides. Chem. Commun. 2003, 21, 2722–2723. [Google Scholar] [CrossRef] [PubMed]
- Brough, P.; Pécaut, J.; Rassat, A.; Rey, P. Pyrimidinyl Nitronyl Nitroxides. Chem.—A Eur. J. 2006, 12, 5134–5141. [Google Scholar] [CrossRef] [PubMed]
- Thirunarayanan, S.; Arjunan, V.; Marchewka, M.K.; Mohan, S. Structure, Vibrations and Quantum Chemical Investigations of Hydrogen Bonded Complex of Bis(1–Hydroxy–2–Methylpropan–2–Aminium)Selenate. J. Mol. Struct. 2017, 1134, 6–16. [Google Scholar] [CrossRef]
- Sheikhshoaie, I.; Ghazizadeh, M. A Novel Proton Transfer Compound (a New Molybdate Salt) and Its X-ray Structure. Bull. Chem. Soc. Ethiop. 2012, 27, 69–76. [Google Scholar] [CrossRef]
- Ben Nasr, M.; Aubert, E.; Espinosa, E. A Comparative Study of Two Polymorphs of Bis(1-Hydroxy-2-Methylpropan-2-Aminium) Carbonate. Acta Crystallogr. Sect. C Struct. Chem. 2016, 72, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, D.; Hu, W.; Liu, Q.; Du, Z.; He, C.; Zhang, W.; Chen, X. A Crystalline Supramolecular Rotor Functioned by Dual Ultrasmall Polar Rotators. Chin. J. Chem. 2022, 40, 1917–1923. [Google Scholar] [CrossRef]
- Bagieu-Beucher, M.; Guitel, J.C. Structure of Dimethylethanolammonium Dihydrogenmonophosphate Monohydrate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 2382–2384. [Google Scholar] [CrossRef]
- Gharbi, A.; Joini, A. Structural and Physicochemical Characterization of an Organic Dihydrogenodiphosphate: [(CH3)2C(NH3)CH2OH]H2P207. J. Tunis. Chem. Soc. 1996, 3, 813–826. [Google Scholar]
- Schubert, D.M.; Visi, M.Z.; Knobler, C.B. Crystalline Alcoholamine Borates and the Triborate Monoanion. Inorg. Chem. 2008, 47, 2017–2023. [Google Scholar] [CrossRef]
- Cheung, E.Y.; David, S.E.; Harris, K.D.M.; Conway, B.R.; Timmins, P. Structural Properties of a Family of Hydrogen-Bonded Co-Crystals Formed between Gemfibrozil and Hydroxy Derivatives of t-Butylamine, Determined Directly from Powder X-ray Diffraction Data. J. Solid State Chem. 2007, 180, 1068–1075. [Google Scholar] [CrossRef]
- Podjed, N.; Modec, B. Hydrogen Bonding and Polymorphism of Amino Alcohol Salts with Quinaldinate: Structural Study. Molecules 2022, 27, 996. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Feng, M.-L.; Liu, S.; Yang, H.-Y.; Zhu, H.-J. 1-Hydroxymethyl-1-Methylethanaminium Chloride. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, o1150. [Google Scholar] [CrossRef] [PubMed]
- Muhonen, H. The Crystal and Molecular Structure of 2-Amino-2-Methyl-1-Propanol Hydrobromide. Finn. Chem. Lett. 1980, 7, 138. [Google Scholar]
- Beckett, M.A.; Horton, P.N.; Hursthouse, M.B.; Knox, D.A.; Timmis, J.L. Structural (XRD) and Thermal (DSC, TGA) and BET Analysis of Materials Derived from Non-Metal Cation Pentaborate Salts. Dalt. Trans. 2010, 39, 3944. [Google Scholar] [CrossRef] [PubMed]
- Croft, K.; Ghisalberti, E.; Jefferies, P.; Mori, T.; Skelton, B.; White, A. The Chemistry of Eremophila spp. XXI. Structural Study of a New Eremane Diterpene. Aust. J. Chem. 1984, 37, 785. [Google Scholar] [CrossRef]
- Knapp, C.E. CCDC 2193537: Experimental Crystal Structure Determinationitle. CSD Commun. 2022. [Google Scholar] [CrossRef]
- Eppel, S.; Bernstein, J. Statistics-Based Design of Multicomponent Molecular Crystals with the Three-Center Hydrogen Bond. Cryst. Growth Des. 2009, 9, 1683–1691. [Google Scholar] [CrossRef]
- André, V.; Martins, I.; Quaresma, S.; Martins, M.; Duarte, M.T. Transforming Aspirin into Novel Molecular Salts of Salicylic Acid. Struct. Chem. 2014, 25, 707–714. [Google Scholar] [CrossRef]
- Rafique, M.; Hussain, G.; Siddiqui, W.A.; Tahir, M.N. 2-Methyl-4-Oxopentan-2-Aminium 2-Sulfamoylbenzoate. Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, o1883. [Google Scholar] [CrossRef]
- Ji, Z.; Wei, S.; Wu, W. Bis(4-ammonio-4-methyl pentan-2-one-κO)dioxalato-κ4O1,O2-copper(II). Acta Crystallogr. Sect. E 2009, 65, m182. [Google Scholar] [CrossRef]
- Schmidt, M.; Bauer, A.; Schmidbaur, H. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution. Inorg. Chem. 1997, 36, 2040–2043. [Google Scholar] [CrossRef] [PubMed]
- Küppers, H. The Crystal Structure of Ammonium Hydrogen Oxalate Hemihydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 318–327. [Google Scholar] [CrossRef]
- Spackman, M.A.; Byrom, P.G. A Novel Definition of a Molecule in a Crystal. Chem. Phys. Lett. 1997, 267, 215–220. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirschfeld Surface Analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Hirschfeld, F.L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Barbour, L.J. 2.03—Single-Crystal X-Ray Diffraction. In Comprehensive Supramolecular Chemistry II, Vol. 2: Experimental and Computational Methods in Supramolecular Chemistry; Atwood, J.L., Ed.; Elsevier: Oxford, UK, 2017; pp. 23–43. ISBN 978-0-12-803199-5. [Google Scholar]
- Mitchell, A.S.; Spackman, M.A. Molecular surfaces from the promolecule: A comparison with Hartree–Fock ab initio electron density surfaces. J. Comput. Chem. 2000, 21, 933–942. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
Parameter | 1 | 2 |
---|---|---|
Empirical formula | C8H24N2O6S | C8H17NO6 |
M, g/mol | 276.35 | 223.22 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/n | P21/n |
a, Å | 10.0677(2) | 10.3612(7) |
b, Å | 6.1351(1) | 10.4286(5) |
c, Å | 22.6610(5) | 10.9489(6) |
β, deg. | 97.8544(8) | 103.265(6) |
V, Å3 | 1386.56(5) | 1151.49(12) |
Z | 4 | 4 |
D(calc.), g/cm3 | 1.324 | 1.288 |
μ, mm−1 | 0.252 | 0.110 |
F(000) | 600 | 480 |
Crystal size, mm | 0.16 × 0.04 × 0.02 | 0.43 × 0.23 × 0.20 |
θ range for data collection, deg. | 3.17–26.36 | 2.44–26.37 |
Index range | −12 ≤ h ≤ 12, −7 ≤ k ≤ 7, −28 ≤ l ≤ 28 | −12 ≤ h ≤ 12, −12 ≤ k ≤ 12, −13 ≤ l ≤ 13 |
Reflections collected/ independent | 19,495/2844 | 14,010/2345 |
Rint | 0.0409 | 0.0335 |
Reflections with I > 2σ(I) | 2381 | 1935 |
Goodness-of-fit on F2 | 1.058 | 1.080 |
Final R indices [I > 2σ(I)] | R1 = 0.0307, wR2 = 0.0787 | R1 = 0.0450, wR2 = 0.1219 |
R indices (all data) | R1 = 0.0400, wR2 = 0.0825 | R1 = 0.0541, wR2 = 0.1291 |
Largest diff. peak/hole, e/Å3 | 0.300/−0.371 | 0.422/−0.329 |
Compound | Formula | H…H | C…H | O…H | C…C | N…H | N…C | O…C | O…O |
---|---|---|---|---|---|---|---|---|---|
1 | C8H24N2O6 | 52.5 | 0 | 47.5 | 0 | 0 | 0 | 0 | 0 |
2 | C8H17NO6 | 41.0 | 5.8 | 51.7 | 0 | 0 | 0 | 0.7 | 0.8 |
3 | C9H24N2O5 | 65.2 | 2.5 | 32.3 | 0 | 0 | 0 | 0 | 0 |
4 | C9H22N2O4 | 64.4 | 2.1 | 32.4 | 0 | 1.1 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vostrikova, K.E.; Kirin, V.P.; Samsonenko, D.G. Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties. Chemistry 2024, 6, 1271-1286. https://doi.org/10.3390/chemistry6050073
Vostrikova KE, Kirin VP, Samsonenko DG. Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties. Chemistry. 2024; 6(5):1271-1286. https://doi.org/10.3390/chemistry6050073
Chicago/Turabian StyleVostrikova, Kira E., Vladimir P. Kirin, and Denis G. Samsonenko. 2024. "Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties" Chemistry 6, no. 5: 1271-1286. https://doi.org/10.3390/chemistry6050073
APA StyleVostrikova, K. E., Kirin, V. P., & Samsonenko, D. G. (2024). Synthesis, Characterization and Structural Study of the Two Ionic Hydrogen-Bonded Organic Frameworks Based on Sterically Crowded Bifunctional Moieties. Chemistry, 6(5), 1271-1286. https://doi.org/10.3390/chemistry6050073