Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes
Abstract
1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopic Analysis
2.2. Quantum-Chemical Examination of the Interactions
3. Materials and Methods
3.1. FTIR Spectroscopic Measurements
3.2. Theoretical Calculations
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhuri, A.; Haldar, S.; Sun, H.; Koeppe, R.E.; Chattopadhyay, A. Importance of Indole NH Hydrogen Bonding in the Organization and Dynamics of Gramicidin Channels. Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 419–428. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, P.; Pathak, D. Biological Importance of the Indole Nucleus in Recent Years: A Comprehensive Review. J. Heterocycl. Chem. 2010, 47, 491–502. [Google Scholar] [CrossRef]
- Hamid, H.A.; Ramli, A.N.M.; Yusoff, M.M. Indole Alkaloids from Plants as Potential Leads for Antidepressant Drugs: A Mini Review. Front. Pharmacol. 2017, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Mehra, A.; Sharma, V.; Verma, A.; Venugopal, S.; Mittal, A.; Singh, G.; Kaur, B. Indole Derived Anticancer Agents. ChemistrySelect 2022, 7, e202202361. [Google Scholar] [CrossRef]
- Gumus, I.; Solmaz, U.; Gonca, S.; Arslan, H. Molecular Self-Assembly in Indole-Based Benzamide Derivative: Crystal Structure, Hirshfeld Surfaces and Antimicrobial Activity. Eur. J. Chem. 2017, 8, 349–357. [Google Scholar] [CrossRef]
- Ibad, M.F.; Zinad, D.S.; Hussain, M.; Ali, A.; Villinger, A.; Langer, P. One-Pot Synthesis of Arylated 1-Methyl-1H-Indoles by Suzuki–Miyaura Cross-Coupling Reactions of 2,3-Dibromo-1-Methyl-1H-Indole and 2,3,6-Tribromo-1-Methyl-1H-Indole. Tetrahedron 2013, 69, 7492–7504. [Google Scholar] [CrossRef]
- Bie, J.; Liu, S.; Zhou, J.; Xu, B.; Shen, Z. Design, Synthesis and Biological Evaluation of 7-Nitro-1H-Indole-2-Carboxylic Acid Derivatives as Allosteric Inhibitors of Fructose-1,6-Bisphosphatase. Bioorganic Med. Chem. 2014, 22, 1850–1862. [Google Scholar] [CrossRef]
- Yamuna, E.; Kumar, R.A.; Zeller, M.; Prasad, K.J.R. Synthesis, Antimicrobial, Antimycobacterial and Structure–Activity Relationship of Substituted Pyrazolo-, Isoxazolo-, Pyrimido- and Mercaptopyrimidocyclohepta[b]Indoles. Eur. J. Med. Chem. 2012, 47, 228–238. [Google Scholar] [CrossRef]
- Bie, J.; Liu, S.; Li, Z.; Mu, Y.; Xu, B.; Shen, Z. Discovery of Novel Indole Derivatives as Allosteric Inhibitors of Fructose-1,6-Bisphosphatase. Eur. J. Med. Chem. 2015, 90, 394–405. [Google Scholar] [CrossRef]
- Fujisawa, J. Interfacial Charge-Transfer Transitions between TiO2 and Indole. Chem. Phys. Lett. 2020, 739, 136974. [Google Scholar] [CrossRef]
- Nitha, P.R.; Soman, S.; John, J. Indole Fused Heterocycles as Sensitizers in Dye-Sensitized Solar Cells: An Overview. Mater. Adv. 2021, 2, 6136–6168. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, R.; Wang, X.; Huang, L.; Qiu, L.; Zhang, M.; Mi, N.; Xu, M.; He, H.; Gu, C. Efficient Decomposition of Perfluoroalkyl Substances by Low Concentration Indole: New Insights into the Molecular Mechanisms. Environ. Sci. Technol. 2024, 58, 3530–3539. [Google Scholar] [CrossRef]
- Chen, Z.; Teng, Y.; Mi, N.; Jin, X.; Yang, D.; Wang, C.; Wu, B.; Ren, H.; Zeng, G.; Gu, C. Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermolecular Interaction. Environ. Sci. Technol. 2021, 55, 3996–4006. [Google Scholar] [CrossRef]
- Qian, X.; Yan, R.; Hang, Y.; Lv, Y.; Zheng, L.; Xu, C.; Hou, L. Indeno[1,2-b]Indole-Based Organic Dyes with Different Acceptor Groups for Dye-Sensitized Solar Cells. Dye. Pigment. 2017, 139, 274–282. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, Y.; Guan, L.; Ge, H.; Yin, S.; Wang, W. Theoretical Investigation on Charge Transport Parameters of Two Novel Heterotetracenes as Ambipolar Organic Semiconductors. Synth. Met. 2014, 188, 146–155. [Google Scholar] [CrossRef]
- Sakthivel, P.; Song, H.S.; Chakravarthi, N.; Lee, J.W.; Gal, Y.-S.; Hwang, S.; Jin, S.-H. Synthesis and Characterization of New Indeno[1,2-b]Indole-Co-Benzothiadiazole-Based π-Conjugated Ladder Type Polymers for Bulk Heterojunction Polymer Solar Cells. Polymer 2013, 54, 4883–4893. [Google Scholar] [CrossRef]
- Carbas, B.B.; Noori, H.A.; Kavak, E.; Kaya, Y.; Kıvrak, A. Optical, Electrochemical and DFT Studies of Donor-Acceptor Typed Indole Derivatives. J. Mol. Struct. 2023, 1271, 134129. [Google Scholar] [CrossRef]
- Zhu, M.; Zhou, K.; Zhang, X.; You, S.-L. Visible-Light-Promoted Cascade Alkene Trifluoromethylation and Dearomatization of Indole Derivatives via Intermolecular Charge Transfer. Org. Lett. 2018, 20, 4379–4383. [Google Scholar] [CrossRef]
- Ho, H.E.; Pagano, A.; Rossi-Ashton, J.A.; Donald, J.R.; Epton, R.G.; Churchill, J.C.; James, M.J.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Visible-Light-Induced Intramolecular Charge Transfer in the Radical Spirocyclisation of Indole-Tethered Ynones. Chem. Sci. 2020, 11, 1353–1360. [Google Scholar] [CrossRef]
- Wang, D.; Garra, P.; Fouassier, J.P.; Graff, B.; Yagci, Y.; Lalevée, J. Indole-Based Charge Transfer Complexes as Versatile Dual Thermal and Photochemical Polymerization Initiators for 3D Printing and Composites. Polym. Chem. 2019, 10, 4991–5000. [Google Scholar] [CrossRef]
- Kumar, S.; Biswas, P.; Kaul, I.; Das, A. Competition between Hydrogen Bonding and Dispersion Interactions in the Indole···Pyridine Dimer and (Indole)2···Pyridine Trimer Studied in a Supersonic Jet. J. Phys. Chem. A 2011, 115, 7461–7472. [Google Scholar] [CrossRef]
- Balevicius, V.; Bariseviciute, R.; Aidas, K.; Svoboda, I.; Ehrenberg, H.; Fuess, H. Proton Transfer in Hydrogen-Bonded Pyridine/Acid Systems: The Role of Higher Aggregation. Phys. Chem. Chem. Phys. 2007, 9, 3181. [Google Scholar] [CrossRef]
- Melikova, S.M.; Rutkowski, K.S.; Gurinov, A.A.; Denisov, G.S.; Rospenk, M.; Shenderovich, I.G. FTIR Study of the Hydrogen Bond Symmetry in Protonated Homodimers of Pyridine and Collidine in Solution. J. Mol. Struct. 2012, 1018, 39–44. [Google Scholar] [CrossRef]
- Kerr, J.R.; Trembleau, L.; Storey, J.M.D.; Wardell, J.L.; Harrison, W.T.A. Crystal Structures of Four Indole Derivatives with a Phenyl Substituent at the 2-Position and a Carbonyl Group at the 3-Position: The C(6) N–H...O Chain Remains the Same, but the Weak Reinforcing Interactions Are Different. Acta Crystallogr. Sect. E Crystallogr. Commun. 2016, 72, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Xu, Y.; Zheng, Y.; Zhang, L. Intermolecular Hydrogen Bonding of Poly(Imino Imino Ketone Ketone). J. Macromol. Sci. Part B 2014, 53, 749–755. [Google Scholar] [CrossRef]
- Kumar, S.; Pande, V.; Das, A. π-Hydrogen Bonding Wins over Conventional Hydrogen Bonding Interaction: A Jet-Cooled Study of Indole···Furan Heterodimer. J. Phys. Chem. A 2012, 116, 1368–1374. [Google Scholar] [CrossRef]
- Wasio, N.A.; Quardokus, R.C.; Brown, R.D.; Forrest, R.P.; Lent, C.S.; Corcelli, S.A.; Christie, J.A.; Henderson, K.W.; Kandel, S.A. Cyclic Hydrogen Bonding in Indole Carboxylic Acid Clusters. J. Phys. Chem. C 2015, 119, 21011–21017. [Google Scholar] [CrossRef]
- Almeida, A.R.R.P.; Monte, M.J.S. Vapour Pressures of 1-Methyl Derivatives of Benzimidazole, Pyrazole and Indole. The Energy of the Intermolecular Hydrogen Bond NH⋯N. J. Chem. Thermodyn. 2014, 77, 46–53. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Jiang, K.; Shi, D.; Sun, J. Excited-State N–H⋯S Hydrogen Bond between Indole and Dimethyl Sulfide: Time-Dependent Density Functional Theory Study. Phys. Chem. Chem. Phys. 2011, 13, 15299. [Google Scholar] [CrossRef]
- Kordić, B.; Kovačević, M.; Sloboda, T.; Vidović, A.; Jović, B. FT-IR and NIR Spectroscopic Investigation of Hydrogen Bonding in Indole-Ether Systems. J. Mol. Struct. 2017, 1144, 159–165. [Google Scholar] [CrossRef]
- Nikolić, A.; Jović, B.; Vraneš, M.; Dožić, S.; Gadžurić, S. Volumetric Properties of Binary Mixtures of N -Ethylformamide with Tetrahydropyran, 2-Pentanone, and Propylacetate from (293.15 to 313.15) K. J. Chem. Eng. Data 2013, 58, 1070–1077. [Google Scholar] [CrossRef]
- Nikolić, A.; Jović, B.; Krstić, V.; Tričković, J. N–H...O Hydrogen Bonding. FT-IR, NIR and 1H NMR Study of N-Methylpropionamide—Dialkyl Ether Systems. J. Mol. Struct. 2008, 889, 328–331. [Google Scholar] [CrossRef]
- Becker, E.D. Infrared Studies of Hydrogen Bonding in Alcohol-Base Systems. Spectrochim. Acta 1961, 17, 436–447. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Ferrero, R.; Carmona, C.; Balón, M. Hydrogen Bonding Interactions between Indole and Benzenoid-π-Bases. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Iogansen, A.V. Direct Proportionality of the Hydrogen Bonding Energy and the Intensification of the Stretching ν(XH) Vibration in Infrared Spectra. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1585–1612. [Google Scholar] [CrossRef]
- Borisenko, V.E.; Zavjalova, Y.A.; Tretjakova, T.G.; Kozlova, Z.S.; Koll, A. Thermodynamic Properties of the Hydrogen Bonded Complexes between N-Substituted Anilines and Proton Acceptors. J. Mol. Liq. 2004, 109, 125–135. [Google Scholar] [CrossRef]
- Borisenko, V.E.; Kuzmin, D.S.; Morev, A.V.; Koll, A. Thermodynamics of the Formation of Complexes between Aniline Derivatives and Proton Acceptors in Solution. J. Mol. Liq. 2000, 88, 259–276. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminformatics 2011, 3, 33. [Google Scholar] [CrossRef]
- Lewis-Atwell, T.; Townsend, P.A.; Grayson, M.N. Comparing the Performances of Force Fields in Conformational Searching of Hydrogen-Bond-Donating Catalysts. J. Org. Chem. 2022, 87, 5703–5712. [Google Scholar] [CrossRef] [PubMed]
- Zeinalipour-Yazdi, C.D. A DFT Study of the Interaction of Aspirin, Paracetamol and Caffeine with One Water Molecule. J Mol Model 2022, 28, 285. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Harvey, A.J.A.; Sen, A.; Dessent, C.E.H. Performance of M06, M06-2X, and M06-HF Density Functionals for Conformationally Flexible Anionic Clusters: M06 Functionals Perform Better than B3LYP for a Model System with Dispersion and Ionic Hydrogen-Bonding Interactions. J. Phys. Chem. A 2013, 117, 12590–12600. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, N.; Wang, W. Assessment of the Performance of the M05-Class and M06-Class Functionals for the Structure and Geometry of the Hydrogen-Bonded and Halogen-Bonded Complexes. J. Theor. Comput. Chem. 2012, 11, 1165–1173. [Google Scholar] [CrossRef]
- Paul, B.K. Red- and Blue-shifting Hydrogen Bonds of Cyclic Ketones of Varying Ring Sizes with HF and CHF3: Comparison of the Results of B3LYP, O3LYP, and M06-2X Functionals. ChemPhysChem 2025, 2500057. [Google Scholar] [CrossRef]
- Ragi, C.; Muraleedharan, K. Hydrogen Bonding Interactions between Hibiscetin and Ethanol/Water: DFT Studies on Structure and Topologies. Chem. Phys. Impact 2024, 8, 100416. [Google Scholar] [CrossRef]
- Natarajan Sathiyamoorthy, V.; Suvitha, A.; Abdul Rahim, S.; Sahara, R. Intermolecular Hydrogen Bond Interactions in Water Clusters of Zwitterionic Glycine: DFT, MESP, AIM, RDG, and Molecular Dynamics Analysis. J. Mol. Liq. 2024, 396, 123932. [Google Scholar] [CrossRef]
- Adu-Effah, N.; Saikia, N. Intermolecular Hydrogen Bonding Delineates the Stability of Non-Canonical Adenine Base Pairs: A First-Principles Study. Phys. Chem. Chem. Phys. 2024, 26, 29150–29166. [Google Scholar] [CrossRef]
- Kasalović, M.P.; Jelača, S.; Milanović, Ž.; Maksimović-Ivanić, D.; Mijatović, S.; Lađarević, J.; Božić, B.; Marković, Z.; Dunđerović, D.; Rüffer, T.; et al. Novel Triphenyltin(iv) Compounds with Carboxylato N-Functionalized 2-Quinolones as Promising Potential Anticancer Drug Candidates: In Vitro and in Vivo Evaluation. Dalton Trans. 2024, 53, 8298–8314. [Google Scholar] [CrossRef]
- Fuster, F.; Grabowski, S.J. Intramolecular Hydrogen Bonds: The QTAIM and ELF Characteristics. J. Phys. Chem. A 2011, 115, 10078–10086. [Google Scholar] [CrossRef] [PubMed]
- Dimić, D. The Importance of Specific Solvent–Solute Interactions for Studying UV–Vis Spectra of Light-Responsive Molecular Switches. Comptes Rendus Chim. 2018, 21, 1001–1010. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z.; Shen, T.; Guo, L. Hydrogen-Bonding Interactions in Adrenaline-Water Complexes: DFT and QTAIM Studies of Structures, Properties, and Topologies. J. Mol. Model. 2012, 18, 3113–3123. [Google Scholar] [CrossRef]
- Bursch, M.; Mewes, J.; Hansen, A.; Grimme, S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. 2022, 134, e202205735. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From Weak to Strong Interactions: A Comprehensive Analysis of the Topological and Energetic Properties of the Electron Density Distribution Involving X–H⋯F–Y Systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Avdović, E.H.; Dimić, D.S.; Fronc, M.; Kožišek, J.; Klein, E.; Milanović, Ž.B.; Kesić, A.; Marković, Z.S. Structural and Theoretical Analysis, Molecular Docking/Dynamics Investigation of 3-(1-m-Chloridoethylidene)-Chromane-2,4-dione: The Role of Chlorine Atom. J. Mol. Struct. 2021, 1231, 129962. [Google Scholar] [CrossRef]
- Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem. Rev. 1996, 96, 1027–1044. [Google Scholar] [CrossRef]
- Rajan, V.K.; Muraleedharan, K. A Computational Investigation on the Structure, Global Parameters and Antioxidant Capacity of a Polyphenol, Gallic Acid. Food Chem. 2017, 220, 93–99. [Google Scholar] [CrossRef]
- Kar, R.; Chandrakumar, K.R.S.; Pal, S. The Influence of Electric Field on the Global and Local Reactivity Descriptors: Reactivity and Stability of Weakly Bonded Complexes. J. Phys. Chem. A 2007, 111, 375–383. [Google Scholar] [CrossRef]
- Mulliken, R.S. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. J. Chem. Phys. 1934, 2, 782–793. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Popović, G.V.; Sladić, D.M.; Stefanović, V.M.; Pfendt, L.B. Study on Protolytic Equilibria of Lorazepam and Oxazepam by UV and NMR Spectroscopy. J. Pharm. Biomed. Anal. 2003, 31, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Pejov, L. A Gradient-Corrected Density Functional Study of Indole Self-Association through N–H⋯π Hydrogen Bonding. Chem. Phys. Lett. 2001, 339, 269–278. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Dunning, T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Dennington, R.; Todd, K.; Millam, J. GausView, Version 5; Semichem Inc.: Shawnee, KS, USA, 2009.
- Foster, J.P.; Weinhold, F. Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Popelier, P.L.A.; Bader, R.F.W. The Existence of an Intramolecular CHO Hydrogen Bond in Creatine and Carbamoyl Sarcosine. Chem. Phys. Lett. 1992, 189, 542–548. [Google Scholar] [CrossRef]
- Kordić, B.; Dimić, D.; Despotović, V.; Jović, B. Spectroscopic and Theoretical Investigation of Solvent Effect on N–H∙∙∙O, N–H∙∙∙N and N–H∙∙∙π Interactions in Complexes of N-Monosubstituted Benzamides. J. Mol. Liq. 2024, 399, 124472. [Google Scholar] [CrossRef]
- Keith, T.A. AIMAll, Version 19.02.13; TK Gristmill Software: Overland Park, KS, USA, 2016.
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lu, T. A Comprehensive Electron Wavefunction Analysis Toolbox for Chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Daboe, M.; Parlak, C.; Direm, A.; Alver, Ö.; Ramasami, P. Interaction between Escitalopram and Ibuprofen or Paracetamol: DFT and Molecular Docking on the Drug–Drug Interactions. J. Biomol. Struct. Dyn. 2024, 42, 672–686. [Google Scholar] [CrossRef]
Proton Donor | Δν [cm−1] | ν1/2 [cm−1] | ε × 10−3 [cm2 mol−1] | B0 × 10−6 [cm mol−1] | Ka 1 [M−1] |
---|---|---|---|---|---|
Acetone | 72 | 10 | 578.8 | 5.123 | 4.3 |
2-Butanone | 68 | 12 | 434.1 | 11.32 | 4.1 |
2-Pentanone | 69 | 11 | 394.4 | 93.42 | 4.4 |
Cyclohexanone | 77 | 13 | 370.1 | 10.44 | 6.6 |
Acetophenone | 86 | 13 | 3014 | 127.3 | 1.1 |
Benzophenone | 23 | 10 | 6172 | 133.7 | 0.3 |
Proton Donor | Eb [kJ mol−1] | d(H∙∙∙O) [Å] | ρ(H∙∙∙O) [a.u.] | V(H∙∙∙O) [kJ mol−1] | H(H∙∙∙O) [kJ mol−1] | Angle (N-H∙∙∙O) [°] |
---|---|---|---|---|---|---|
Acetone | 39.8 | 2.060 | 0.013 | −22.6 | 3.8 | 137.5 |
2-Butanone | 41.1 | 2.019 | 0.010 | −18.4 | 2.7 | 141.9 |
2-Pentanone | 47.6 | 2.100 | 0.019 | −36.3 | 6.3 | 134.9 |
Cyclohexanone | 47.3 | 2.244 | 0.016 | −28.8 | 5.1 | 119.3 |
Acetophenone | 43.6 | 2.384 | 0.011 | −19.7 | 3.1 | 120.4 |
Benzophenone | 44.3 | 2.250 | 0.014 | −25.3 | 4.4 | 126.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jović, B.; Negru, N.; Dimić, D.; Kordić, B. Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes. Molecules 2025, 30, 2685. https://doi.org/10.3390/molecules30132685
Jović B, Negru N, Dimić D, Kordić B. Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes. Molecules. 2025; 30(13):2685. https://doi.org/10.3390/molecules30132685
Chicago/Turabian StyleJović, Branislav, Nataša Negru, Dušan Dimić, and Branko Kordić. 2025. "Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes" Molecules 30, no. 13: 2685. https://doi.org/10.3390/molecules30132685
APA StyleJović, B., Negru, N., Dimić, D., & Kordić, B. (2025). Vibrational Spectroscopic and Quantum-Chemical Study of Indole–Ketone Hydrogen-Bonded Complexes. Molecules, 30(13), 2685. https://doi.org/10.3390/molecules30132685