Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (260)

Search Parameters:
Keywords = karst aquifer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 286
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 9975 KiB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 256
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Hydrochemical Characterization and Predictive Modeling of Groundwater Quality in Karst Aquifers Under Semi-Arid Climate: A Case Study of Ghar Boumaaza, Algeria
by Sabrine Guettaia, Abderrezzak Boudjema, Abdessamed Derdour, Abdessalam Laoufi, Hussein Almohamad, Motrih Al-Mutiry and Hazem Ghassan Abdo
Sustainability 2025, 17(15), 6883; https://doi.org/10.3390/su17156883 - 29 Jul 2025
Viewed by 422
Abstract
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied [...] Read more.
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied water resource increasingly threatened by climate change and human activity. This study integrates hydrochemical analysis, multivariate statistical techniques, and predictive modeling to assess groundwater quality and characterize the relationship between total dissolved solids (TDSs) and discharge (Q). An analysis of 66 water samples revealed that 96.97% belonged to a Ca2+–HCO3 facies, reflecting carbonate rock dissolution, while 3% exhibited a Cl–HCO3 facies associated with agricultural contamination. A principal component analysis identified carbonate weathering (40.35%) and agricultural leaching (18.67%) as the dominant drivers of mineralization. A third-degree polynomial regression model (R2 = 0.953) effectively captured the nonlinear relationship between TDSs and flow, demonstrating strong predictive capacity. Independent validation (R2 = 0.954) confirmed the model’s robustness and reliability. This study provides the first integrated hydrogeochemical assessment of the Ghar Boumaaza system in decades and offers a transferable methodological framework for managing vulnerable karst aquifers under similar climatic and anthropogenic conditions. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 340
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 2467 KiB  
Article
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Viewed by 353
Abstract
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds [...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies. Full article
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
An Interdisciplinary Perspective of the Karst Springs’ Areas as Drinking Water: Perusal from Northeastern Slovenia
by Natalija Špeh and Anja Bubik
Pollutants 2025, 5(3), 19; https://doi.org/10.3390/pollutants5030019 - 1 Jul 2025
Viewed by 679
Abstract
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection [...] Read more.
Karst aquifer systems are highly vulnerable due to their unique underground water flow characteristics, making them prone to contamination and abandonment. This study compares an active karst water source (Ljubija) with a previously abandoned one (Rečica) to assess freshwater quality and water protection risks, especially as water scarcity becomes a concern during dry summer periods. The Ljubija and Rečica catchments, designated as water protection areas (WPAs), were monitored over a year (January–December 2020). Groundwater (GW) and surface water (SW) were analyzed twice a month during both dry and wet periods, adhering to European and national guidelines. An interdisciplinary approach integrated natural and human impact indicators, linking water quality to precipitation, hydrogeography, and landscape characteristics. After Slovene regulation standards (50 mg/L), the Ljubija source demonstrated stable water quality, with low nitrate levels (average 2.6 mg/L) and minimal human impact. In contrast, the Rečica catchment was more vulnerable, with its GW excluded from drinking use since the 1990s due to organic contamination, worsened by the area’s karst hydrogeology. In 2020, its nitrate concentration averaged 6.0 mg/L. These findings highlight the need for improved monitoring regulations, particularly for vulnerable karst water sources, to safeguard water quality and ensure sustainable use. Full article
Show Figures

Figure 1

18 pages, 3775 KiB  
Article
Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
by Jianguo Fan, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen and Zhimin Xu
Water 2025, 17(13), 1982; https://doi.org/10.3390/w17131982 - 1 Jul 2025
Viewed by 315
Abstract
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the [...] Read more.
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the actual situation of coal mine water treatment as an example and innovatively carries out dynamic tests for the Ordovician limestone aquifers deep in the mine. Intermittent reinjection test shows that under the same reinjection time, the water level recovery rate during the intermittent period is fast at first and then slow. Moreover, the recovery speed of the water level buried depth slows down with the increase in the reinjection time, which reveals the characteristics of the water level rising rapidly and recovering quickly during the reinjection of the reservoir. The average formation water absorption index is 420.81 m3/h·MPa. The water level buried depth of the long-term reinjection test showed three stages (rapid rise, slow rise, and stable stages), and the water level buried depth was raised to 1.52 m at its highest. Monitoring data from the surrounding 5 km area showed that reinjection did not affect aquifer water levels, verifying the excellent storage capacity of the deep Ordovician fissure-karst aquifer. The variability of well loss under pumping and injection conditions was comparatively analyzed, and the well loss produced by the recharge test was 4.06 times higher than that of the pumping test, which provided theoretical support for the calculation of hydrogeological parameters to eliminate the influence of well loss. This study deepens the understanding of Ordovician limestone aquifers in deep mine water, providing a reference for cheap mine water treatment and sustainable groundwater management in similar mine areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 5041 KiB  
Article
Differential Evolution in Hydrochemical Characteristics Amongst Porous, Fissured and Karst Aquifers in China
by Chengsong Li, Jie Fang, Feisheng Feng, Tingting Yao, Yongping Shan and Wanli Su
Hydrology 2025, 12(7), 175; https://doi.org/10.3390/hydrology12070175 - 1 Jul 2025
Viewed by 485
Abstract
The efficacy of water resource management and protection hinges on a profound understanding of the controlling factors and regulatory mechanisms that shape groundwater chemistry within aquifers. Despite this, our comprehension of how groundwater chemistry and ion sources vary across diverse aquifer types remained [...] Read more.
The efficacy of water resource management and protection hinges on a profound understanding of the controlling factors and regulatory mechanisms that shape groundwater chemistry within aquifers. Despite this, our comprehension of how groundwater chemistry and ion sources vary across diverse aquifer types remained limited. To bridge this gap, our study conducted a detailed hydrochemical and statistical investigation of porous, fissured, and karst aquifers. By applying multivariate statistical techniques, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), the hydrochemical characteristics and main ion sources of each aquifer type, as well as distinct controlling factors and regulation patterns, were determined. Notably, evaporation predominantly affected the hydrochemistry of porous aquifers, whereas mineral dissolution and rock weathering processes played a pivotal role in shaping the groundwater evolution of fissured and karst aquifers. HCO3 and SO42− are the most common anions of all types, while Na+ is dominant in porous and fissured aquifers and Ca2+ is dominant in karst aquifers. The most common hydrochemical types identified were HCO3-Ca·Mg (accounting for approximately 56.84%) and SO4·Cl-Na (constituting approximately 21.75%). PCA results revealed that lateral recharge from fissured aquifers in hilly regions into the groundwater of porous aquifer, and wastewater discharge and agricultural fertilizer application, significantly impact the groundwater chemistry across all three aquifer types. It is worth noting that the dissolution of carbonate minerals, often influenced by human activities, had a profound effect on the hydrochemistry of each aquifer. Conversely, the dissolution of evaporitic minerals affected groundwater chemistry primarily through cation exchange processes. In summary, the hydrochemical characteristics of these aquifer types were predominantly shaped by a complex interplay of mineral dissolution, cation exchange, evaporation, and anthropogenic activities, with notable contributions from fissured aquifer recharge and pollution. These insights were critical for informing national-level strategies for groundwater resource protection and management. Full article
Show Figures

Figure 1

18 pages, 4751 KiB  
Article
Hydrochemical Formation Mechanisms and Source Apportionment in Multi-Aquifer Systems of Coastal Cities: A Case Study of Qingdao City, China
by Mingming Li, Xinfeng Wang, Jiangong You, Yueqi Wang, Mingyue Zhao, Ping Sun, Jiani Fu, Yang Yu and Kuanzhen Mao
Sustainability 2025, 17(13), 5988; https://doi.org/10.3390/su17135988 - 29 Jun 2025
Viewed by 390
Abstract
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic [...] Read more.
This study systematically unravels the hydrochemical evolution mechanisms and driving forces in multi-aquifer systems of Qingdao, a coastal economic hub. Integrated hydrochemical analysis of porous, fissured, and karst water, combined with PHREEQC modeling and Positive Matrix Factorization (PMF), deciphers water–rock interactions and anthropogenic perturbations. Groundwater exhibits weak alkalinity (pH 7.2–8.4), with porous aquifers showing markedly higher TDS (161.1–8203.5 mg/L) than fissured (147.7–1224.8 mg/L) and karst systems (361.1–4551.5 mg/L). Spatial heterogeneity reveals progressive hydrochemical transitions (HCO3-Ca → SO4-Ca·Mg → Cl-Na) in porous aquifers across the Dagu River Basin. While carbonate (calcite) and silicate weathering govern natural hydrochemistry, evaporite dissolution and seawater intrusion drive severe groundwater salinization in the western Pingdu City and the Dagu River Estuary (localized TDS up to 8203.5 mg/L). PMF source apportionment identifies acid deposition-enhanced dissolution of carbonate/silicate minerals, with nitrate contamination predominantly sourced from agricultural runoff and domestic sewage. Landfill leachate exerts pronounced impacts in Laixi and adjacent regions. This study offering actionable strategies for salinity mitigation and contaminant source regulation, thereby providing a scientific framework for sustainable groundwater management in rapidly urbanizing coastal zones. Full article
Show Figures

Figure 1

14 pages, 7540 KiB  
Article
Sustainable Spring Water Extraction—A Remedy to Water Shortage?
by Beata Ferencz and Jarosław Dawidek
Sustainability 2025, 17(13), 5798; https://doi.org/10.3390/su17135798 - 24 Jun 2025
Viewed by 395
Abstract
This study addresses a key challenge in water resource management, focusing on spring water. Rapidly increasing water demand, owing to population growth and shifting climate conditions, threatens water availability. Although springs are vital and renewable, they remain largely untapped sources of freshwater worldwide. [...] Read more.
This study addresses a key challenge in water resource management, focusing on spring water. Rapidly increasing water demand, owing to population growth and shifting climate conditions, threatens water availability. Although springs are vital and renewable, they remain largely untapped sources of freshwater worldwide. This study aims to estimate the volume of spring water that can be sustainably extracted from selected catchments without causing environmental harm. It is assumed that substantial water volumes can be withdrawn from catchments where aquifers consist of Cretaceous or Tertiary sediments. By applying the Threshold Level Method (TLM), the study ensures that extraction adherence to environmental flow requirements, thereby helping to protect surrounding aquatic and terrestrial ecosystems. Assuming a daily per capita water use of 0.2 m3, the surplus spring water identified could meet the needs of approximately 881,545 people, whereas the study area’s population slightly exceeds 1.2 million. These findings support sustainable water management efforts and advance progress toward UN Sustainable Development Goal 6. The results demonstrate that sustainable spring water use can help reduce groundwater overexploitation and maintain ecological integrity. Full article
(This article belongs to the Special Issue Global Hydrological Studies and Ecological Sustainability)
Show Figures

Figure 1

15 pages, 1884 KiB  
Article
A Procedure to Estimate Global Natural Recharge in Karst Aquifers
by Eugenio Sanz Pérez, Juan Carlos Mosquera-Feijóo, Joaquín Sanz de Ojeda and Ignacio Menéndez-Pidal
Water 2025, 17(12), 1779; https://doi.org/10.3390/w17121779 - 13 Jun 2025
Viewed by 514
Abstract
Natural recharge in karst aquifers is a key component of global water resources, yet its estimation remains challenging due to the complexity of karst hydrogeological processes. The recharge assessment deserves special consideration, especially in the current global climate and sustainability challenges. This study [...] Read more.
Natural recharge in karst aquifers is a key component of global water resources, yet its estimation remains challenging due to the complexity of karst hydrogeological processes. The recharge assessment deserves special consideration, especially in the current global climate and sustainability challenges. This study poses a methodology to appraise natural recharge rates in karst aquifers worldwide, drawing on climatic and geological data. In this regard, this study applies a methodology previously developed by two of the authors, in which natural recharge over large areas is considered a fixed fraction of precipitation, which varies according to different lithologies of similar hydrogeological behavior (hydro-lithological units). Given that carbonate rocks are known to have the highest recharge rate relative to precipitation (34.3%), the method builds on existing karst and average precipitation maps to calculate worldwide recharge in karst aquifers. Recharge is appraised at 4,381,063.7 hm3/yr, which represents 34.5% of the global groundwater resources, a percentage that indicates the importance of karst in this regard. Based on maps of recharge values worldwide, this study highlights the importance of carbonate aquifers when compared with assessments of the world’s groundwater resources made by international institutions or other types of aquifers. The method is contrasted with other ways of assessing groundwater resources used in diverse regions of Europe. The impact of different climate change scenarios on the natural recharge of these karst aquifers has also been analyzed. Thus, under a climate change scenario in 2050, it is estimated that natural recharge will be reduced by about 10%. Full article
Show Figures

Figure 1

18 pages, 3611 KiB  
Article
Using Landsat 8/9 Thermal Bands to Detect Potential Submarine Groundwater Discharge (SGD) Sites in the Mediterranean in North West-Central Morocco
by Youssef Bernichi, Mina Amharref, Abdes-Samed Bernoussi and Pierre-Louis Frison
Hydrology 2025, 12(6), 144; https://doi.org/10.3390/hydrology12060144 - 10 Jun 2025
Viewed by 1061
Abstract
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic [...] Read more.
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic aquifers in Morocco (the Dorsale Calcaire). The region’s geology is complex, characterized by multiple faults and fractures. Thermal remote sensing is used in this study to locate potential SGD zones, as groundwater emerging from karst systems is typically cooler than surrounding ocean water. Landsat satellite imagery was used to assess temperature variations and detect anomalies associated with the presence of freshwater in the marine environment. El Jebha’s geographical location, with a direct interface between limestone and sea, makes it an ideal site for the appearance of submarine groundwater discharges. This study constitutes the first use of Landsat-8/9 thermal-infrared imagery, processed with a multi-temporal fuzzy-overlay method, to detect SGD. Out of 107 Landsat scenes reviewed, 16 cloud-free images were selected. The workflow identified 18 persistent cold anomalies, of which three were classified as high-probability SGD zones based on recurrence and spatial consistency. The results highlight several potential SGD zones, confirming the cost-effectiveness of thermal remote sensing in mapping thermal anomalies and opening up new perspectives for the study of SGD in Morocco, where these phenomena remain rarely documented. Full article
(This article belongs to the Topic Karst Environment and Global Change)
Show Figures

Figure 1

21 pages, 15682 KiB  
Article
Detection of Sedimentary Basins and Karstic Faults in the Yucatán Peninsula by Gravity Inversion and Euler Deconvolution
by José Carlos Ortiz-Alemán, Mauricio Nava-Flores, Jaime Humberto Urrutia-Fucugauchi, Sebastián Ortiz-Aguilar, Mauricio Gabriel Orozco-del-Castillo and Sebastian López-Juárez
Earth 2025, 6(2), 42; https://doi.org/10.3390/earth6020042 - 16 May 2025
Viewed by 1830
Abstract
The northern Yucatán Peninsula hosts a complex karstic environment shaped by carbonate platform development and the Chicxulub impact event, making subsurface characterization crucial for geological and hydrogeological studies. This work aimed to resolve the shallow crustal structure and identify major tectonic features that [...] Read more.
The northern Yucatán Peninsula hosts a complex karstic environment shaped by carbonate platform development and the Chicxulub impact event, making subsurface characterization crucial for geological and hydrogeological studies. This work aimed to resolve the shallow crustal structure and identify major tectonic features that influence karst processes and groundwater dynamics. We applied a rapid 3D gravity inversion method, linear back projection (LBP), to Bouguer anomaly data, combined with Euler deconvolution to map shallow and deep fault systems. The inversion produced a high-resolution density model down to 12.8 km depth, revealing key geological structures. Multilevel thresholding delineated significant low-density basins, notably the Chicxulub crater, as well as buried sedimentary basins. Euler solutions identified fault networks that coincide with areas of intense karstification, particularly in the eastern peninsula. Results highlight the interplay between impact-related tectonics and karst evolution, influencing groundwater flow paths and recharge zones. This study demonstrates the effectiveness of gravity inversion and Euler deconvolution for regional crustal imaging in carbonate platforms and emphasizes the need for further local-scale surveys to investigate coastal aquifer vulnerability and saltwater intrusion processes. Full article
Show Figures

Graphical abstract

29 pages, 8155 KiB  
Article
Time-Series Analysis of Monitoring Data from Springs to Assess the Hydrodynamic Characteristics of a Coastal Discharge Zone: Example of Jurjevska Žrnovnica Springs in Croatia
by Andrej Stroj, Jasmina Lukač Reberski, Louise D. Maurice and Ben P. Marchant
Hydrology 2025, 12(5), 118; https://doi.org/10.3390/hydrology12050118 - 13 May 2025
Viewed by 1340
Abstract
This study assesses the functioning of the karst aquifer system located on the Croatian coast of the Adriatic Sea, where saltwater intrusion often presents a major problem for freshwater supply. We use two years of sensor data collected from two coastal springs to [...] Read more.
This study assesses the functioning of the karst aquifer system located on the Croatian coast of the Adriatic Sea, where saltwater intrusion often presents a major problem for freshwater supply. We use two years of sensor data collected from two coastal springs to conduct a range of time-invariant and time-variant statistical analyses over various timescales. We perform separate analyses of the within-day and longer-term variation in the data as well as the interactions between the spring levels, salinity, rainfall, and sea levels. Such comprehensive analyses provide a greater understanding into the inner functioning of the intricate, heavily karstified aquifers. Time-invariant time-series analyses of the hourly data indicate that the spring levels and salinity are strongly controlled by sea levels. Furthermore, time-variant wavelet analyses demonstrate that the variation in spring levels in both springs has two modes defined by flow regime. Increases in the delay of the spring response to sea level indicate that aquifer diffusivity decreases in low flow conditions. Analyses facilitated the development of a conceptual model of the karst subsurface in the discharge zone. Using daily data, we constructed a linear mixed model of the spring levels. This model identified long-term sea level changes, rainfall from previous weeks, and seasonal recharge patterns as the primary factors influencing longer-term spring dynamics. Full article
Show Figures

Figure 1

15 pages, 1277 KiB  
Article
Study on the Pollution Mechanism and Driving Factors of Groundwater Quality in Typical Industrial Areas of China
by Li Wang, Qi Wang and Dechao Zheng
Water 2025, 17(10), 1420; https://doi.org/10.3390/w17101420 - 8 May 2025
Viewed by 455
Abstract
Uncovering the characteristics of groundwater pollution and its driving mechanisms are crucial for maintaining its ecological functions. This study focuses on hydrochemical changes and their driving factors in groundwater from different aquifers in industrial zones, taking Zibo City, Shandong Province, China, as the [...] Read more.
Uncovering the characteristics of groundwater pollution and its driving mechanisms are crucial for maintaining its ecological functions. This study focuses on hydrochemical changes and their driving factors in groundwater from different aquifers in industrial zones, taking Zibo City, Shandong Province, China, as the research area. During the dry and flood seasons of 2022, samples of phreatic water in pore media (17 sites) and karst confined water (23 sites) were collected and monitored. Piper trilinear diagrams, Gibbs diagrams, ion ratio diagrams, and a principal component analysis (PCA) were used for in-depth analyses. Pore phreatic water had higher excess rates of Na+, Cl, and NO3 than karst confined water, which indicated a greater degree of human impact compared with karst confined water. The main hydrochemical type was HCO3·SO4-Ca, but in the dry season, pore phreatic water shifted to HCO3·SO4·Cl-Ca. The ion ratios and PCA indicated that the groundwater quality was mainly controlled by water–rock interactions and industrial activities. In the flood season, pore phreatic water was influenced by evaporite dissolution, industrial activities, and domestic sewage, while in the dry season, it was affected by halite and carbonate weathering dissolution and domestic sewage. Karst confined water was controlled by water–rock interactions and industrial activities in both seasons. The findings reveal that the key drivers of groundwater quality displayed significant differences depending on the aquifer type and seasonal variations. As such, customized approaches are essential to efficiently address and counteract the decline in groundwater quality. Full article
Show Figures

Figure 1

Back to TopTop