Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,011)

Search Parameters:
Keywords = jet dynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3767 KB  
Article
Time-Resolved Oxygen Dynamics Reveals Redox-Selective Apoptosis Induced by Cold Atmospheric Plasma in HT-29 Colorectal Cancer Cells
by Hamideh Mohammadi, Kamal Hajisharifi, Esmaeil Heydari, Hassan Mehdian, Sara Emadi, Yuri Akishev, Svetlana A. Ermolaeva, Augusto Stancampiano and Eric Robert
Antioxidants 2026, 15(2), 209; https://doi.org/10.3390/antiox15020209 - 4 Feb 2026
Abstract
Cold atmospheric plasma (CAP) has emerged as a promising anticancer approach because of its ability to selectively eliminate malignant cells. Among the proposed mechanisms of this selectivity, the Bauer theory emphasizes the synergistic action of plasma-derived hydrogen peroxide (H2O2) [...] Read more.
Cold atmospheric plasma (CAP) has emerged as a promising anticancer approach because of its ability to selectively eliminate malignant cells. Among the proposed mechanisms of this selectivity, the Bauer theory emphasizes the synergistic action of plasma-derived hydrogen peroxide (H2O2) and nitrite (NO2), leading to the transient generation of primary singlet oxygen (1O2). This early event inactivates membrane-bound catalase, allowing tumor cell-derived H2O2 and peroxynitrite to initiate a self-amplifying cycle that produces secondary 1O2, as a hallmark of CAP selectivity. To test this hypothesis, in this work, we monitored extracellular dissolved oxygen (DO) dynamics in HT-29 colorectal cancer cells treated with an argon plasma jet using time-resolved phosphorescence lifetime spectroscopy. Temporal variations in DO likely reflect the cumulative effect of rapid 1O2 production and its reactions with cells. A delayed surge in extracellular 1O2 was observed specifically in dying cancer cells within the 10–20 min window predicted by the model. Intracellular ROS imaging confirmed a strong correlation between intracellular ROS, extracellular 1O2 dynamics, and viability loss. Together, these results provide mechanistic validation of Bauer’s redox model and suggest that early oxygen dynamics after CAP exposure can serve as predictive markers for treatment efficacy in plasma or photodynamic therapies. Full article
21 pages, 5818 KB  
Article
Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics
by Naif Albelwi, Abdullah M.A. Alsharif, Abdulrhman Farran, H. A. Refaey and Mohamed A. Karali
Buildings 2026, 16(3), 639; https://doi.org/10.3390/buildings16030639 - 3 Feb 2026
Viewed by 42
Abstract
Impinging jet ventilation (IJV) systems have attracted significant attention due to their potential to augment indoor thermal comfort and airflow distribution. Previous studies have primarily investigated corner and mid-wall IJV installations; however, comparative analyses focusing on different diffuser geometries remain limited. [...] Read more.
Impinging jet ventilation (IJV) systems have attracted significant attention due to their potential to augment indoor thermal comfort and airflow distribution. Previous studies have primarily investigated corner and mid-wall IJV installations; however, comparative analyses focusing on different diffuser geometries remain limited. Accordingly, this study examines the combined effects of IJV diffuser geometry and installation location on thermal comfort indices and airflow characteristics. A full three-dimensional computational fluid dynamics (CFD) model, without the use of symmetry, is developed to simulate a realistic office environment (3 × 3 × 2.9 m3), operating in cooling mode under hot summer climatic conditions. Three IJV diffuser cross-section geometries—triangular, square, and circular—are evaluated at four installation locations (two corners and two mid-wall positions), assuming a fixed occupant location. A combined return and exhaust outlet configuration is adopted. The results indicate that the IJV location influences airflow and temperature distributions more strongly than the diffuser geometry. Nevertheless, the circular diffuser exhibits superior performance compared to the triangular and square geometries. The mid-wall location placed behind the occupant and away from the hot exterior wall demonstrates reduced thermal stratification, improved airflow characteristics, and weaker vortex formation, making it the most favorable configuration. From an architectural perspective, these findings highlight the importance of early coordination between ventilation design and office spatial planning, as diffuser placement directly influences occupant comfort zones and furniture layout. Moreover, the preference for mid-wall installations supports a more flexible façade design and allows for greater freedom in organizing workspaces without compromising thermal performance. Full article
(This article belongs to the Topic Indoor Air Quality and Built Environment)
Show Figures

Figure 1

19 pages, 4560 KB  
Article
Experimental Study on Plume Diffusion Characteristics of Particle-Driven Gravity Current Under Wall Confinement
by Yuyao Li, Guocheng Zhao, Longfei Xiao and Lixin Xu
J. Mar. Sci. Eng. 2026, 14(3), 295; https://doi.org/10.3390/jmse14030295 - 2 Feb 2026
Viewed by 55
Abstract
Gravity currents constrained by bottom walls are prevalent in engineering applications such as industrial discharges and deep-sea mining, and will pose significant environmental risks. In this study, the influence of jet source parameters on the dynamics and diffusion characteristics of particle-driven bottom currents [...] Read more.
Gravity currents constrained by bottom walls are prevalent in engineering applications such as industrial discharges and deep-sea mining, and will pose significant environmental risks. In this study, the influence of jet source parameters on the dynamics and diffusion characteristics of particle-driven bottom currents was investigated through physical experiments using Digital Image Processing (DIP). This non-invasive technology is cost-effective and exhibits broad applicability. The results demonstrated that the downstream plume front dLmax, the maximum lift height hLmax and the average lift height have all exhibit a decreasing trend with increasing Richardson number (Ri) after impingement, and show a linear increase with rising Reynolds number (Re). The plume diffusion scale S follows a two-stage evolution: during the inertia-dominated stage, S evolves exponentially over time t as S=aebt, while in the equilibrium stage of negative buoyancy and turbulent dissipation, S follows a power-law relationship S=atb (b < 1). The rate of change of S increases with smaller jet angles α, and the variations with dimensionless bottom clearance H/D remain within 10%. The dimensionless average longitudinal expansion rate E¯g/D reaches minimum values at α = 75°, peaks at H/D = 10, and exhibits a linear decreasing trend with Ri. As Re increases, E¯g/D displays a three-stage fluctuating behavior. This study provides valuable experimental data that improve the understanding of gravity current behavior under wall confinement and support the predictive modelling of gravity current. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

30 pages, 1315 KB  
Review
Abrasive Water Jet Machining (AWJM) of Titanium Alloy—A Review
by Aravinthan Arumugam, Alokesh Pramanik, Amit Rai Dixit and Animesh Kumar Basak
Designs 2026, 10(1), 13; https://doi.org/10.3390/designs10010013 - 31 Jan 2026
Viewed by 97
Abstract
Abrasive water jet machining (AWJM) is a non-traditional machining process that is increasingly employed for shaping hard-to-machine materials, particularly titanium (Ti)-based alloys such as Ti-6Al-4V. Owing to its non-thermal nature, AWJM enables effective material removal while minimising metallurgical damage and preserving subsurface integrity. [...] Read more.
Abrasive water jet machining (AWJM) is a non-traditional machining process that is increasingly employed for shaping hard-to-machine materials, particularly titanium (Ti)-based alloys such as Ti-6Al-4V. Owing to its non-thermal nature, AWJM enables effective material removal while minimising metallurgical damage and preserving subsurface integrity. The process performance is governed by several interacting parameters, including jet pressure, abrasive type and flow rate, nozzle traverse speed, stand-off distance, jet incident angle, and nozzle design. These parameters collectively influence key output responses such as the material removal rate (MRR), surface roughness, kerf geometry, and subsurface quality. The existing studies consistently report that the jet pressure and abrasive flow rate are directly proportional to MRR, whereas the nozzle traverse speed and stand-off distance exhibit inverse relationships. Nozzle geometry plays a critical role in jet acceleration and abrasive entrainment through the Venturi effect, thereby affecting the cutting efficiency and surface finish. Optimisation studies based on the design of the experiments identify jet pressure and traverse speed as the most significant parameters controlling the surface quality in the AWJM of titanium alloys. Recent research demonstrates the effectiveness of artificial neural networks (ANNs) for process modelling and optimisation of AWJM of Ti-6Al-4V, achieving high predictive accuracy with limited experimental data. This review highlights research gaps in artificial intelligence-based fatigue behaviour prediction, computational fluid dynamics analysis of nozzle wear mechanisms and jet behaviour, and the development of hybrid AWJM systems for enhanced machining performance. Full article
(This article belongs to the Special Issue Studies in Advanced and Selective Manufacturing Technologies)
35 pages, 10004 KB  
Article
Realistic Large-Eddy Simulation Study of the Atmospheric Boundary Layer During the Mosquito Wildland Fire and Its Control of Smoke Plume Transport
by Kiran Bhaganagar, Ralph A. Kahn and Sudheer R. Bhimireddy
Fire 2026, 9(2), 66; https://doi.org/10.3390/fire9020066 - 30 Jan 2026
Viewed by 157
Abstract
Large-eddy simulation (LES) within a weather research and forecasting (WRF) model coupled with an active scalar transport equation was used to simulate Atmospheric Boundary Layer conditions during the Mosquito fire, the largest wildland fire in California during September 2022. The simulations were conducted [...] Read more.
Large-eddy simulation (LES) within a weather research and forecasting (WRF) model coupled with an active scalar transport equation was used to simulate Atmospheric Boundary Layer conditions during the Mosquito fire, the largest wildland fire in California during September 2022. The simulations were conducted with realistic boundary conditions derived from the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, with the aim of better understanding the two-way coupling between the ABL and plume dynamics. The terrain was extremely inhomogeneous, and the topography varied significantly within the numerical domain. Initially, LES of the smoke-free ABL was conducted on nested domains, and detailed ABL data were gathered from 8 to 9 September 2022. LES simulations were validated using four Automated Surface Observing System (ASOS) stations and NOAA meteorological (MET) observations, as well as NOAA met Twin Otter measurements, and the desired accuracy was established. The smoke plume was then released into the ABL at noon on 9 September 2022, and the plume simulations were conducted for a period of one hour following the release. During this period, the ABL transitioned from convective to buoyancy-shear-driven regimes. Late-night and early-morning conditions are influenced by the complex topography and low-level jet, whereas buoyancy and shear control the ABL dynamics during the morning and afternoon hours. The plume vertical transport is influenced by the ABL depth and the size of the vertical turbulence structures during that time, whereas the wind conditions and turbulent kinetic energy within the ABL dictate the horizontal transport scales of the plume. In addition, the results demonstrate that the plume modifies the microclimate along its path. Full article
Show Figures

Figure 1

34 pages, 10581 KB  
Article
Effects of Momentum-FluxRatio on POD and SPOD Modes in High-Speed Crossflow Jets
by Subhajit Roy and Guillermo Araya
Appl. Sci. 2026, 16(3), 1424; https://doi.org/10.3390/app16031424 - 30 Jan 2026
Viewed by 71
Abstract
High-speed jet-in-crossflow (JICF) configurations are central to several aerospace applications, including turbine-blade film cooling, thrust vectoring, and fuel or hydrogen injection in combusting or reacting flows. This study employs high-fidelity direct numerical simulations (DNS) to investigate the dynamics of a supersonic jet (Mach [...] Read more.
High-speed jet-in-crossflow (JICF) configurations are central to several aerospace applications, including turbine-blade film cooling, thrust vectoring, and fuel or hydrogen injection in combusting or reacting flows. This study employs high-fidelity direct numerical simulations (DNS) to investigate the dynamics of a supersonic jet (Mach 3.73) interacting with a subsonic crossflow (Mach 0.8) at low Reynolds numbers. Three momentum-flux ratios (J = 2.8, 5.6, and 10.2) are considered, capturing a broad range of jet–crossflow interaction regimes. Turbulent inflow conditions are generated using the Dynamic Multiscale Approach (DMA), ensuring physically consistent boundary-layer turbulence and accurate representation of jet–crossflow interactions. Modal decomposition via proper orthogonal decomposition (POD) and spectral POD (SPOD) is used to identify the dominant spatial and spectral features of the flow. Across the three configurations, near-wall mean shear enhances small-scale turbulence, while increasing J intensifies jet penetration and vortex dynamics, producing broadband spectral gains. Downstream of the jet injection, the spectra broadly preserve the expected standard pressure and velocity scaling across the frequency range, except at high frequencies. POD reveals coherent vortical structures associated with shear-layer roll-up, jet flapping, and counter-rotating vortex pair (CVP) formation, with increasing spatial organization at higher momentum ratios. Further, POD reveals a shift in dominant structures: shear-layer roll-up governs the leading mode at high J, whereas CVP and jet–wall interactions dominate at lower J. Spectral POD identifies global plume oscillations whose Strouhal number rises with J, reflecting a transition from slow, wall-controlled flapping to faster, jet-dominated dynamics. Overall, the results demonstrate that the momentum-flux ratio (J) regulates not only jet penetration and mixing but also the hierarchy and characteristic frequencies of coherent vortical, thermal, and pressure and acoustic structures. The predominance of shear-layer roll-up over counter-rotating vortex pair (CVP) dynamics at high J, the systematic upward shift of plume-oscillation frequencies, and the strong analogy with low-frequency shock–boundary-layer interaction (SBLI) dynamics collectively provide new mechanistic insight into the unsteady behavior of supersonic jet-in-crossflow flows. Full article
35 pages, 10624 KB  
Article
Advancing CFD Simulations Through Machine-Learning-Enabled Mesh Refinement Analysis
by Charles Patrick Bounds and Mesbah Uddin
Fluids 2026, 11(2), 43; https://doi.org/10.3390/fluids11020043 - 30 Jan 2026
Viewed by 135
Abstract
As computational fluid dynamics (CFD) has become more mainstream in production engineering workflows, new demands have been introduced that require high-quality meshes to accurately capture the complex geometries. This evolution has created the need for mesh generation frameworks that help engineers design optimized [...] Read more.
As computational fluid dynamics (CFD) has become more mainstream in production engineering workflows, new demands have been introduced that require high-quality meshes to accurately capture the complex geometries. This evolution has created the need for mesh generation frameworks that help engineers design optimized meshing structures for each new geometry. However, many simulation workflows rely on the experience and intuition of senior engineers rather than systematic frameworks. In this paper, a novel technique for determining mesh convergence is created using machine learning (ML). This method seeks to provide process engineers with a visual feedback mechanism of flow regions that require mesh refinement. The work was accomplished by creating three grid sensitivity studies on various geometries: zero-pressure-gradient flat plate, bump in channel, and axisymmetric free jet. The cases were then simulated using the Reynolds Averaged Navier-Stokes (RANS) models in OpenFOAM (v2306) and had the ML method applied post-hoc using Python (v3.12.6). To apply the method to each case, the flow field was regionalized and clustered using an unsupervised ML model. The ML clustering results were then converted into a similarity score, which compares two grid levels to inform the user whether the region of the flow had converged. To prove this framework, the similarity scores were compared to flow field probes used to determine mesh convergence at key points in the flow. The method was found to be in agreement with the flow field probes on the level of mesh refinement that created convergence. The approach was also seen to provide refinement region recommendations in regions of the flow that align with human intuition of the physics of the flow. Full article
41 pages, 24095 KB  
Article
Three-Dimensional CFD Simulations for Characterization of a Rectangular Bubble Column with a Unique Gas Distributor Operating at Extremely Low Superficial Gas Velocities
by Arijit Ganguli, Vishal Rasaniya and Anamika Maurya
Micromachines 2026, 17(2), 191; https://doi.org/10.3390/mi17020191 - 30 Jan 2026
Viewed by 125
Abstract
In the present work, three-dimensional (3D) simulations have been performed for the characterization of a rectangular column for a uniform gas distributor with µm-sized holes at a ratio of 5. The model is first validated with experimental data from the literature. Simulations are [...] Read more.
In the present work, three-dimensional (3D) simulations have been performed for the characterization of a rectangular column for a uniform gas distributor with µm-sized holes at a ratio of 5. The model is first validated with experimental data from the literature. Simulations are then performed for a gas distributor with identical pitch but two different hole sizes, namely 600 µm and 200 µm. Three superficial gas velocities, namely 0.002 m/s, 0.004 m/s, and 0.006 m/s, were used for each distributor type. The gas movement in the fluid is found to be a strong function of hole size. For a 600 µm hole size, the operating condition has minimal impact on gas plume movement and moves centrally in a fully aerated regime. However, for a hole size of 200 µm, for all superficial velocities, the gas plume movement is dynamic and partially aerated. The plume moves along the right wall initially and then follows vertically. These characteristics are different from the meandering plume in centrally located spargers. The liquid mixing in the bulk is a function of time. During the plume development flow, different shapes are observed. Based on the analogy with the shapes found in nature, these shapes have been termed as balloon, cap, jet or candle flame, bull horn, mushroom, tree shape, and disintegrated mushroom shapes. Quantitative insights have been obtained in the form of time-averaged radial profiles of both volume fractions and liquid axial velocities. A symmetric parabolic shape for a hole size of 600 µm and skewed asymmetric shapes for a 200 µm hole size for three different axial positions, namely 0.1, 0.25, and 0.4 m, are observed. Correlations for gas holdup and liquid velocity have been proposed for low superficial velocities, which are in good agreement with the CFD simulation data, with a deviation of 15–20%. The deviations are partly due to the use of the k-ε turbulent model. The correlations perform better than the correlations available in the reported literature for similar superficial gas velocities. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

25 pages, 4399 KB  
Article
Numerical Investigation of the Coupled Effects of External Wind Directions and Speeds on Surface Airflow and Convective Heat Transfer in Open Dairy Barns
by Wei Liang, Jun Deng and Hao Li
Agriculture 2026, 16(3), 315; https://doi.org/10.3390/agriculture16030315 - 27 Jan 2026
Viewed by 129
Abstract
Natural ventilation is a common cooling strategy in open dairy barns, but its efficiency largely depends on external wind directions and speeds. Misalignment between external airflow and fan jets often led to non-uniform air distribution, reduced local cooling efficiency, and an elevated risk [...] Read more.
Natural ventilation is a common cooling strategy in open dairy barns, but its efficiency largely depends on external wind directions and speeds. Misalignment between external airflow and fan jets often led to non-uniform air distribution, reduced local cooling efficiency, and an elevated risk of heat stress in cows. However, few studies have systematically examined the combined effects of wind directions and speeds on airflow and heat dissipation. Most research isolates natural or mechanical ventilation effects, neglecting their interaction. Accurate computational fluid dynamics (CFD) modeling of the coupling between outdoor and indoor airflow is crucial for designing and evaluating mixed ventilation systems in dairy barns. To address this gap, this study systematically analyzed the effects of external wind directions (0°, 45°, 90°, 135°, 180°) and speeds (1, 3, 5, 7, 10 m s−1) on fan jet distribution and convective heat transfer around dairy cows using the open-source CFD platform OpenFOAM. By evaluating body surface airflow and regional convective heat transfer coefficients (CHTCs), this study quantitatively linked barn-scale airflow to animal heat dissipation. Results showed that both wind directions and speeds markedly influenced airflow and heat exchange. Under 0° wind direction, dorsal airflow reached 6.2 m s−1 and CHTCs increased nearly linearly with wind speeds, indicating strong synergy between the fan jet and external wind. Crosswinds (90° wind direction) enhanced abdominal airflow (approximately 5.2 m s−1), whereas oblique and opposing winds (135–180°) caused stagnation and reduced convection. The dorsal-to-abdominal CHTCs ratio (Rd/a) increased to about 1.6 under axial winds but decreased to 1.1 under cross-flow, reflecting reduced thermal asymmetry. Overall, combining axial and lateral airflow paths improves ventilation uniformity in naturally or mechanically ventilated dairy barns. The findings provide theoretical and technical support for optimizing ventilation design, contributing to energy efficiency, animal welfare, productivity, and the sustainable development of dairy farming under changing climatic conditions. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

27 pages, 14230 KB  
Article
Coverage Optimization Framework for Underwater Hull Cleaning Robots Considering Non-Uniform Cavitation Erosion Characteristics
by Yunlong Wang, Zhenyu Liang, Zhijiang Yuan and Chaoguang Jin
J. Mar. Sci. Eng. 2026, 14(3), 261; https://doi.org/10.3390/jmse14030261 - 27 Jan 2026
Viewed by 245
Abstract
Underwater robots demonstrate significant potential for hull biofouling removal. However, achieving uniform and damage-free cleaning remains a persistent challenge. The fixed arrangement of cleaning mechanisms, combined with the inherent non-uniformity of cavitation jet energy distribution, frequently results in inconsistent removal depths, leading to [...] Read more.
Underwater robots demonstrate significant potential for hull biofouling removal. However, achieving uniform and damage-free cleaning remains a persistent challenge. The fixed arrangement of cleaning mechanisms, combined with the inherent non-uniformity of cavitation jet energy distribution, frequently results in inconsistent removal depths, leading to local over-cleaning or under-cleaning. To address this, this paper proposes an optimization framework to coordinate the robot’s motion with its cleaning mechanism. First, the flow field dynamics of the cavitation nozzle are elucidated using the Stress-Blended Eddy Simulation (SBES) turbulence model. Based on the Computational Fluid Dynamic (CFD) data, a Gaussian mapping model is constructed to quantify the relationship between jet erosion efficiency and robotic motion parameters. Furthermore, to resolve the multi-objective coverage parameter optimization problem, an improved hybrid metaheuristic algorithm—the Composite Cycloid Subtraction-Average-Based Optimizer (CCSABO)—is introduced to determine the optimal synchronization of forward and lateral velocities. Numerical simulations demonstrate the framework’s robustness across various fouling thickness scenarios and nozzle parameters. Notably, the CCSABO algorithm achieves a coverage rate of 99% and minimizes the uniformity index to 0.011, demonstrating superior consistency compared to traditional PSO and GWO methods. This improvement effectively mitigates the risk of hull damage while ensuring cleaning quality. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 6089 KB  
Article
Influence of Inner Diameter and Pleat Number on Oil Filter Performance
by Xiaomin Zhou, Liangyu Li, Jiayao Wang, Run Zou, Tiexiong Su and Yi Zhang
Processes 2026, 14(3), 426; https://doi.org/10.3390/pr14030426 - 26 Jan 2026
Viewed by 151
Abstract
To address the limitation of existing research on engine oil filter structural parameters—overemphasizing pressure drop while neglecting internal flow uniformity and filter media utilization—this study establishes a three-dimensional Computational Fluid Dynamics (CFD) model of a pleated oil filter for a certain type. With [...] Read more.
To address the limitation of existing research on engine oil filter structural parameters—overemphasizing pressure drop while neglecting internal flow uniformity and filter media utilization—this study establishes a three-dimensional Computational Fluid Dynamics (CFD) model of a pleated oil filter for a certain type. With other structural and material parameters fixed, nine inner diameter schemes (60–84 mm) and seven pleat number schemes (50–80) were designed to systematically investigate their effects on pressure drop, flow uniformity, and media utilization via numerical simulations and experimental validation. The results show that pressure drop decreases monotonically with increasing inner diameter, with smaller diameters being more sensitive to flow rate variations; flow uniformity improves nonlinearly, with severe jets and large dead zones causing poor uniformity for smaller diameters, while uniformity is significantly enhanced with larger diameters, though marginal benefits diminish after a critical threshold. In contrast, pressure drop increases monotonically with more pleats, and higher pleat numbers are more sensitive to resistance changes; flow uniformity follows a threshold effect—deteriorating gradually without extensive dead zones for fewer pleats (maintaining high utilization) but declining sharply beyond a threshold due to narrowed inter-pleat spacing inducing intense jets and expanded dead zones. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

19 pages, 3803 KB  
Article
Impact of Purge Injection on Rim Seal Performance
by Matteo Caciolli, Lorenzo Orsini, Alessio Picchi, Alessio Bonini and Bruno Facchini
Appl. Sci. 2026, 16(3), 1226; https://doi.org/10.3390/app16031226 - 25 Jan 2026
Viewed by 139
Abstract
One of the most critical challenges in gas turbine design is preventing the ingestion of hot mainstream gases into the disk space between the stator and rotor disks. Rim seals and superposed sealant flows are commonly used to mitigate the risk of component [...] Read more.
One of the most critical challenges in gas turbine design is preventing the ingestion of hot mainstream gases into the disk space between the stator and rotor disks. Rim seals and superposed sealant flows are commonly used to mitigate the risk of component overheating. However, leakage paths inevitably form between the mating interfaces of adjacent components due to the complex architecture of the engine. Therefore, the interaction between the different flows present within the disk space complicates the accurate determination of the optimal sealing flow quantity. For this reason, this study experimentally investigates fluid dynamics inside a stator–rotor cavity, with a particular focus on leakage flows. In particular, this work examines the impact of multiple parameters, including injection radius position, number of leakage holes, and injection angle, on the sealing effectiveness values measured on the stator side of the cavity through CO2 gas sampling measurements. By comparing the effectiveness values with the swirl measurements derived from static and total pressure readings, the development of flow structures and the impact of leakage injection on sealing performance were finally evaluated. The results indicate that leakage injection has a minimal effect on the sealing effectiveness above the injection point, but significantly improves the performance at a lower radius. Moreover, it was observed that for a given mass flow rate, using a lower number of holes results in worse sealing performance due to a higher jet momentum, which causes the leakage flow to penetrate through the cavity toward the rotor side. In the end, employing two distinct injection angles—both aligned with the rotor’s direction of rotation—showed no substantial impact on sealing effectiveness. Full article
(This article belongs to the Special Issue Advances in Computational and Experimental Fluid Dynamics)
Show Figures

Figure 1

26 pages, 11043 KB  
Article
Disintegration of Liquid Jets in Grinding Cooling
by Sheikh Ahmad Sakib and Alex Povitsky
Processes 2026, 14(2), 389; https://doi.org/10.3390/pr14020389 - 22 Jan 2026
Viewed by 155
Abstract
Liquid coolant jets are commonly used to remove excess heat from workpieces during grinding. There is a pressing need to reduce energy waste that contributes to environmental heat pollution and to limit the spread of oil-based coolants and mist formation. As a liquid [...] Read more.
Liquid coolant jets are commonly used to remove excess heat from workpieces during grinding. There is a pressing need to reduce energy waste that contributes to environmental heat pollution and to limit the spread of oil-based coolants and mist formation. As a liquid jet issues from a nozzle and enters the surrounding air, surface instabilities develop, causing the jet to break into droplets. This breakup diminishes the jet’s ability to deliver maximum momentum to the workpiece and grinding wheel in grinding operations, thereby reducing cooling efficiency. The presence of moving ambient air near the workpiece and rotating grinding wheel further complicates cooling. First, the study investigates jet breakups in stationary air, predicting breakup lengths with reasonable agreement to experiments at varying jet velocities using the Reynolds Averaged Navier–Stokes (RANS) method equipped with Shear Stress Transport (SST) k-ω model of turbulence. The coolant jet breakup length for a jet normal to the grinding wheel is different from that for a free jet and affected by the proximity of grinding wheel to nozzle that was not evaluated in prior studies. Simulations were performed using Ansys Fluent software 2023R1, with careful tuning of numerical schemes and selection of breakup criteria. The results include analysis of jet breakup phenomena in presence of rotating grinding wheel and workpieces, determination of breakup lengths across a range of Weber numbers, and effects of nozzle design. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 4950 KB  
Article
Effect of Driving Pressure Modes on Microjet Dispersion Characteristics in Tissue-Mimicking Gels for Large-Volume Needle-Free Injection
by Dongping Zeng, Longsheng Luo, Linxing Luo, Wei Wang and Jiamin Li
Gels 2026, 12(1), 95; https://doi.org/10.3390/gels12010095 - 22 Jan 2026
Viewed by 70
Abstract
Needle-free injection (NFI) technology is a promising alternative to conventional syringe injection, as it mitigates needle-related complications and enhances patient compliance. However, achieving the controlled and efficient dispersion of larger-volume formulations (>1 mL) within tissues remains a significant challenge. This study presents a [...] Read more.
Needle-free injection (NFI) technology is a promising alternative to conventional syringe injection, as it mitigates needle-related complications and enhances patient compliance. However, achieving the controlled and efficient dispersion of larger-volume formulations (>1 mL) within tissues remains a significant challenge. This study presents a novel pneumatic NFI system that uses a two-phase driving mode to regulate driving pressure and duration with an ejection volume of 1.0–2.0 mL. The integrated pressure stabilization unit significantly reduces pressure fluctuations during the initial injection phase, generating a more stable and uniform spray distribution. It is designed to produce an ideal elliptical dispersion effect while eliminating splatter, enabling controlled large-volume delivery. Jet impact experiments were conducted to investigate the dynamic characteristics of microjets generated by conventional single-phase and novel two-phase driving modes. Furthermore, the influence of the driving mode on the dispersion behaviors of microjets in agarose gels was explored through high-speed imaging of gel injections. The results demonstrate that the two-phase driving mode produces a distinct two-phase jet pressure profile. Compared to the single-phase mode, the two-phase mode produced a significantly larger dispersion width at equivalent initial driving pressures. This promotes more uniform lateral drug distribution and achieves a higher percentage of liquid drug delivery in gels. Furthermore, favorable driving pressure combinations were identified for different volumes: (1.25–0.25) MPa for 1.0 mL, (1.25–0.50) MPa for 1.5 mL, and (1.50–0.50) MPa for 2.0 mL. This provides a practical basis for optimizing clinical parameters and advancing the development of controllable NFI systems. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

26 pages, 15170 KB  
Article
Numerical Investigation of Recirculation Bubble Dynamics in Extremely Under-Expanded Jet Impingement with Non-Uniform Inflow Conditions
by Zixi Zhao, Ruiyang Xu and Guosheng He
Aerospace 2026, 13(1), 102; https://doi.org/10.3390/aerospace13010102 - 21 Jan 2026
Viewed by 121
Abstract
During lunar landing and takeoff, an extremely under-expanded jet from retrorocket engines generates a complex impingement flow, including multiple shocks and a near-field recirculation bubble, posing critical risks to lunar missions. To clarify the formation and evolution of the recirculation bubble, numerical simulations [...] Read more.
During lunar landing and takeoff, an extremely under-expanded jet from retrorocket engines generates a complex impingement flow, including multiple shocks and a near-field recirculation bubble, posing critical risks to lunar missions. To clarify the formation and evolution of the recirculation bubble, numerical simulations under non-uniform inflow conditions over a range of nozzle heights are performed using a compressible Navier–Stokes solver. The shock structures depend on the distance available for inflow development. Non-uniform total pressure ahead of the surface shock is the primary driver of the adverse pressure gradient that initiates the bubble. This non-uniformity originates from shock interactions at high nozzle heights and directly from the inflow conditions at low heights. Furthermore, the flow stabilizes rapidly at high nozzle heights, while strong unsteadiness persists at low heights. A dimensionless coefficient, CRB, defined as the ratio of pressure difference to dynamic pressure along the recirculation bubble boundary, is proposed to characterize the interaction between the recirculation bubble and surface shock. Its steady-state variation with nozzle height reveals a distinct threshold below which both bubble size and intensity increase sharply, indicating a flow pattern transition. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop