Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics
Abstract
1. Introduction
2. Methods and Setup
2.1. Physical Model
2.2. Boundary Conditions
2.3. Selection of Turbulence Model and Governing Equations
2.4. Grid Generation and Independence Validation
2.5. Model Validation with Experiments
3. Quantification of Thermal Comfort Indices
3.1. Vertical Temperature Difference
3.2. Draught Rate (DR)
3.3. PMV and PPD
3.4. Mean Age of Air and Air Change Effectiveness
4. Results and Discussions
4.1. Thermal Comfort Indices and Draft Sensation
4.2. Indoor Air Quality Based on Air Change Effectiveness
4.3. Flow Characteristics, Streamlines, and Temperature Contours
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karimipanah, T.; Awbi, H.B. Theoretical and experimental investigation of impinging jet ventilation and comparison with wall displacement ventilation. Build. Environ. 2002, 37, 1329–1342. [Google Scholar] [CrossRef]
- Awbi, H.B. Ventilation of Buildings; Spon Press: London, UK, 2003. [Google Scholar]
- Rohdin, P.; Moshfegh, B. Numerical predictions of indoor climate in large industrial premises. A comparison between different k-ε models supported by field measurements. Build. Environ. 2007, 42, 3872–3882. [Google Scholar]
- Varodompun, J. Architectural and HVAC Applications of Impinging Jet Ventilation Using Full Scale and CFD Simulation. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Chen, H.J.; Moshfegh, B.; Cehlin, M. Investigation on the flow and thermal behavior of impinging jet ventilation systems in an office with different heat loads. Build. Environ. 2013, 59, 127–144. [Google Scholar] [CrossRef]
- Yuan, X.X.; Chen, Q.Y.; Glicksman, L.R. A critical review of displacement ventilation. ASHRAE Trans. 1998, 104, 78–90. [Google Scholar]
- Melikov, A.K.; Langkilde, G.; Derbiszewski, B. Airflow characteristics in the occupied zone of rooms with displacement ventilation. ASHRAE Trans. 1990, 96, 555–563. [Google Scholar]
- Chen, H.J.; Moshfegh, B.; Cehlin, M. Numerical investigation of the flow behavior of an isothermal impinging jet in a room. Build. Environ. 2012, 49, 154–166. [Google Scholar] [CrossRef]
- Varodompun, J.; Navvab, M. HVAC ventilation strategies: The contribution for thermal comfort, energy efficiency, and indoor air quality. J. Green Build. 2007, 2, 131–150. [Google Scholar] [CrossRef]
- Staveckis, A.; Borodinecs, A. Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings. Energy Build. 2021, 235, 110738. [Google Scholar] [CrossRef]
- Hu, J.; Kang, Y.; Lu, Y.; Yu, J.; Li, H.; Zhong, K. Numerical investigation of the thermal and ventilation performance of a combined impinging jet ventilation and passive chilled beam system. Build. Environ. 2022, 226, 109726. [Google Scholar] [CrossRef]
- Chen, H.; Moshfegh, B.; Cehlin, M. Computational investigation on the factors influencing thermal comfort for impinging jet ventilation. Build. Environ. 2013, 66, 29–41. [Google Scholar] [CrossRef]
- Cehlin, M.; Karimipanah, T.; Larsson, U.; Ameen, A. Comparing thermal comfort and air quality performance of two active chilled beam systems in an open-plan office. J. Build. Eng. 2019, 22, 56–65. [Google Scholar] [CrossRef]
- Zhang, P.; Djeddou, M.; Su, X.; Gao, G.; Lu, W. An impinging jet ventilation approach for automotive cabins: Promoting coughing droplet mitigation and thermal comfort enhancement. Appl. Therm. Eng. 2025, 281, 128696. [Google Scholar] [CrossRef]
- Duan, T.; Ye, X.; Du, P.; Xi, W.; Kang, Y.; Zhong, K. Sinusoidal airflow modulation in impinging jet ventilation: Optimizing thermal comfort and energy efficiency through parametric analysis. Energy Build. 2026, 350, 116650. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic Theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Ye, X.; Kang, Y.; Yang, F.; Zhong, K. Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode. Build. Environ. 2019, 160, 106159. [Google Scholar] [CrossRef]
- Hu, J.; Kang, Y.; Yu, J.; Zhong, K. Numerical study on thermal stratification for impinging jet ventilation system in office buildings. Build. Environ. 2021, 196, 107798. [Google Scholar] [CrossRef]
- Hu, J.; Kang, Y.; Lu, Y.; Yu, J.; Zhong, K. Simplified models for predicting thermal stratification in impinging jet ventilation rooms using multiple regression analysis. Build. Environ. 2021, 206, 108311. [Google Scholar] [CrossRef]
- Ameen, A.; Cehlin, M.; Larsson, U.; Yamasawa, H.; Kobayashi, T. Numerical investigation of the flow behavior of an isothermal corner impinging jet for building ventilation. Build. Environ. 2022, 223, 109486. [Google Scholar] [CrossRef]
- Ameen, A.; Cehlin, M.; Yamasawa, H.; Kobayashi, T.; Karimipanah, T. Energy saving, indoor thermal comfort and indoor air quality evaluation of an office environment using corner impinging jet ventilation. Dev. Built Environ. 2023, 15, 100179. [Google Scholar] [CrossRef]
- Yang, B.; Liu, P.; Liu, Y.; Wang, F. Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation. Appl. Therm. Eng. 2023, 222, 119915. [Google Scholar] [CrossRef]
- Ameen, A.; Rashid, F.L.; Al-Obaidi, M.A.; Bouabidi, A.; Agyekum, E.B.; Chibani, A.; Kezzar, M. A review of impinging jet ventilation for indoor environment control. Int. J. Thermofluids 2025, 29, 101384. [Google Scholar] [CrossRef]
- Yamasawa, H.; Kobayashi, T.; Yamanaka, T.; Choi, N.; Cehlin, M.; Ameen, A. Effect of supply velocity and heat generation density on cooling and ventilation effectiveness in room with impinging jet ventilation system. Build. Environ. 2021, 205, 108299. [Google Scholar] [CrossRef]
- Almohammadi, B.A.; Hussein, E.; Almohammadi, K.M.; Refaey, H.A.; Karali, M.A. Energy Saving for Impinging Jet Ventilation System by Employing Various Supply Duct Locations and Return Grill Elevation. Buildings 2024, 14, 3716. [Google Scholar] [CrossRef]
- Qin, C.; Lu, W. Effects of ceiling exhaust location on thermal comfort and age of air in room under impinging jet supply scheme. J. Build. Eng. 2021, 35, 101966. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2020; American Society of Heating and Refrigerating and Air-Conditioning Engineers, Thermal Environmental Conditions for Human Occupancy. AHSRAE Standard: Atlanta, GA, USA, 2021.
- ANSYS CFX-Solver Theory Guide; R 18.0; ANSYS Inc.: Canonsburg, PA, USA, 2017.
- Karali, M.A.; Almohammadi, B.A.; Mahfouz, A.S.; Abdelmohimen, M.A.H.; Attia, E.; Refaey, H.A. Effect of surfaces roughness of a staggered tube bank in cross flow with air on heat transfer and pressure drop. Case Stud. Therm. Eng. 2023, 43, 102779. [Google Scholar] [CrossRef]
- Ameen, A.; Yamasawa, H.; Kobayashi, T. Numerical evaluation of the flow field of an isothermal dual-corner impinging jet for building ventilation. Buildings 2022, 12, 1767. [Google Scholar] [CrossRef]
- Ameen, A.; Cehlin, M.; Larsson, U.; Karimipanah, T. Experimental investigation of the ventilation performance of different air distribution systems in an office environment—Cooling mode. Energies 2019, 12, 1354. [Google Scholar] [CrossRef]
- ISO 7730:2025; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Vernier, Switzerland, 2025.
- Quadco Engineering PV Online Thermal Comfort Tool. Available online: https://www.quadco.engineering/en/know-how/cfd-calculate-pmv-and-ppd.htm (accessed on 23 March 2024).
- Li, X.; Li, D.; Yang, X.; Yang, J. Total air age: An extension of the air age concept. Build. Environ. 2003, 38, 1263–1269. [Google Scholar] [CrossRef]
- Ye, X.; Kang, Y.; Yan, Z.; Chen, B.; Zhong, K. Optimization study of return vent height for an impinging jet ventilation system with exhaust/return-split configuration by TOPSIS method. Build. Environ. 2020, 177, 106858. [Google Scholar] [CrossRef]
- Fan, Y.; Li, X.; Yan, Y.; Tu, J. Overall performance evaluation of under floor air distribution system with different heights of return vents. Energy Build. 2017, 147, 176–187. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 129-1997; Measuring Air-Change Effectiveness. AHSRAE Standard: Atlanta, GA, USA, 1997.













| Ref. | Type of Investigation | IJV Location/Geometry | Return/Exhaust Combination | Studying Influence on | ||
|---|---|---|---|---|---|---|
| Thermal Indices | Flow Characteristics | IAQ | ||||
| Yamasawa et al. [24] | CFD/Exp. | Corners–Mid-walls/Circular | Combined | Yes | No | Yes |
| Ameen et al. [20] | CFD/Exp. | Corners/Triangle–Square–Quadrant | Combined | No | Yes | No |
| Ameen et al. [21] | CFD/Exp. | Corners/Triangle | Combined | Yes | No | Yes |
| Almohammadi et al. [25] | CFD/Exp. validation | Corners–Mid-walls/Circular | Separated | Yes | Yes | Yes |
| Present study | CFD/Exp. validation | Corners–Mid-walls/Circular–Triangle–Square | Combined | Yes | Yes | Yes |
| Simulation No. | IJV Specifications (Location/Shape) | Simulation No. | IJV Specifications (Location/Shape) |
|---|---|---|---|
| 1 | Corner 1/Triangle | 7 | Mid-Wall 1/Triangle |
| 2 | Corner 1/Square | 8 | Mid-Wall 1/Square |
| 3 | Corner 1/Circle | 9 | Mid-Wall 1/Circle |
| 4 | Corner 2/Triangle | 10 | Mid-Wall 2/Triangle |
| 5 | Corner 2/Square | 11 | Mid-Wall 2/Square |
| 6 | Corner 2/Circle | 12 | Mid-Wall 2/Circle |
| Parameter | Values |
|---|---|
| Air supply temperature | 20 °C (dry bulb) |
| Air supply flow rate | 75 m3/h |
| Operative temperature | 24–26 °C |
| Relative humidity | 50% |
| Outdoor ambient temperature | 38 °C (dry bulb) |
| Solar heat flux intensity | 700 W/m2 |
| Source of Heat | Heat Load in W |
|---|---|
| Manikin | 125 |
| Lighting | 2 × 50 |
| Computer | 60 |
| Net | 285 |
| Location | Max. Vorticity Swirl Strength (s−1) | Deviation (%) | Avg. Temperature (°C) | Deviation (%) |
|---|---|---|---|---|
| Mid-wall 2 | 0.471722 | --- | 22.495 | --- |
| Corner 1 | 0.429991 | −8.8465 | 22.774 | 1.2403 |
| Mid-wall 1 | 0.309228 | −34.447 | 21.814 | −3.0273 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Albelwi, N.; Alsharif, A.M.A.; Farran, A.; Refaey, H.A.; Karali, M.A. Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics. Buildings 2026, 16, 639. https://doi.org/10.3390/buildings16030639
Albelwi N, Alsharif AMA, Farran A, Refaey HA, Karali MA. Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics. Buildings. 2026; 16(3):639. https://doi.org/10.3390/buildings16030639
Chicago/Turabian StyleAlbelwi, Naif, Abdullah M.A. Alsharif, Abdulrhman Farran, H. A. Refaey, and Mohamed A. Karali. 2026. "Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics" Buildings 16, no. 3: 639. https://doi.org/10.3390/buildings16030639
APA StyleAlbelwi, N., Alsharif, A. M. A., Farran, A., Refaey, H. A., & Karali, M. A. (2026). Effect of Impinging Jet Ventilation System Geometry and Location on Thermal Comfort Achievements and Flow Characteristics. Buildings, 16(3), 639. https://doi.org/10.3390/buildings16030639

