Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = iron depletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4848 KiB  
Article
Mineralogical and Geochemical Features of Soil Developed on Rhyolites in the Dry Tropical Area of Cameroon
by Aubin Nzeugang Nzeukou, Désiré Tsozué, Estelle Lionelle Tamto Mamdem, Merlin Gountié Dedzo and Nathalie Fagel
Standards 2025, 5(3), 20; https://doi.org/10.3390/standards5030020 (registering DOI) - 6 Aug 2025
Abstract
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding [...] Read more.
Petrological knowledge on weathering processes controlling the mobility of chemical elements is still limited in the dry tropical zone of Cameroon. This study aims to investigate the mobility of major and trace elements during rhyolite weathering and soil formation in Mobono by understanding the mineralogical and elemental vertical variation. The studied soil was classified as Cambisols containing mainly quartz, K-feldspar, plagioclase, smectite, kaolinite, illite, calcite, lepidocrocite, goethite, sepiolite, and interstratified clay minerals. pH values ranging between 6.11 and 8.77 indicated that hydrolysis, superimposed on oxidation and carbonation, is the main process responsible for the formation of secondary minerals, leading to the formation of iron oxides and calcite. The bedrock was mainly constituted of SiO2, Al2O3, Na2O, Fe2O3, Ba, Zr, Sr, Y, Ga, and Rb. Ce and Eu anomalies, and chondrite-normalized La/Yb ratios were 0.98, 0.67, and 2.86, respectively. SiO2, Al2O3, Fe2O3, Na2O, and K2O were major elements in soil horizons. Trace elements revealed high levels of Ba (385 to 1320 mg kg−1), Zr (158 to 429 mg kg−1), Zn (61 to 151 mg kg−1), Sr (62 to 243 mg kg−1), Y (55 to 81 mg kg−1), Rb (1102 to 58 mg kg−1), and Ga (17.70 to 35 mg kg−1). LREEs were more abundant than HREEs, with LREE/HREE ratio ranging between 2.60 and 6.24. Ce and Eu anomalies ranged from 1.08 to 1.21 and 0.58 to 1.24 respectively. The rhyolite-normalized La/Yb ratios varied between 0.56 and 0.96. Mass balance revealed the depletion of Si, Ca, Na, Mn, Sr, Ta, W, U, La, Ce, Pr, Nd, Sm, Gd and Lu, and the accumulation of Al, Fe, K, Mg, P, Sc, V, Co, Ni, Cu, Zn, Ga, Ge, Rb, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th, Eu, Tb, Dy, Ho, Er, Tm and Yb during weathering along the soil profile. Full article
Show Figures

Figure 1

20 pages, 772 KiB  
Review
Treatment of Refractory Oxidized Nickel Ores (ONOs) from the Shevchenkovskoye Ore Deposit
by Chingis A. Tauakelov, Berik S. Rakhimbayev, Aliya Yskak, Khusain Kh. Valiev, Yerbulat A. Tastanov, Marat K. Ibrayev, Alexander G. Bulaev, Sevara A. Daribayeva, Karina A. Kazbekova and Aidos A. Joldassov
Metals 2025, 15(8), 876; https://doi.org/10.3390/met15080876 (registering DOI) - 6 Aug 2025
Abstract
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from [...] Read more.
The increasing depletion of high-grade nickel sulfide deposits and the growing demand for nickel have intensified global interest in oxidized nickel ores (ONOs), particularly those located in Kazakhstan. This study presents a comprehensive review of the mineralogical and chemical characteristics of ONOs from the Shevchenkovskoye cobalt–nickel ore deposit and other Kazakhstan deposits, highlighting the challenges they pose for conventional beneficiation and metallurgical processing. Current industrial practices are analyzed, including pyrometallurgical, hydrometallurgical, and pyro-hydrometallurgical methods, with an emphasis on their efficiency, environmental impact, and economic feasibility. Special attention is given to the potential of hydro-catalytic leaching as a flexible, energy-efficient alternative for treating low-grade ONOs under atmospheric conditions. The results underscore the necessity of developing cost-effective and sustainable technologies tailored to the unique composition of Kazakhstani ONOs, particularly those rich in iron and magnesium. This work provides a strategic framework for future research and the industrial application of advanced leaching techniques to unlock the full potential of Kazakhstan’s nickel resources. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 5358 KiB  
Article
Oxidative Ferritin Destruction: A Key Mechanism of Iron Overload in Acetaminophen-Induced Hepatocyte Ferroptosis
by Kaishuo Gong, Kaiying Liang, Hui Li, Hongjun Luo, Yingtong Chen, Ke Yin, Zhixin Liu, Wenhong Luo and Zhexuan Lin
Int. J. Mol. Sci. 2025, 26(15), 7585; https://doi.org/10.3390/ijms26157585 - 5 Aug 2025
Abstract
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the [...] Read more.
Although acetaminophen (APAP) overdose represents the predominant cause of drug-induced acute liver failure (ALF) worldwide and has been extensively studied, the modes of cell death remain debatable and the treatment approach for APAP-induced acute liver failure is still limited. This study investigated the mechanisms of APAP hepatotoxicity in primary mouse hepatocytes (PMHs) by using integrated methods (MTT assay, HPLC analysis for glutathione (GSH), Calcein-AM for labile iron pool detection, confocal microscopy for lipid peroxidation and mitochondrial superoxide measurements, electron microscopy observation, and Western blot analysis for ferritin), focusing on the role of iron dysregulation under oxidative stress. Our results showed that 20 mM APAP treatment induced characteristic features of ferroptosis, including GSH depletion, mitochondrial dysfunction, and iron-dependent lipid peroxidation. Further results showed significant ferritin degradation and subsequent iron releasing. Iron chelator deferoxamine (DFO) and N-acetylcysteine (NAC) could alleviate APAP-induced hepatotoxicity, while autophagy inhibitors did not provide a protective effect. In vitro experiments confirmed that hydrogen peroxide directly damaged ferritin structure, leading to iron releasing, which may aggravate iron-dependent lipid peroxidation. These findings provide evidence that APAP hepatotoxicity involves a self-amplifying cycle of oxidative stress and iron-mediated oxidative damaging, with ferritin destruction playing a key role as a free iron source. This study offers new insights into APAP-induced liver injury beyond conventional cell death classifications, and highlights iron chelation as a potential therapeutic strategy alongside traditional antioxidative treatment with NAC. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

23 pages, 1310 KiB  
Review
Evaluating Antimicrobial Susceptibility Testing Methods for Cefiderocol: A Review and Expert Opinion on Current Practices and Future Directions
by Stefania Stefani, Fabio Arena, Luigi Principe, Stefano Stracquadanio, Chiara Vismara and Gian Maria Rossolini
Antibiotics 2025, 14(8), 760; https://doi.org/10.3390/antibiotics14080760 - 28 Jul 2025
Viewed by 836
Abstract
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial [...] Read more.
Background: Cefiderocol (FDC) presents challenges in antimicrobial susceptibility testing (AST). The reference standard is the broth microdilution (BMD) method with iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB). Still, it is cumbersome for routine clinical laboratory use, while variable accuracy has been reported with available commercial systems. Variability in interpretive criteria and areas of technical uncertainty (ATUs) further complicate assessments. Methods: This review and expert opinion presents: (1) an overview of non-susceptibility to FDC and then delves into the performance of current FDC AST methods for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex; (2) a practical decision framework to guide clinical microbiologists in making informed choices. Results and Conclusions: For Enterobacterales, including carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa, we propose disk diffusion (DD) as a preliminary screening tool to classify isolates as susceptible (S) or resistant (R). Confirmatory testing using the UMIC® FDC system or the ID-CAMHB BMD method is recommended for R isolates. In cases of discrepancy, repeating the test with ID-CAMHB BMD is advised. Additionally, isolates falling within the ATU during DD testing should be retested using the UMIC® system or ID-CAMHB BMD. For A. baumannii complex, since EUCAST breakpoints have not been defined yet, we propose a stepwise framework based on the first DD result: isolates with inhibition zones < 17 mm are considered non-susceptible and should be confirmed with standard BMD. Those between 17 and 22 mm require retesting with a commercial BMD method, with further confirmation recommended if S isolates with zones ≥ 23 mm may be considered S without additional testing. Full article
Show Figures

Figure 1

16 pages, 5637 KiB  
Article
Optimizing High-Al2O3 Limonite Pellet Performance: The Critical Role of Basicity in Consolidation and Reduction
by Yufeng Guo, Yixi Zhang, Feng Chen, Shuai Wang, Lingzhi Yang, Yanqin Xie and Xinyao Xia
Metals 2025, 15(7), 801; https://doi.org/10.3390/met15070801 - 16 Jul 2025
Viewed by 260
Abstract
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material [...] Read more.
With the gradual depletion of high-quality iron ore resources, global steel enterprises have shifted their focus to low-grade, high-impurity iron ores. Using low-grade iron ore to produce pellets for blast furnaces is crucial for companies to control production costs and diversify raw material sources. However, producing qualified pellets from limonite and other low-grade iron ores remains highly challenging. This study investigates the mechanism by which basicity affects the consolidation and reduction behavior of high-Al2O3 limonite pellets from a thermodynamic perspective. As the binary basicity of the pellets increased from 0.01 under natural conditions to 1.2, the compressive strength of the roasted pellets increased from 1100 N/P to 5200 N/P. The enhancement in basicity led to an increase in the amount of low-melting-point calcium ferrite in the binding phase, which increased the liquid phase in the pellets, thereby strengthening the consolidation. CaO infiltrated into large-sized iron particles and reacted with Al and Si elements, segregating the contiguous large-sized iron particles and encapsulating them with liquid-phase calcium ferrite. Calcium oxide reacts with the Al and Si elements in large hematite particles, segmenting them and forming liquid calcium ferrite that encapsulates the particles. Additionally, this study used thermodynamic analysis to characterize the influence of CaO on aluminum elements in high-aluminum iron ore pellets. Adding CaO boosted the liquid phase’s ability to incorporate aluminum, lessening the inhibition by high-melting-point aluminum elements of hematite recrystallization. During the reduction process, pellets with high basicity exhibited superior reduction performance. Full article
Show Figures

Graphical abstract

21 pages, 1132 KiB  
Article
Ferroptosis Among the Antiproliferative Pathways Activated by a Lipophilic Ruthenium(III) Complex as a Candidate Drug for Triple-Negative Breast Cancer
by Maria Grazia Ferraro, Federica Iazzetti, Marco Bocchetti, Claudia Riccardi, Daniela Montesarchio, Rita Santamaria, Gabriella Misso, Marialuisa Piccolo and Carlo Irace
Pharmaceutics 2025, 17(7), 918; https://doi.org/10.3390/pharmaceutics17070918 - 16 Jul 2025
Viewed by 445
Abstract
Background/Objectives: In the context of preclinical studies, we have hitherto showcased that a low-molecular-weight ruthenium(III) complex we named AziRu holds significant potential for further developments as an anticancer candidate drug. When appropriately converted into stable nanomaterials and delivered into tumor cells, AziRu [...] Read more.
Background/Objectives: In the context of preclinical studies, we have hitherto showcased that a low-molecular-weight ruthenium(III) complex we named AziRu holds significant potential for further developments as an anticancer candidate drug. When appropriately converted into stable nanomaterials and delivered into tumor cells, AziRu exhibits superior antiproliferative activity, benefiting from a multimodal mechanism of action. The activation of regulated cell death (RCD) pathways (i.e., apoptosis and autophagy) has been proved in metastatic phenotypes, including triple-negative breast cancer (TNBC) cells. This study focuses on a bioengineered lipophilic derivative of AziRu, named PalmiPyRu, that we are currently developing as a potential anticancer drug in preclinical studies. When delivered in this way, AziRu confirms a multimodal mechanism of action in effectively blocking the growth and proliferation of TNBC phenotypes. Special focus is reserved for the activation of the ferroptotic pathway as a consequence of redox imbalance and interference with iron homeostasis, as well as the glutathione biosynthetic pathway. Methods: Human preclinical models of specific TNBC phenotypes and healthy cell cultures of different histological origin were selected. After in vitro treatments, cellular responses were carefully analyzed, and targeted biochemical and molecular biology experiments coupled to confocal microscopy allowed us to explore the antiproliferative effects of PalmiPyRu. Results: In this study, we unveil that PalmiPyRu can enter TNBC cells and interfere with both the iron homeostasis and the cystine-glutamate antiporter system Xc-, causing significant oxidative stress and the accumulation of lipid oxidation products. The increase in intracellular reactive free iron and depletion of glutathione engender a lethal condition, driving cancer cells toward the activation of ferroptosis. Conclusions: Overall, these outcomes allow us, for the first time, to couple the antiproliferative effect of a ruthenium-based candidate drug with the inhibition of the Xc- antiporter system and Fenton chemistry, thereby branding PalmiPyRu as an effective multimodal inducer of ferroptosis. Molecular mechanisms of action deserve further investigations, and new studies are underway to uncover how interference with Xc- controls cell fate, allowing us to explore the connection between iron metabolism regulation, oxidative stress and RCD pathways activation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

25 pages, 4666 KiB  
Article
Taurine Attenuates Disuse Muscle Atrophy Through Modulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 Pathways
by Xi Liu, Yifen Chen, Linglin Zhang, Zhen Qi, Longhe Yang, Caihua Huang, Li Wang and Donghai Lin
Antioxidants 2025, 14(7), 847; https://doi.org/10.3390/antiox14070847 - 10 Jul 2025
Viewed by 534
Abstract
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid [...] Read more.
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid enriched in energy drinks, can improve the proliferation and myogenic differentiation potential of myoblasts. This study aimed to investigate whether taurine supplementation could protect against DMA and explore its potential role in modulating ferroptosis. Using a hindlimb suspension-induced DMA model in male C57BL/6J mice (6–8 weeks old), we assessed muscle mass, function, ferroptosis-related markers, histopathological changes, and metabolic alterations. The results showed that taurine supplementation improved muscle strength and morphology while attenuating markers of ferroptosis, including iron accumulation, lipid peroxidation, and glutathione and related protein (NRF2, GPX4, and xCT) depletion. Metabolomic analysis suggested that taurine modulates disorders in glutathione and lipid metabolism, potentially associated with the regulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 pathways. While these findings support a protective role for taurine and a possible link between ferroptosis and DMA, further functional studies are needed to confirm causality and assess the compound’s translational potential. This study provides initial in vivo evidence implicating ferroptosis in DMA and highlights taurine as a promising candidate for future therapeutic exploration. Full article
Show Figures

Figure 1

28 pages, 11235 KiB  
Article
Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)
by Shuai Yuan, Qiwei Wang, Bowen Zhang, Xiaoping Gong and Chunmei Su
Minerals 2025, 15(7), 710; https://doi.org/10.3390/min15070710 - 3 Jul 2025
Viewed by 584
Abstract
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon [...] Read more.
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon U-Pb ages of the Kamusite, Laoyaquan, and Beilekuduke plutons are 315.1 ± 3.4 Ma, 313.6 ± 2.9 Ma, and 316.5 ± 4.6 Ma, respectively. The plutons have high silica (SiO2 = 75.53%–77.85%), potassium (K2O = 4.43%–5.42%), and alkalis (K2O + Na2O = 8.17%–8.90%) contents and low ferroan (Fe2O3T = 0.90%–1.48%), calcium, and magnesium contents and are classified as metaluminous–peraluminous, high-potassium, calc-alkaline iron granite. The rocks are enriched in Rb, Th, U, K, Pb, and Sn and strongly depleted in Ba, Sr, P, Eu, and Ti. They have strongly negative Eu anomalies (δEu = 0.01–0.05), 10,000 Ga/Al = 2.87–4.91 (>2.6), showing the geochemical characteristics of A-type granite. The zircon U/Pb ratios indicate that the above granites should be I- or A-type granite, which is generally formed under high-temperature (768–843 °C), low-pressure, and reducing magma conditions. The high Rb/Sr ratio (a mean of 48 > 1.2) and low K/Rb ratio (53.93–169.94) indicate that the tin-bearing plutons have undergone high differentiation. The positive whole-rock εNd(t) values (3.99–5.54) and the relatively young Nd T2DM model ages (616–455 Ma) suggest the magma is derived from partially melted juvenile crust, and the underplating of basic magma containing mantle materials that affected the source area. The results indicate the KGB was formed in the tectonic transition period in the late Carboniferous subduction post-collision environment. Orogenic compression influenced the tin-bearing plutons in the western part of the KGB, forming highly differentiated and reduced I, A-type transition granite. An extensional environment affected the plutons in the eastern sections, creating A-type granite with dark enclaves that suggest magma mixing with little evidence of tin mineralization. Full article
Show Figures

Figure 1

21 pages, 3070 KiB  
Systematic Review
Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study
by Kabelo Mokgalaboni, Wendy N. Phoswa, Perpetua Modjadji and Sogolo L. Lebelo
Thalass. Rep. 2025, 15(3), 7; https://doi.org/10.3390/thalassrep15030007 - 2 Jul 2025
Viewed by 557
Abstract
The risk of anemia and iron overload is a global concern in beta (β)-thalassemia. The β-thalassemia primary treatment includes blood transfusion and iron chelation therapy; however, both are associated with risks such as anemia, iron depletion, overload, and oxidative stress if not adequately [...] Read more.
The risk of anemia and iron overload is a global concern in beta (β)-thalassemia. The β-thalassemia primary treatment includes blood transfusion and iron chelation therapy; however, both are associated with risks such as anemia, iron depletion, overload, and oxidative stress if not adequately monitored. Therefore, this study investigates the effects of curcumin on anemia, iron overload, and oxidative stress in β-thalassemia. In this meta-analysis, search terms including “curcumin,” “Curcuma longa,” “curcuminoids,” “turmeric,” and “thalassemia” were used in Scopus and PubMed to identify studies published from inception to 15 February 2025. The quantitative analysis was performed using a meta-analysis web tool, and the effect estimates were reported as the mean difference (MD) or standardized mean difference (SMD), along with 95% confidence intervals (CI). Our analysis showed no significant effect on hemoglobin (p = 0.1788) and red blood cell count (p = 0.9534). In contrast, there was a significant decrease in serum ferritin [SMD = −0.24 (−0.46, −0.02), p = 0.0335], non–transferrin bound iron (NTBI), [SMD = −0.59 (−0.98, −0.19), p = 0.0039] and serum iron, [SMD = −0.30 (−0.60, −0.01), p = 0.0425]. Furthermore, there was a reduction in reactive oxygen species; [SMD = −0.83 (−1.23, −0.44), p < 0.0001] and malonaldehydes, [MD = −343.85 nmol/g Hb (−465.94, −221.76), p < 0.0001]. A dose of 500 mg of curcumin was found to be more effective in reducing the NTBI. The findings suggest that curcumin may help reduce iron overload and oxidative stress in β-thalassemia; however, its effect on improving anemia appears to be limited. Given the small sample size of the included studies, we recommend that future research involve larger cohorts and employ rigorous methodologies to evaluate the therapeutic potential of curcumin in β-thalassemia thoroughly. Additionally, we recommend using curcumin-enhancing strategies to improve its bioavailability and administer an optimal yet effective dose. Full article
Show Figures

Figure 1

10 pages, 743 KiB  
Review
Iron Deficiency and Iron Deficiency Anemia in Chronic Disease—Common, Important, and Treatable
by Bjørn Moum and Stefan Lindgren
J. Clin. Med. 2025, 14(13), 4519; https://doi.org/10.3390/jcm14134519 - 26 Jun 2025
Viewed by 1119
Abstract
Iron has many important functions related to energy metabolism. However, hemoglobin synthesis is always a priority. Iron deficiency can be caused by increased loss, insufficient intake, or decreased absorption from the intestine and reduced release from depots in systemic inflammation. Anemia appears when [...] Read more.
Iron has many important functions related to energy metabolism. However, hemoglobin synthesis is always a priority. Iron deficiency can be caused by increased loss, insufficient intake, or decreased absorption from the intestine and reduced release from depots in systemic inflammation. Anemia appears when stores are depleted or when utilization of iron from the stores is impaired. Treatment with oral iron is the first choice when the intestine is healthy, and the patient is free of inflammation. Intravenous iron is indicated when oral iron is ineffective or not tolerated and if more rapid correction is clinically indicated as in severe anemia not requiring transfusion. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 314
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 13193 KiB  
Article
Tannins from Acacia mearnsii De Wild as a Sustainable Alternative for the Development of Latent Fingerprints
by Danielle Tapia Bueno, Amanda Fonseca Leitzke, Rayane Braga Martins, Daisa Hakbart Bonemann, Emanuel Gomes Bertizzolo, Gabrielly Quartieri Sejanes, Juliana Porciúncula da Silva, Lucas Minghini Gonçalves, Neftali Lenin Villarreal Carreno and Claudio Martin Pereira de Pereira
Organics 2025, 6(2), 27; https://doi.org/10.3390/org6020027 - 18 Jun 2025
Viewed by 428
Abstract
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their [...] Read more.
Papilloscopy, the science of human identification through fingerprints, has seen notable advancements in developing less toxic latent fingerprint developers (LFDs), especially from natural feedstock. Tannins, the second most abundant natural polyphenol, present a potential eco-friendly and cost-effective alternative, with no record of their use as LFDs in the existing literature. This study characterized four types of tannins from black wattle, using Fourier Transform Infrared Spectroscopy, revealing key functional groups like C=O, C=C, and O–H. Ultraviolet–visible absorption spectra showed similar behaviors for all tannins, indicating phenolic and benzenoid structures. Energy-dispersive X-ray Spectroscopy identified high concentrations of chlorine, sodium, potassium, and sulfur, naturally found in biomass and soil. Finally, elements in significant concentrations, such as sodium, potassium, iron, zinc, and copper, were found through the incineration of the spent bark. On the basis of these findings, the tannin with the highest potential for LFD was selected. Combining this tannin with spent bark ash resulted in a composite whose performance was evaluated using different methods, including depletion studies, tests with various donors, and assessments on different surfaces. The results demonstrated that this combination significantly enhanced the material’s efficiency by integrating organic and inorganic properties, which improved visual contrast and powder adhesion. Full article
Show Figures

Figure 1

12 pages, 2254 KiB  
Article
Latency-Associated Nuclear Antigen (LANA) Promotes Ferroptosis by Suppressing Nrf2/GPX4 and Upregulating MDM2
by Yuejia Cao, Shihan Shao, Yingying Zhang, Dandan Song, Fei Gui, Xinyi Chen, Yu Hong, Rong Chen, Yang Song, Dongmei Li, Xiaohua Tan and Chunhong Di
Pathogens 2025, 14(6), 590; https://doi.org/10.3390/pathogens14060590 - 15 Jun 2025
Viewed by 561
Abstract
Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, is regulated by key mediators including glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 2-related factor 2 (Nrf2). Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes latency-associated nuclear antigen (LANA), a multifunctional protein critical for viral persistence. [...] Read more.
Ferroptosis, an iron-dependent cell death driven by lipid peroxidation, is regulated by key mediators including glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 2-related factor 2 (Nrf2). Kaposi’s sarcoma-associated herpesvirus (KSHV) encodes latency-associated nuclear antigen (LANA), a multifunctional protein critical for viral persistence. Although studies reported that KSHV infection enhanced cellular resistance to ferroptosis, the specific role of LANA in this process remains unexplored. Here, we demonstrate that LANA unexpectedly promotes ferroptosis. In KSHV-positive iSLK.219 cells, LANA knockdown significantly attenuated RSL-3-induced ferroptosis, whereas LANA overexpression sensitized HeLa cells to ferroptotic death. Quantitative analysis revealed that LANA-depleted cells exhibited significantly elevated ROS accumulation (p < 0.01), whereas LANA-overexpressing cells maintained reduced ROS levels during challenge with the ferroptosis inducer RSl-3. Mechanistically, LANA suppressed glutathione peroxidase 4 (GPX4) expression, reduced nuclear factor erythroid 2-related factor 2 (Nrf2) expression and impaired its nuclear translocation, and upregulated mouse double minute 2 homolog (MDM2) expression. Pharmacological inhibition of Nrf2 (ML385) or MDM2 (nutlin3a) reversed the ferroptotic effects of LANA knockdown or overexpression, respectively. These findings reveal a pro-ferroptotic role of LANA via Nrf2/GPX4 suppression and MDM2 activation. Full article
(This article belongs to the Special Issue Herpesvirus Latency and Reactivation)
Show Figures

Figure 1

21 pages, 6254 KiB  
Article
CircRNA_1156 Attenuates Neodymium Nitrate-Induced Hepatocyte Ferroptosis by Inhibiting the ACSL4/PKCβII Signaling Pathway
by Ning Wang, Jing Leng, Jing Xu, Kelei Qian, Zhiqing Zheng, Gonghua Tao, Ping Xiao and Xinyu Hong
Antioxidants 2025, 14(6), 700; https://doi.org/10.3390/antiox14060700 - 9 Jun 2025
Viewed by 2735
Abstract
Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has been implicated in the pathogenesis of liver diseases. This study investigates the role of circRNA_1156 in neodymium nitrate (Nd(NO3)3)-induced hepatocyte ferroptosis. Our in vitro experiments revealed that [...] Read more.
Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has been implicated in the pathogenesis of liver diseases. This study investigates the role of circRNA_1156 in neodymium nitrate (Nd(NO3)3)-induced hepatocyte ferroptosis. Our in vitro experiments revealed that exposure to Nd(NO3)3 (1.2 µM) significantly reduced the viability of AML12 hepatocytes (p < 0.01), increased levels of reactive oxygen species (ROS) and malondialdehyde (MDA) (p < 0.001), and depleted glutathione (GSH) (p < 0.001). However, overexpression of circRNA_1156 effectively reversed these effects and suppressed the expression of ACSL4 and PKCβII (p < 0.01). In our in vivo experiments, chronic exposure to Nd(NO3)3 (7–55 mg/kg for 180 days) induced hepatic iron deposition, mitochondrial damage, and activation of the ACSL4/PKCβII pathway (p < 0.01). These adverse effects were significantly ameliorated by circRNA_1156 overexpression (p < 0.05). Our findings identify circRNA_1156 as a novel inhibitor of Nd(NO3)3-induced ferroptosis via downregulation of the ACSL4/PKCβII pathway, providing valuable therapeutic insights for hepatotoxicity caused by rare earth element compounds. Full article
Show Figures

Figure 1

20 pages, 7340 KiB  
Article
PTPA Governs Stress-Responsive Differentiation and Metabolic Homeostasis in Toxoplasma gondii
by Zhu Ying, Yuntong Wu, Yanqun Pei, Zheng Shang, Jing Liu and Qun Liu
Cells 2025, 14(11), 835; https://doi.org/10.3390/cells14110835 - 3 Jun 2025
Viewed by 571
Abstract
The protozoan parasite Toxoplasma gondii transitions between acute (tachyzoite) and chronic (bradyzoite) stages, enabling lifelong persistence in hosts. Iron depletion triggers bradyzoite differentiation, with the phosphotyrosyl phosphatase activator (PTPA) identified as a key regulator. Here, we define PTPA’s role in T. gondii pathogenesis. [...] Read more.
The protozoan parasite Toxoplasma gondii transitions between acute (tachyzoite) and chronic (bradyzoite) stages, enabling lifelong persistence in hosts. Iron depletion triggers bradyzoite differentiation, with the phosphotyrosyl phosphatase activator (PTPA) identified as a key regulator. Here, we define PTPA’s role in T. gondii pathogenesis. PTPA forms a ternary complex with PP2A A/C subunits, validated by reciprocal pull-down assays. Depleting PTPA impaired tachyzoite proliferation, invasion, and gliding motility, while stress-induced bradyzoites exhibited defective cyst formation and vacuolar swelling. Metabolic dysregulation included amylopectin accumulation and lipid droplet proliferation. The PP2A inhibitor LB-100 phenocopied PTPA depletion, suppressing tachyzoite growth and bradyzoite differentiation. TgPTPA emerges as a linchpin coordinating PP2A activity, metabolic flux, and lifecycle transitions. Its dual roles in acute virulence and chronic persistence, combined with LB-100’s efficacy, position the PTPA–PP2A axis as a promising target for antitoxoplasmosis strategies. Full article
Show Figures

Figure 1

Back to TopTop