Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Database and Literature Search
2.2. Eligibility Criteria and Selection Criteria
2.3. Data Items and Extraction
2.4. Methodological Quality and Risk of Bias (ROB)
2.5. Statistical Analyses
3. Results
3.1. Search, Screening, and Demographics
3.2. Methodological Quality of the Included Studies
3.3. Effect of Curcumin on Hemoglobin and Red Blood Cells in β-Thalassemia
3.4. Effect of Curcumin on Ferritin, Non-Transferrin Binding Iron (NTBI), and Serum Iron Level in β-Thalassemia
3.5. Effect of Curcumin on Oxidative Stress in β-Thalassemia
3.6. Assessment of Publication Bias
3.7. Subgroup Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARE | Antioxidant Response Element |
β-thalassemia | Beta-thalassemia |
CAT | Catalase |
CI | Confidence interval |
CVD | Cardiovascular disease |
DMT1 | Divalent metal transporter one |
EGCG | Epigallocatechin-3-gallate |
FPN | Ferroportin |
GTE | Green-tea extract |
Hb | Hemoglobin |
HO-1 | Heme oxygenase-one |
IKK | Inhibitor of kappa B kinase |
IKβ | Inhibitor of kappa beta |
IL-6 | Interleukin-6 |
IL-6R | Interleukin-6 receptor |
JAK | Janus-associated kinase |
Keap1 | Kelch-like ECH-associated protein one |
MD | Mean difference |
MDA | Malonaldehydes |
NADPH | Nicotinamide adenine dinucleotide phosphate hydrogen |
NF-κβ | Nuclear factor-kappa beta |
NOS | Nitric oxidase |
Nrf2 | Nuclear factor-erythroid related factor two |
NTBI | Non-transferrin-bound iron |
NQO1 | NAD (P) H quinone oxidoreductase one |
P | Phosphate ion |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
PRISMA | Preferred reporting items for systematic review and meta-analysis |
RBCs | Red blood cells |
RCTs | Randomized controlled trials |
ROS | Reactive oxygen species |
SMD | Standardized mean difference |
SOD | Superoxide dismutase |
STAT | Signal transducer and activator of transcription |
Tf | Transferrin |
TfR | Transferrin receptor |
TNF-α | Tumor necrosis factor alpha |
XO | Xanthine oxidase |
References
- Kattamis, A.; Kwiatkowski, J.L.; Aydinok, Y. Thalassaemia. Lancet 2022, 399, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Cappellini, M.D.; Coates, T.D.; Kuo, K.H.M.; Al-Samkari, H.; Sheth, S.; Viprakasit, V.; Taher, A.T. Alpha-Thalassemia: A Practical Overview. Blood Rev. 2024, 64, 101165. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Musallam, K.M.; Cappellini, M.D. β-Thalassemias. N. Engl. J. Med. 2021, 384, 727–743. [Google Scholar] [CrossRef]
- Kattamis, A.; Forni, G.L.; Aydinok, Y.; Viprakasit, V. Changing Patterns in the Epidemiology of β-Thalassemia. Eur. J. Haematol. 2020, 105, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Colah, R.; Ajit, G.; Nadkarni, A. Global Burden, Distribution and Prevention of β-Thalassemias and Hemoglobin E Disorders. Expert Rev. Hematol. 2010, 3, 103–117. [Google Scholar] [CrossRef]
- Sumedha, D.; Anita, K. Prevalence of Beta Thalassemia Carriers in India: A Systematic Review and Meta-Analysis. J. Community Genet. 2023, 14, 527–541. [Google Scholar] [CrossRef]
- Cao, A.; Galanello, R. Beta-Thalassemia. Genet. Med. 2010, 12, 61–76. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Porter, J.B.; Viprakasit, V.; Taher, A.T. A Paradigm Shift on Beta-Thalassaemia Treatment: How Will We Manage This Old Disease with New Therapies? Blood Rev. 2018, 32, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Barella, S.; Origa, R.; Ferrero, G.B.; Lisi, R.; Pasanisi, A.; Longo, F.; Gianesin, B.; Forni, G.L. Differential Effects of Iron Chelators on Iron Burden and Long-Term Morbidity and Mortality Outcomes in a Large Cohort of Transfusion-Dependent β-Thalassemia Patients Who Remained on the Same Monotherapy over 10 Years. Blood Cells Mol. Dis. 2024, 107, 102859. [Google Scholar] [CrossRef]
- Farmakis, D.; Porter, J.; Taher, A.; Cappellini, M.D.; Angastiniotis, M.; Eleftheriou, A.; Alassaf, A.; Angastiniotis, M.; Angelucci, E.; Aydinok, Y.; et al. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-Dependent Thalassemia. Hemasphere 2022, 6, e723. [Google Scholar] [CrossRef]
- Gottwald, E.M.; Schuh, C.D.; Drücker, P.; Haenni, D.; Pearson, A.; Ghazi, S.; Bugarski, M.; Polesel, M.; Duss, M.; Landau, E.M.; et al. The Iron Chelator Deferasirox Causes Severe Mitochondrial Swelling without Depolarization Due to a Specific Effect on Inner Membrane Permeability. Sci. Rep. 2020, 10, 1577. [Google Scholar] [CrossRef] [PubMed]
- Vill, K.; Müller-Felber, W.; Teusch, V.; Blaschek, A.; Gerstl, L.; Huetker, S.; Albert, M.H. Proximal Muscular Atrophy and Weakness: An Unusual Adverse Effect of Deferasirox Iron Chelation Therapy. Neuromuscul. Disord. 2016, 26, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.K.; Singh, A.K. A Review of Iron Overload in Beta-Thalassemia Major, and a Discussion on Alternative Potent Iron Chelation Targets. Plasmatology 2022, 16, 26348535221103560. [Google Scholar] [CrossRef]
- Lal, A. Challenges in Chronic Transfusion for Patients with Thalassemia. Hematol. Am. Soc. Hematol. Educ. Program. 2020, 2020, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Evangelidis, P.; Venou, T.M.; Fani, B.; Vlachaki, E.; Gavriilaki, E. Endocrinopathies in Hemoglobinopathies: What Is the Role of Iron? Int. J. Mol. Sci. 2023, 24, 16263. [Google Scholar] [CrossRef]
- Ansharullah, B.A.; Sutanto, H.; Romadhon, P.Z. Thalassemia and Iron Overload Cardiomyopathy: Pathophysiological Insights, Clinical Implications, and Management Strategies. Curr. Probl. Cardiol. 2025, 50, 102911. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, X.; Zeng, Y.; Mo, X.; Hong, S.; He, H.; Li, J.; Fatima, S.; Liu, Q. Oxidative Stress Induces Mitochondrial Iron Overload and Ferroptotic Cell Death. Sci. Rep. 2023, 13, 15515. [Google Scholar] [CrossRef]
- Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron Overload, Oxidative Stress, and Ferroptosis in the Failing Heart and Liver. Antioxidants 2021, 10, 1864. [Google Scholar] [CrossRef]
- Ng, N.Y.H.; Ko, C.H. Natural Remedies for the Treatment of Beta-Thalassemia and Sickle Cell Anemia—Current Status and Perspectives in Fetal Hemoglobin Reactivation. Int. Sch. Res. Not. 2014, 2014, 123257. [Google Scholar] [CrossRef]
- Rai, P.; Zaidi, K.U.; Thawani, V. Beta Thalassemia and Role of Herbals and Hematopoietic Stem Cells in Its Remedy. Hematol. Transfus. Int. J. 2018, 6, 195–198. [Google Scholar] [CrossRef]
- Ballester, P.; Cerdá, B.; Arcusa, R.; García-Muñoz, A.M.; Marhuenda, J.; Zafrilla, P. Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger. Molecules 2023, 28, 4024. [Google Scholar] [CrossRef] [PubMed]
- Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin Supplementation Improves Biomarkers of Oxidative Stress and Inflammation in Conditions of Obesity, Type 2 Diabetes and NAFLD: Updating the Status of Clinical Evidence. Food Funct. 2021, 12, 12235–12249. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cheng, J.; Zheng, S.; Feng, Q.; Xiao, X. Curcumin, a Polyphenolic Curcuminoid with Its Protective Effects and Molecular Mechanisms in Diabetes and Diabetic Cardiomyopathy. Front. Pharmacol. 2018, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Rainey, N.E.; Moustapha, A.; Saric, A.; Nicolas, G.; Sureau, F.; Petit, P.X. Iron Chelation by Curcumin Suppresses Both Curcumin-Induced Autophagy and Cell Death Together with Iron Overload Neoplastic Transformation. Cell Death Discov. 2019, 5, 150. [Google Scholar] [CrossRef]
- Özbolat, G.; Alizadeh Yegani, A. Effects of Curcumin on Iron Overload in Rats. Sudan J. Med. Sci. 2021, 16, 464–475. [Google Scholar] [CrossRef]
- El-Maraghy, S.A.; Rizk, S.M.; El-Sawalhi, M.M. Effect of Crocin and Curcumin on Biochemical Alterations Associated with Iron Overload-in-Duced Liver Injury in Rats. Int. J. Public Health Epidemiol. 2021, 10, 001–007. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Saeidnia, M.; Fazeli, P.; Erfani, M.; Nowrouzi-Sohrabi, P.; Tamaddon, G.; Karimi, M. The Effect of Curcumin on Iron Overload in Patients with Beta-Thalassemia Intermedia. Clin. Lab. 2022, 68, 545–550. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the Mean and Variance from the Median, Range, and the Size of a Sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The Feasibility of Creating a Checklist for the Assessment of the Methodological Quality Both of Randomised and Non-Randomised Studies of Health Care Interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef]
- Fekete, J.T.; Győrffy, B. MetaAnalysisOnline.Com: Web-Based Tool for the Rapid Meta-Analysis of Clinical and Epidemiological Studies. J. Med. Internet Res. 2025, 27, e64016. [Google Scholar] [CrossRef] [PubMed]
- Dettori, J.R.; Norvell, D.C.; Chapman, J.R. Fixed-Effect vs Random-Effects Models for Meta-Analysis: 3 Points to Consider. Glob. Spine J. 2022, 12, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Saeidnia, M.; Nowrouzi-Sohrabi, P.; Erfani, M.; Fazeli, P.; Tamaddon, G.; Karimi, M. The Effect of Curcumin on Serum Copper, Zinc, and Zinc/Copper Ratio in Patients with β-Thalassemia Intermedia: A Randomized Double-Blind Clinical Trial. Ann. Hematol. 2021, 100, 627–633. [Google Scholar] [CrossRef]
- Koonyosying, P.; Tantiworawit, A.; Hantrakool, S.; Utama-Ang, N.; Cresswell, M.; Fucharoen, S.; Porter, J.B.; Srichairatanakool, S. Consumption of a Green Tea Extract-Curcumin Drink Decreases Blood Urea Nitrogen and Redox Iron in β-Thalassemia Patients. Food Funct. 2020, 11, 932–943. [Google Scholar] [CrossRef]
- Tamaddoni, A.; Nasseri, E.; Mohammadi, E.; Qujeq, D.; Zayeri, F.; Zand, H.; Mir, S.M.; Gholami, M. A Double-Blind Randomized Controlled Trial of Curcumin for Improvement in Glycemic Status, Lipid Profile and Systemic Inflammation in β-Thalassemia Major. J. Herb. Med. 2020, 21, 100324. [Google Scholar] [CrossRef]
- Nasseri, E.; Mohammadi, E.; Tamaddoni, A.; Zayeri, F.; Zand, H. Benefits of Curcumin Supplementation on Antioxidant Status in β-Thalassemia Major Patients: A Double-Blind Randomized Controlled Clinical Trial. Ann. Nutr. Metab. 2017, 71, 136–144. [Google Scholar] [CrossRef]
- Mohammadi, E.; Tamaddoni, A.; Qujeq, D.; Nasseri, E.; Zayeri, F.; Zand, H.; Gholami, M.; Mir, S.M. An Investigation of the Effects of Curcumin on Iron Overload, Hepcidin Level, and Liver Function in β-Thalassemia Major Patients: A Double-Blind Randomized Controlled Clinical Trial. Phytother. Res. 2018, 32, 1828–1835. [Google Scholar] [CrossRef]
- Panachan, J.; Chokchaichamnankit, D.; Weeraphan, C.; Srisomsap, C.; Masaratana, P.; Hatairaktham, S.; Panichkul, N.; Svasti, J.; Kalpravidh, R.W. Differentially Expressed Plasma Proteins of β Thalassemia/Hemoglobin E Patients in Response to Curcuminoids/Vitamin E Antioxidant Cocktails. Hematology 2019, 24, 300–307. [Google Scholar] [CrossRef]
- Yanpanitch, O.U.; Hatairaktham, S.; Charoensakdi, R.; Panichkul, N.; Fucharoen, S.; Srichairatanakool, S.; Siritanaratkul, N.; Kalpravidh, R.W. Treatment of β-Thalassemia/Hemoglobin e with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State. Oxid. Med. Cell Longev. 2015, 2015, 537954. [Google Scholar] [CrossRef]
- Hatairaktham, S.; Masaratana, P.; Hantaweepant, C.; Srisawat, C.; Sirivatanauksorn, V.; Siritanaratkul, N.; Panichkul, N.; Kalpravidh, R.W. Curcuminoids Supplementation Ameliorates Iron Overload, Oxidative Stress, Hypercoagulability, and Inflammation in Non-Transfusion-Dependent β-Thalassemia/Hb E Patients. Ann. Hematol. 2021, 100, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Kalpravidh, R.W.; Siritanaratkul, N.; Insain, P.; Charoensakdi, R.; Panichkul, N.; Hatairaktham, S.; Srichairatanakool, S.; Phisalaphong, C.; Rachmilewitz, E.; Fucharoen, S. Improvement in Oxidative Stress and Antioxidant Parameters in β-Thalassemia/Hb E Patients Treated with Curcuminoids. Clin. Biochem. 2010, 43, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Weeraphan, C.; Srisomsap, C.; Chokchaichamnankit, D.; Subhasitanont, P.; Hatairaktham, S.; Charoensakdi, R.; Panichkul, N.; Siritanaratkul, N.; Fucharoen, S.; Svasti, J.; et al. Role of Curcuminoids in Ameliorating Oxidative Modification in β-Thalassemia/Hb E Plasma Proteome. J. Nutr. Biochem. 2013, 24, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Eghbali, A.; Nourigheimasi, S.; Ghasemi, A.; Afzal, R.R.; Ashayeri, N.; Eghbali, A.; Khanzadeh, S.; Ghaffari, K. The Effects of Curcumin on Hepatic T2*MRI and Liver Enzymes in Patients with Β-thalassemia Major: A Double-blind Randomized Controlled Clinical Trial. Front. Pharmacol. 2023, 14, 1284326. [Google Scholar] [CrossRef]
- Fu, C.; Yang, X. Cardiac Injury Caused by Iron Overload in Thalassemia. Front. Pediatr. 2025, 13, 1514722. [Google Scholar] [CrossRef]
- Akiki, N.; Hodroj, M.H.; Bou-Fakhredin, R.; Matli, K.; Taher, A.T. Cardiovascular Complications in β-Thalassemia: Getting to the Heart of It. Thalass. Rep. 2023, 13, 38–50. [Google Scholar] [CrossRef]
- Caramelo, C.; Just, S.; Gil, P. Anemia in Heart Failure: Pathophysiology, Pathogenesis, Treatment, and Incognitae. Rev. Esp. Cardiol. 2007, 8, 848–860. [Google Scholar] [CrossRef]
- Pereira, A.A.; Sarnak, M.J. Anemia as a Risk Factor for Cardiovascular Disease. Kidney Int. 2003, 64, 32–39. [Google Scholar] [CrossRef]
- Chennupati, R.; Solga, I.; Wischmann, P.; Dahlmann, P.; Celik, F.G.; Pacht, D.; Şahin, A.; Yogathasan, V.; Hosen, M.R.; Gerdes, N.; et al. Chronic Anemia Is Associated with Systemic Endothelial Dysfunction. Front. Cardiovasc. Med. 2023, 10, 1099069. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, W.; Li, C.; Zhao, R.; Lu, H.; Song, S.; Zhou, Y.; Hu, Y.; Shi, B.; Ge, J. Hypoxia-Induced Signaling in the Cardiovascular System: Pathogenesis and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 431. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, X.; Yang, L.; Cheng, X.; Zhu, B.; Long, H. Mechanism and Effects of Extramedullary Hematopoiesis on Anti-Tumor Immunity. Cancer Biol. Med. 2023, 20, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Dai, L.; Zhao, L.X.; Zhu, X.; Cao, S.; Gao, Y.J. Intrathecal Curcumin Attenuates Pain Hypersensitivity and Decreases Spinal Neuroinflammation in Rat Model of Monoarthritis. Sci. Rep. 2015, 5, 10278. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Dev. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; Dehnavi, S.; Asadirad, A.; Xu, S.; Majeed, M.; Jamialahmadi, T.; Johnston, T.P.; Sahebkar, A. Curcumin and Chemokines: Mechanism of Action and Therapeutic Potential in Inflammatory Diseases. Inflammopharmacology 2023, 31, 1069–1093. [Google Scholar] [CrossRef]
- Kahkhaie, K.R.; Mirhosseini, A.; Aliabadi, A.; Mohammadi, A.; Mousavi, M.J.; Haftcheshmeh, S.M.; Sathyapalan, T.; Sahebkar, A. Curcumin: A Modulator of Inflammatory Signaling Pathways in the Immune System. Inflammopharmacology 2019, 27, 885–900. [Google Scholar] [CrossRef]
- Qureshi, M.; Al-Suhaimi, E.A.; Wahid, F.; Shehzad, O.; Shehzad, A. Therapeutic Potential of Curcumin for Multiple Sclerosis. Neurol. Sci. 2018, 39, 207–214. [Google Scholar] [CrossRef]
- Deniz, U.; Ercan, K.; Durmuş, H. Effects of Curcumin on Hematological Parameters in Aflatoxin B1 Applied Rats. Turk. J. Pf Sports Exerc. 2020, 22, 265–270. [Google Scholar]
- Hussain, M.A.; Hassan, B.B.; Masoud, R.E.; Al Tamany, D. Curcumin Attenuates Erythropoiesis in Recombinant Human Erythropoietin-Induced Polycythemia in Rats. Natl. J. Physiol. Pharm. Pharmacol. 2017, 7, 766–770. [Google Scholar] [CrossRef]
- Che, C.T.; Wang, Z.J.; Chow, M.S.S.; Lam, C.W.K. Herb-Herb Combination for Therapeutic Enhancement and Advancement: Theory, Practice and Future Perspectives. Molecules 2013, 18, 5125–5141. [Google Scholar] [CrossRef]
- Idowu, O.A.; Babalola, A.S.; Olukunle, J. Antagonistic Effects of Some Commonly Used Herbs on the Efficacy of Artemisinin Derivatives in the Treatment of Malaria in Experimental Mice. Bull. Natl. Res. Cent. 2020, 44, 176. [Google Scholar] [CrossRef]
- Yang, K.Y.; Lin, L.C.; Tseng, T.Y.; Wang, S.C.; Tsai, T.H. Oral Bioavailability of Curcumin in Rat and the Herbal Analysis from Curcuma Longa by LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 853, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Heger, M.; van Golen, R.F.; Broekgaarden, M.; Michel, M.C. The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancers. Pharmacol. Rev. 2014, 66, 222–307. [Google Scholar] [PubMed]
- Cas, M.D.; Ghidoni, R. Dietary Curcumin: Correlation between Bioavailability and Health Potential. Nutrients 2019, 11, 2147. [Google Scholar] [CrossRef]
- Daru, J.; Colman, K.; Stanworth, S.J.; De, B.; Salle, L.; Wood, E.M.; Pasricha, S.-R. Serum Ferritin as an Indicator of Iron Status: What Do We Need to Know? Am. J. Clin. Nutr. 2017, 106, 1634–1643. [Google Scholar] [CrossRef]
- Hsu, C.C.; Senussi, N.H.; Fertrin, K.Y.; Kowdley, K.V. Iron Overload Disorders. Hepatol. Commun. 2022, 6, 1842–1854. [Google Scholar] [CrossRef]
- Shen, J.; Fu, H.; Ding, Y.; Yuan, Z.; Xiang, Z.; Ding, M.; Huang, M.; Peng, Y.; Li, T.; Zha, K.; et al. The Role of Iron Overload and Ferroptosis in Arrhythmia Pathogenesis. IJC Heart Vasc. 2024, 52, 101414. [Google Scholar] [CrossRef]
- Shizukuda, Y.; Rosing, D.R. Iron Overload and Arrhythmias: Influence of Confounding Factors. J. Arrhythm. 2019, 35, 575–583. [Google Scholar] [CrossRef]
- Angoro, B.; Motshakeri, M.; Hemmaway, C.; Svirskis, D.; Sharma, M. Non-Transferrin Bound Iron. Clin. Chim. Acta 2022, 531, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Brissot, P.; Ropert, M.; Le Lan, C.; Loréal, O. Non-Transferrin Bound Iron: A Key Role in Iron Overload and Iron Toxicity. Biochim. Biophys. Acta Gen. Subj. 2012, 1820, 403–410. [Google Scholar] [CrossRef]
- Mccord, J.M. The Evolution of Free Radicals and Oxidative Stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Silva, A.M.N.; Rangel, M. The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022, 27, 1784. [Google Scholar] [CrossRef] [PubMed]
- Srichairatanakool, S.; Thephinlap, C.; Phisalaphong, C.; Porter, J.B.; Fucharoen, S. Curcumin Contributes to In Vitro Removal of Non-Transferrin Bound Iron by Deferiprone and Desferrioxamine in Thalassemic Plasma. Med. Chem. 2007, 3, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Porro, C.; Cianciulli, A.; Trotta, T.; Lofrumento, D.D.; Panaro, M.A. Curcumin Regulates Anti-Inflammatory Responses by JAK/STAT/SOCS Signaling Pathway in BV-2 Microglial Cells. Biology 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.; Huebbe, P.; Frank, J.; Rimbach, G.; Pallauf, K. Curcumin May Impair Iron Status When Fed to Mice for Six Months. Redox Biol. 2014, 2, 563–569. [Google Scholar] [CrossRef]
- Lainé, F.; Laviolle, B.; Bardou-Jacquet, E.; Fatih, N.; Jezequel, C.; Collet, N.; Ropert, M.; Morcet, J.; Hamon, C.; Reymann, J.M.; et al. Curcuma Decreases Serum Hepcidin Levels in Healthy Volunteers: A Placebo-Controlled, Randomized, Double-Blind, Cross-over Study. Fundam. Clin. Pharmacol. 2017, 31, 567–573. [Google Scholar] [CrossRef]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent Advances to Improve Curcumin Oral Bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Ou, G.; Ren, L.; Yang, X.; Zeng, M. Curcumin Attenuates MSU Crystal-Induced Inflammation by Inhibiting the Degradation of IκBα and Blocking Mitochondrial Damage. Arthritis Res. Ther. 2019, 21, 193. [Google Scholar] [CrossRef]
- Mazidi, M.; Karimi, E.; Meydani, M.; Ghayour-Mobarhan, M.; Ferns, G.A. Potential Effects of Curcumin on Peroxisome Proliferator-Activated Receptor-γ in Vitro and in Vivo. World J. Methodol. 2016, 6, 112–117. [Google Scholar] [CrossRef]
- Jiménez-Flores, L.M.; López-Briones, S.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Pérez-Vázquez, V. A PPARγ, NF-ΚB and AMPK-Dependent Mechanism May Be Involved in the Beneficial Effects of Curcumin in the Diabetic Db/Db Mice Liver. Molecules 2014, 19, 8289–8302. [Google Scholar] [CrossRef]
- Duan, C.; Wang, H.; Jiao, D.; Geng, Y.; Wu, Q.; Yan, H.; Li, C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO-1 Pathway. Front. Pharmacol. 2022, 13, 889226. [Google Scholar] [CrossRef]
- Soetikno, V.; Sari, F.R.; Veeraveedu, P.T.; Thandavarayan, R.A.; Harima, M.; Sukumaran, V.; Lakshmanan, A.P.; Suzuki, K.; Kawachi, H.; Watanabe, K. Curcumin Ameliorates Macrophage Infiltration by Inhibiting NF-B Activation and Proinflammatory Cytokines in Streptozotocin Induced-Diabetic Nephropathy. Nutr. Metab. 2011, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Mokgalaboni, K.; Mashaba, R.G.; Phoswa, W.N.; Lebelo, S.L. Curcumin Attenuates Hyperglycemia and Inflammation in Type 2 Diabetes Mellitus: Quantitative Analysis of Randomized Controlled Trial. Nutrients 2024, 16, 4177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Ma, C.; Qi, W.; Lv, J.; Zhang, M.; Wang, S.; Wang, R.; Lu, Y.; Qiu, W. Nrf2 Depletion Enhanced Curcumin Therapy Effect in Gastric Cancer by Inducing the Excessive Accumulation of ROS. Sci. Rep. 2024, 14, 30165. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Chen, Z.; Zhu, Q.; Guo, Z.; Sun, X.; Jiang, L.; Li, J.; Wang, N.; Yao, X.; Zhang, C.; et al. Curcumin Inhibits PAT-Induced Renal Ferroptosis via the P62/Keap1/Nrf2 Signalling Pathway. Toxicology 2024, 506, 153863. [Google Scholar] [CrossRef]
- Lin, X.; Bai, D.; Wei, Z.; Zhang, Y.; Huang, Y.; Deng, H.; Huang, X. Curcumin Attenuates Oxidative Stress in RAW264.7 Cells by Increasing the Activity of Antioxidant Enzymes and Activating the Nrf2-Keap1 Pathway. PLoS ONE 2019, 14, e0216711. [Google Scholar] [CrossRef]
Reference | Country | Study Design | Population Size | Mean Age (Years) | Gender, Male n (%) | Intervention, Periods | Summary of Findings | Methodological Quality |
---|---|---|---|---|---|---|---|---|
Kalpravidh et al., 2010 [42] | Thailand | Prospective, open-label, single-arm clinical study | Twenty-one β-thalassemia/Hb E patients | 15 | 7 (33.3) | Two capsules of 250 mg (500 mg) curcuminoids per day for 12 months | No significant difference in Hb and serum ferritin was observed between baseline and post-curcumin treatment. The NTBI and MDA decreased at six months of curcumin treatment compared to the baseline. | Moderate |
Weeraphan et al., 2013 [43] | Thailand | Prospective cohort | Ten β-thalassemia/Hb E patients | 27.9 | 5 (50) | 500 mg curcuminoids daily for 12 months. | Curcumin led to no significant difference in Hb and serum ferritin at 6 and 12 months compared to baseline. Curcumin significantly decreased NTBI, ROS, and RBCs MDA. | Excellent |
Yanpanitch et al., 2015 [40] | Thailand | Clinical trial | Twenty-five β-thalassemia/Hb E patients | 32.5 | 11 (44) | 500 mg/day curcumin, 200 mg/day N-acetylcysteine and 50 mg/kg/day deferiprone for 12 months | Curcumin levels significantly increased at 6 and 12 months, but returned to baseline levels by the 15th month. Additionally, ferritin, NTBI, ROS, and MDA decreased at 6 and 12 months compared to baseline. | Excellent |
Nasseri et al., 2017 [37] | Iran | Double-blind, randomized, controlled clinical trial | Sixty-one-β-thalassemia major patients (31 curcumin and 30 placebo) | 25.97 | 14 (45.2) | Two capsules of 500 mg (1000 mg) curcumin daily for 12 weeks (≈3 months). | Curcumin post-treatment led to no significant difference in Hb. Curcumin showed no significant difference between the serum iron and ferritin groups before and after treatment. | Good |
Mohammadi et al., 2018 [38] | Iran | Double-blind randomized controlled clinical trial | Thirty-one β-thalassemia major patients on curcumin and 30 on placebo | 25.97 | 14 (45.2) | 500 mg curcumin capsules twice daily for 12 weeks (≈3 months). | Curcumin post-treatment led to no significant difference in Hb. Curcumin led to no significant difference in ferritin. The NTBI significantly decreased post-treatment compared to the baseline. | Good |
Panachan et al., 2019 [39] | Thailand | Interventional longitudinal study | Ten β-thalassemia/Hb E patients | 35.0 | 5 (50) | 500 mg curcumin per day for 12 months. | Significant increase in Hb at six and twelve months of curcumin compared to baseline. A decrease in ferritin, NTBI, ROS, and MDA was observed compared to baseline. | Excellent |
Tamaddoni et al., 2020 [36] | Iran | Double-blind randomized controlled clinical trial | Sixty-eight β- thalassemia major patients | 25.97 | 14 (45.2) | Two capsules of 500 mg (1000 mg) curcumin daily for 12 weeks (3 months). | Curcumin post-treatment led to no significant difference in Hb. Curcumin showed no difference in serum iron levels between the groups. | Excellent |
Koonyosying (A) et al., 2020 [35] | Thailand | Prospective controlled intervention | Twelve β-thalassemia patients | 28.3 | 4 (33.3) | Green tea extract (GTE)-curcumin (17.26 mg epigallocatechin-3-gallate (EGCG)) daily for 60 days (≈2 months). | Curcumin post-treatment led to no significant difference in Hb or NTBI. | Good |
Koonyosying (B) et al., 2020 [35] | Thailand | Prospective controlled intervention | Eleven β-thalassemia patients | 26.1 | 5 (45.5) | Green tea extract (GTE)-curcumin (35.5 mg EGCG) daily for 60 days (≈2 months). | Curcumin post-treatment led to no significant difference in Hb. Curcumin significantly decreased NTBI without a difference in serum iron. | Good |
Saeidnia et al., 2021 [34] | Iran | Randomized double-blind clinical trial | Thirty patients with β-thalassemia intermedia | 29.8 | 30 (100) | 500 mg curcumin thrice a day for three months. | Curcumin post-treatment significantly decreased serum ferritin compared to baseline and placebo. | Excellent |
Hatairaktham (A) et al., 2021 [41] | Thailand | Randomized clinical trial | Fourteen patients with β-thalassemia/Hb E | 36 | 7 (50) | 500 mg of curcuminoids per day for 24. weeks (≈6 months). | Curcumin post-treatment significantly reduced NTBI, ROS, and RBC MDA. No difference in Hb, iron, and ferritin was observed. | Good |
Hatairaktham (B) et al., 2021 [41] | Thailand | Randomized clinical trial | Fifteen patients with β-thalassemia/Hb E | 34 | 7 (47) | 1000 mg of curcuminoids per day for 24 weeks (≈6 months). | Curcumin post-treatment significantly reduced serum iron, NTBI, ROS, and RBC MDA. No difference in Hb and ferritin was observed. | Good |
Saeidnia et al., 2022 [28] | Iran | Randomized, controlled, double-blind clinical trial | Thirty male patients with β-thalassemia intermedia (15 on curcumin and 13 on placebo) | 28.06 | 30 (100) | 500 mg curcumin thrice a day for three months. | Serum iron and ferritin significantly decreased in the curcumin group compared to the placebo group. | Moderate |
Eghbali et al., 2023 [44] | Iran | Double-blind, randomized, controlled clinical trial | One hundred fifty-eight patients with β-thalassemia major | 14.2 | 89 (56.3) | 500 mg oral curcumin- capsules twice daily for six months | The serum ferritin levels remained unchanged throughout curcumin treatment. | Excellent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokgalaboni, K.; Phoswa, W.N.; Modjadji, P.; Lebelo, S.L. Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study. Thalass. Rep. 2025, 15, 7. https://doi.org/10.3390/thalassrep15030007
Mokgalaboni K, Phoswa WN, Modjadji P, Lebelo SL. Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study. Thalassemia Reports. 2025; 15(3):7. https://doi.org/10.3390/thalassrep15030007
Chicago/Turabian StyleMokgalaboni, Kabelo, Wendy N. Phoswa, Perpetua Modjadji, and Sogolo L. Lebelo. 2025. "Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study" Thalassemia Reports 15, no. 3: 7. https://doi.org/10.3390/thalassrep15030007
APA StyleMokgalaboni, K., Phoswa, W. N., Modjadji, P., & Lebelo, S. L. (2025). Curcumin Therapy Reduces Iron Overload and Oxidative Stress in Beta-Thalassemia: Findings from a Meta-Analytic Study. Thalassemia Reports, 15(3), 7. https://doi.org/10.3390/thalassrep15030007