Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,274)

Search Parameters:
Keywords = ionic conductivities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4460 KiB  
Article
Interstitial Ag+ Engineering Enables Superior Resistive Switching in Quasi-2D Halide Perovskites
by Haiyang Qin, Zijia Wang, Qinrao Li, Jianxin Lin, Dongzhu Lu, Yicong Huang, Wenke Gao, Huachuan Wang and Chenghao Bi
Nanomaterials 2025, 15(16), 1267; https://doi.org/10.3390/nano15161267 (registering DOI) - 16 Aug 2025
Abstract
Halide perovskite-based memristors are promising neuromorphic devices due to their unique ion migration and interface tunability, yet their conduction mechanisms remain unclear, causing stability and performance issues. Here, we engineer interstitial Ag+ ions within a quasi-two-dimensional (quasi-2D) halide perovskite ((C6H [...] Read more.
Halide perovskite-based memristors are promising neuromorphic devices due to their unique ion migration and interface tunability, yet their conduction mechanisms remain unclear, causing stability and performance issues. Here, we engineer interstitial Ag+ ions within a quasi-two-dimensional (quasi-2D) halide perovskite ((C6H5C2H4NH3)2Csn−1PbnI3n+1) to enhance device stability and controllability. The introduced Ag+ ions occupy organic interlayers, forming thermodynamically stable structures and introducing deep-level energy states without structural distortion, which do not act as non-radiative recombination centers, but instead serve as efficient charge trapping centers that stabilize intermediate resistance states and facilitate controlled filament evolution during resistive switching. This modification also leads to enhanced electron transparency near the Fermi level, contributing to improved charge transport dynamics and device performance. Under external electric fields, these Ag+ ions act as mobile ionic species, facilitating controlled filament formation and stable resistive switching. The resulting devices demonstrate exceptional performance, featuring an ultrahigh on/off ratio (∼108) and low operating voltages (∼0.31 V), surpassing existing benchmarks. Our findings highlight the dual role of Ag+ ions in structural stabilization and conduction modulation, providing a robust approach for high-performance perovskite memristor engineering. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

16 pages, 7479 KiB  
Article
Anti-Swelling Dual-Network Zwitterionic Conductive Hydrogels for Flexible Human Activity Sensing
by Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Qianqian Liu and Xin Zhao
Polymers 2025, 17(16), 2230; https://doi.org/10.3390/polym17162230 (registering DOI) - 16 Aug 2025
Abstract
Conventional conductive hydrogels are susceptible to swelling in aquatic environments; which compromises their mechanical integrity; a limitation that poses a potential challenge to their long-term stability and application. In this study, a zwitterionic ion-conductive hydrogel was fabricated from polyvinyl alcohol (PVA), acrylic acid [...] Read more.
Conventional conductive hydrogels are susceptible to swelling in aquatic environments; which compromises their mechanical integrity; a limitation that poses a potential challenge to their long-term stability and application. In this study, a zwitterionic ion-conductive hydrogel was fabricated from polyvinyl alcohol (PVA), acrylic acid (AA), and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SMBA), forming a dual-network structure. A copolymer of zwitterionic SBMA and AA formed the first network, and PVA formed the second network by repeated freeze–thawing. The equilibrium state of zwitterionic SBMA was modulated by AA to protonate the SBMA, which resulted in the conversion of -SO3 to -SO3H; thus, hydrogels had the anti-swelling property driven by electrostatic repulsion. In addition, the prepared hydrogels possessed excellent mechanical properties (tensile strength of 0.76 MPa, elongation at break of 322%, and compressive strength of 0.97 MPa at 75% compressive strain) and remarkable anti-swelling properties (80% swelling after 120 h of immersion). Owing to the zwitterionic nature of SBMA, the hydrogel also showed inherent antimicrobial properties and high electrical conductivity, which could be capable of monitoring human movement and physiological signals. This work provides a facile strategy for designing hydrogels with remarkable mechanical properties and anti-swelling characteristics, expanding the application environment of hydrogels in flexible sensing Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

20 pages, 1336 KiB  
Article
Modification of the Zeolite Heulandite with N-(3-Triethoxysilylpropyl)guanidines Offers an Effective Approach to Enhancing Its Adsorption Capacity for Heavy Metal Ions
by Sergey N. Adamovich, Arailym M. Nalibayeva, Yerlan N. Abdikalykov, Mirgul Zh. Turmukhanova, Elena G. Filatova, Alexandr D. Chugunov, Igor A. Ushakov, Elizaveta N. Oborina, Igor B. Rozentsveig and Francis Verpoort
Int. J. Mol. Sci. 2025, 26(16), 7903; https://doi.org/10.3390/ijms26167903 - 15 Aug 2025
Abstract
Zeolites are widely used as adsorbents due to their porous structure and ion-exchange capabilities. However, their adsorption efficiency for heavy metal ions remains limited. To enhance their performance, the natural zeolite heulandite (Z) was functionalized with guanidine derivatives: N-[3-(triethoxysilyl)propyl]guanidine (1 [...] Read more.
Zeolites are widely used as adsorbents due to their porous structure and ion-exchange capabilities. However, their adsorption efficiency for heavy metal ions remains limited. To enhance their performance, the natural zeolite heulandite (Z) was functionalized with guanidine derivatives: N-[3-(triethoxysilyl)propyl]guanidine (1), -aminoguanidine (2), and -acetyl-guanidine (3). The resulting materials (Z1Z3) were evaluated for their ability to adsorb Co2+, Cu2+, and Ni2+ from aqueous solutions. The composition and structure of silanes 13 were confirmed by FT-IR and 1H and 13C NMR spectroscopy methods. The modified zeolites were characterized using nitrogen adsorption/desorption (BET) and SEM-EDX to confirm their functionalization and assess the structural changes. A TGA-DSC was used to determine the thermal stability. The adsorption experiments were conducted in single and multi-ionic aqueous solutions at pH 5.0 to evaluate metal uptake. Functionalization significantly improved the adsorption efficiency, with Z1Z3 showing a three to six times greater adsorption capacity than the unmodified zeolite. The adsorption efficiency followed the trend Cu2+ > Co2+ > Ni2+, primarily due to chelate complex formation between the metal ions and guanidine groups. The SEM-EDX confirmed the co-localization of nitrogen atoms and metal ions. The functional materials (Z1Z3) exhibited strong potential as adsorbents for noble, heavy, and toxic metal ions, and could find applications in industry, agriculture, ecology, medicine, chemistry, wastewater treatment, soil remediation, chemisorption, filtration, chromatography, etc. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
15 pages, 1371 KiB  
Article
Protein Adsorption on a Multimodal Cation Exchanger: Effect of pH, Salt Type and Concentration, and Elution Conditions
by Jana Krázel Adamíková, Monika Antošová, Tomáš Kurák and Milan Polakovič
Molecules 2025, 30(16), 3389; https://doi.org/10.3390/molecules30163389 - 15 Aug 2025
Abstract
This study investigates key factors affecting the adsorption behavior of proteins on the multimodal chromatographic adsorbent Capto MMC, aiming to enhance selective protein separation strategies. Batch equilibrium experiments were conducted using six model proteins to explore the combined effects of pH, ionic strength, [...] Read more.
This study investigates key factors affecting the adsorption behavior of proteins on the multimodal chromatographic adsorbent Capto MMC, aiming to enhance selective protein separation strategies. Batch equilibrium experiments were conducted using six model proteins to explore the combined effects of pH, ionic strength, and the nature of salts (kosmotropic and chaotropic) on protein–ligand interactions. Given that the Capto MMC ligand supports multiple interaction modes beyond cation exchange, particular focus was placed on acidic proteins (pI 4–5), which exhibited binding even at moderately elevated pH values—conditions ineffective for conventional cation exchangers. Hydrophobic interactions were identified as critical for stable binding of proteins like BSA and fetuin, while hydrophilic proteins such as ovalbumin showed minimal adsorption. Chromatographic column experiments were performed to evaluate elution performance under various buffer conditions, revealing that prolonged adsorption phases can reduce recovery yields for proteins with less stable tertiary structures. The findings highlight how salt type, pH, and protein hydrophobicity interplay to modulate multimodal binding mechanisms, providing practical insights for the design of tailored purification protocols. Full article
(This article belongs to the Special Issue Recent Research Progress of Novel Ion Adsorbents)
Show Figures

Figure 1

16 pages, 4050 KiB  
Article
Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy
by Qishuai Liang, Zhongchen Xia, Jiang Ye, Chuan Zhou, Yufeng Wu, Jie Li, Xuhui Cui, Honglin Jian and Xilin Wang
Energies 2025, 18(16), 4353; https://doi.org/10.3390/en18164353 - 15 Aug 2025
Abstract
The electric energy metering box serves as a crucial node in power grid operations, offering essential protection for key components in the distribution network, such as smart meters, data acquisition terminals, and circuit breakers, thereby ensuring their safe and reliable operation. However, the [...] Read more.
The electric energy metering box serves as a crucial node in power grid operations, offering essential protection for key components in the distribution network, such as smart meters, data acquisition terminals, and circuit breakers, thereby ensuring their safe and reliable operation. However, the non-metallic housings of these boxes are susceptible to aging under environmental stress, which can result in diminished flame-retardant properties and an increased risk of fire. Currently, there is a lack of rapid and accurate methods for assessing the fire resistance of non-metallic metering box enclosures. In this study, laser-induced breakdown spectroscopy (LIBS), which enables fast, multi-element, and non-contact analysis, was utilized to develop an effective assessment approach. Thermal aging experiments were conducted to systematically investigate the degradation patterns and mechanisms underlying the reduced flame-retardant performance of sheet molding compound (SMC), a representative non-metallic material used in metering box enclosures. The results showed that the intensity ratio of aluminum ionic spectral lines is highly correlated with the flame-retardant grade, serving as an effective performance indicator. On this basis, a one-dimensional convolutional neural network (1D-CNN) model was developed utilizing LIBS data, which achieved over 92% prediction accuracy for different flame-retardant grades on the test set and demonstrated high recognition accuracy for previously unseen samples. This method offers significant potential for rapid, on-site evaluation of flame-retardant grades of non-metallic electric energy metering boxes, thereby supporting the safe and reliable operation of power systems. Full article
Show Figures

Figure 1

16 pages, 1249 KiB  
Article
Selective Recovery of Molybdenum over Nickel and Cobalt from Simulated Secondary Sources Using Bifunctional Ionic Liquid [TOA][Cy272]
by Roshanak Adavodi, Adriana Zuffranieri, Pietro Romano, Soroush Rahmati and Francesco Vegliò
Materials 2025, 18(16), 3826; https://doi.org/10.3390/ma18163826 - 15 Aug 2025
Abstract
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine [...] Read more.
The growing demand for ultra-low sulfur fuels has intensified interest in recovering strategic metals from the large volumes of hazardous hydrodesulfurization catalysts that are discarded yearly. This work evaluates a task-specific ionic liquid, tri-n-octylammonium bis(2-,4-,4-trimethylpentyl)-phosphinate [TOA][Cy272], synthesized by the acid–base neutralization of tri-n-octylamine and Cyanex 272. FT-IR spectroscopy confirmed complete proton transfer and the formation of a stable ion pair. Liquid–liquid extraction tests were conducted with synthetic Co–Ni–Mo solutions (0.1–2.5 g/L each), a varying ionic liquid concentration (10–50 vol%), pH (1.5–12.5), and organic/aqueous ratio (1:1). At 35 vol% of ionic liquid and pH 2, the extraction efficiency for Mo reached 94%, with separation factors βMo/Ni = 12 and βMo/Co = 7.5; Co and Ni uptake remained ≤15%. Selectivity decreased at higher metal loadings because of ionic liquid saturation, and an excessive ionic liquid amount (>35%) offered no benefit, owing to viscosity-limited mass transfer. Stripping studies showed that 1 M NH4OH stripped about 95% Mo, while leaving Co and Ni in the organic phase; conversely, 2 M HCl removed 92–98% of Co and Ni, but <5% Mo. Overall Mo recovery of about 95% was obtained by a two-step extraction/stripping scheme. The results demonstrate that [TOA][Cy272] combines the cation exchange capability of quaternary ammonium ILs with the strong chelating affinity of organophosphinic acids, delivering rapid, selective, and regenerable separation of Mo from mixed-metal leachates and wastewater streams. Full article
(This article belongs to the Special Issue Recycling and Resource Utilization of Waste)
Show Figures

Figure 1

13 pages, 1062 KiB  
Article
Can the DSE Fungus Exserohilum rostratum Mitigate the Effect of Salinity on the Grass Chloris gayana?
by Natalia Elizabeth Tobar Gomez, Marcos Ameijeiras, Hernan E. Benitez, Federico N. Spagnoletti, Viviana M. Chiocchio and Raúl S. Lavado
Plants 2025, 14(16), 2537; https://doi.org/10.3390/plants14162537 - 15 Aug 2025
Abstract
Dark septate endophytes (DSEs) are commonly found in saline environments, such as the Flooding Pampas (Argentina), where the forage grass Chloris gayana has been introduced. This study evaluated the effect of salinity on the DSE fungus Exserohilum rostratum, isolated from C. gayana [...] Read more.
Dark septate endophytes (DSEs) are commonly found in saline environments, such as the Flooding Pampas (Argentina), where the forage grass Chloris gayana has been introduced. This study evaluated the effect of salinity on the DSE fungus Exserohilum rostratum, isolated from C. gayana, and its contribution to the grass’s salinity tolerance. Two greenhouse experiments were conducted under three salinity levels (0, 40, and 80 meq Na·L−1), with and without fungal inoculation. Fungal growth, root colonization, functional traits, plant biomass, chemical composition, and salinity tolerance indices were assessed. The fungus tolerated salinity and colonized roots, showing qualitative evidence of enzyme production and phosphate solubilization. In both experiments, shoot and root biomass decreased with increasing salinity. Inoculation significantly enhanced shoot biomass only under non-saline conditions in the first experiment, whereas in the second experiment no inoculation effect was observed on shoots. For roots, no effect of inoculation occurred in the first experiment, but a positive interaction between salinity and inoculation was recorded in the second experiment, where moderate salinity increased root biomass in inoculated plants. The K/Na and Ca/Na ratios decreased under salinity regardless of inoculation, indicating limited influence on ionic balance. These results suggest that although E. rostratum tolerates salinity and expresses functional traits, its ability to enhance plant performance under stress is context-dependent and restricted to specific conditions. Full article
Show Figures

Figure 1

25 pages, 10624 KiB  
Review
Advances in Synthesis and Applications of Bismuth Vanadate-Based Structures
by Dragana Marinković, Giancarlo C. Righini and Maurizio Ferrari
Inorganics 2025, 13(8), 268; https://doi.org/10.3390/inorganics13080268 - 14 Aug 2025
Viewed by 57
Abstract
In recent years, researchers have made great efforts to develop effective semiconductor photocatalysts to harness the visible spectrum of sunlight in photocatalytic applications. Bismuth vanadate, BiVO4, has emerged as one of the most promising candidates for photocatalytic applications among the few [...] Read more.
In recent years, researchers have made great efforts to develop effective semiconductor photocatalysts to harness the visible spectrum of sunlight in photocatalytic applications. Bismuth vanadate, BiVO4, has emerged as one of the most promising candidates for photocatalytic applications among the few non-titania-based visible-light-driven semiconductor photocatalysts. BiVO4-based structures are intensively studied due to their exceptional ionic conductivity, photocatalytic behavior under ultra-violet and visible light, dielectric properties, ferroelastic and paraelastic phase transitions, and strong pigmentation. BiVO4 occurs in nature in three crystalline structures: orthorhombic pucherite, tetragonal dreyerite (tz), and monoclinic clinobisvanite (ms). All three crystal structures of BiVO4 are n-type semiconductors with corresponding energy gap values of 2.34, 2.40, and 2.90 eV, respectively. Different methods of synthesis have been reported for the preparation of BiVO4 structures of varying morphologies and sizes. The morphology of BiVO4 is strongly influenced by the preparation method and reaction parameters. A comprehensive systematic study of developments, preparation methods, structure, properties, and advances in different applications over the past decades in research on BiVO4-based structures will be described. Finally, the current challenges and future outlook of BiVO4-based structures will be highlighted, in the hope of contributing to guidelines for future applications. Full article
Show Figures

Figure 1

20 pages, 777 KiB  
Review
Probiotic-Based Cleaning Solutions: From Research Hypothesis to Infection Control Applications
by Matthew E. Falagas, Dimitrios S. Kontogiannis, Maria Sargianou, Evanthia M. Falaga, Maria Chatzimichali and Charalambos Michaeloudes
Biology 2025, 14(8), 1043; https://doi.org/10.3390/biology14081043 - 13 Aug 2025
Viewed by 169
Abstract
Novel infection control practices are necessary to reduce the incidence of healthcare-associated infections (HAIs). Since 2007, probiotic-based cleaning solutions have been proposed as an alternative to traditional methods using disinfectants and detergents in healthcare settings, including hospitals. We conducted a comprehensive search across [...] Read more.
Novel infection control practices are necessary to reduce the incidence of healthcare-associated infections (HAIs). Since 2007, probiotic-based cleaning solutions have been proposed as an alternative to traditional methods using disinfectants and detergents in healthcare settings, including hospitals. We conducted a comprehensive search across Google Scholar, PubMed, Scopus, and Web of Science resources. Studies that assessed the reduction in pathogens on surfaces and the emergence of HAIs after the use of probiotic-based cleaning solutions were eligible for evaluation. A total of 16 studies (13 in clinical settings and 3 on experimental surfaces) were included. The Staphylococcus species were most commonly identified before and after the use of probiotic-based cleaning solutions. All studies showed numerically lower pathogen counts and fewer HAIs after using probiotic-based cleaning solutions compared to disinfectants and detergents. Three studies indicated a reduction in antimicrobial resistance genes after use of probiotic-based cleaning solutions. One of these showed statistically significant differences compared to traditional disinfectants (alcohol, amines, and quaternary ammonium compounds) and detergents (non-ionic and anionic surfactants). The results of the included studies suggest the consideration of probiotic-based cleaning solutions for infection control in healthcare systems. However, given the novelty of this approach, further studies are needed to verify the evaluated findings and investigate the short- and long-term effectiveness, and safety of probiotic-based cleaning solutions on infection control practices in healthcare settings. Full article
Show Figures

Figure 1

15 pages, 2952 KiB  
Article
Electrochemical Properties and Electromechanical Analysis of a Stacked Polyvinyl Chloride (PVC) Gel Actuator
by Kinji Asaka, Zicai Zhu and Minoru Hashimoto
Actuators 2025, 14(8), 404; https://doi.org/10.3390/act14080404 - 13 Aug 2025
Viewed by 116
Abstract
We investigated the electrochemical properties of and conducted an electromechanical analysis on a stacked polyvinyl chloride (PVC) gel actuator, comprising a PVC gel plasticized with dibutyl adipate (DBA) sandwiched between a metal mesh and a metal disk electrode. In this study, we examined [...] Read more.
We investigated the electrochemical properties of and conducted an electromechanical analysis on a stacked polyvinyl chloride (PVC) gel actuator, comprising a PVC gel plasticized with dibutyl adipate (DBA) sandwiched between a metal mesh and a metal disk electrode. In this study, we examined the electrochemical impedance, displacement, and electric current responses to square-wave voltage inputs. The linear motion of PVC gel actuators with and without ionic liquid (IL) additives was analyzed in relation to the mesh size and metal composition of the mesh electrode. The displacement increased with decreasing mesh numbers, indicating that displacement increases with increasing wire diameter and space length. The linear motion of the stacked PVC gel actuators with and without IL additives depended on the metal species of the mesh electrodes. The electrochemical impedance of the stacked PVC gel actuators under DC voltage application was analyzed with and without the IL. Based on the electromechanical and electrochemical results, a deformation model was developed to describe the linear motion of stacked PVC gel actuators in response to the applied voltage. The model attributed this motion to the deformation induced by Maxwell stress in the solvent-rich layer, successfully accounting for the experimental observations. Full article
(This article belongs to the Special Issue Actuators in 2025)
Show Figures

Figure 1

18 pages, 1661 KiB  
Article
Field-Based Assessment of Soil Salinity and Alkalinity Stress on Growth and Biochemical Responses in Eggplant (Solanum melongena L.)
by Eren Özden, Faruk Tohumcu and Serdar Sarı
Agronomy 2025, 15(8), 1945; https://doi.org/10.3390/agronomy15081945 - 12 Aug 2025
Viewed by 213
Abstract
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable [...] Read more.
Soil salinity and sodicity are escalating global threats to agricultural productivity, severely limiting crop yield and quality. In the Igdir Plain of Türkiye, high summer temperatures, minimal precipitation, and a shallow groundwater table have intensified salinity-related challenges, currently affecting one-third of the arable land. Despite the substantial impact of salinity stress on eggplant (Solanum melongena L.) production, studies addressing plant tolerance mechanisms under real field conditions remain limited. In this study, eggplant was cultivated in eight distinct soil classes under open-field conditions to evaluate the effects of soil salinity and saline-alkalinity on morphological, physiological, and biochemical traits. Increasing soil exchangeable sodium percentage (ESP) and electrical conductivity (ECe) levels significantly suppressed plant height, root length, stem diameter, and leaf area, along with over 90% reductions in shoot and root biomass. Salinity impaired the uptake of essential nutrients (Ca, K, P, and Fe), while promoting toxic Na+ accumulation in leaves. This ionic imbalance induced oxidative stress, as indicated by elevated malondialdehyde (MDA), hydrogen peroxide (H2O2), and antioxidant enzyme activities (SOD, CAT, APX), all of which were strongly correlated with proline accumulation. The results highlight a coordinated plant response under salinity stress but also reveal the insufficiency of natural defense mechanisms under high salinity levels. Unless supported by external interventions to improve stress resilience and ensure productivity, growing eggplant in saline–alkaline soils should be avoided. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 3264 KiB  
Article
Urban Geochemical Contamination of Highland Peat Wetlands of Very High Ecological and First Nations Cultural Value
by Ian A. Wright, Holly Nettle, Uncle David King, Michael J. M. Franklin and Amy-Marie Gilpin
Water 2025, 17(16), 2385; https://doi.org/10.3390/w17162385 - 12 Aug 2025
Viewed by 193
Abstract
Temperate Highland Peat Swamps on Sandstone (THPSS) are wetlands in the Blue Mountains, south-eastern Australia. The wetlands have legislative protection as endangered ecological communities. They have long-standing cultural significance for Gundungurra Traditional Custodians. Previous studies document their degradation by urban development and [...] Read more.
Temperate Highland Peat Swamps on Sandstone (THPSS) are wetlands in the Blue Mountains, south-eastern Australia. The wetlands have legislative protection as endangered ecological communities. They have long-standing cultural significance for Gundungurra Traditional Custodians. Previous studies document their degradation by urban development and vulnerability to extreme weather. Water quality in our study was assessed at wetlands in protected areas and compared with others exposed to urban development. We derived water quality guidelines that are intended to help future water quality assessment at THPSS and, in particular, to detect any impact from urban development on these wetland systems. Water quality in urban swamps was consistent with the freshwater salinisation syndrome despite all the swamps having relatively low electrical conductance (<140 µS cm−1). Urban swamp water had salinity (mean 87.3 µS cm−1) three times that of non-urban swamps (mean 28 µS cm−1). The ionic composition of urban swamp water was dominated by calcium and bicarbonate, consistent with urban alkalisation syndrome. Our guidelines instead recommend limits for pH, salinity, turbidity, dissolved oxygen, and metals detected in greater concentrations that were found in urban swamps (iron, manganese, barium, and strontium). Our results support the theory that the dissolution of urban concrete materials is a degradation process that contributes to the impairment of urban swamp water quality. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 3921 KiB  
Article
Ion-Exchange Membrane Permselectivity: Experimental Evaluation of Concentration Dependence, Ionic Species Selectivity, and Temperature Response
by Junyi Lv, Xiaojing Zhu, Xi Wu and Hongfei Guan
Separations 2025, 12(8), 207; https://doi.org/10.3390/separations12080207 - 9 Aug 2025
Viewed by 92
Abstract
Ion-exchange membranes (IEMs) are widely used in reverse-electrodialysis (RED) technology, which can collect the salinity gradient energy between concentrated and diluted solutions and convert it into electromotive force (EMF) to drive power generation and hydrogen production. Recent studies have indicated that the permselectivity [...] Read more.
Ion-exchange membranes (IEMs) are widely used in reverse-electrodialysis (RED) technology, which can collect the salinity gradient energy between concentrated and diluted solutions and convert it into electromotive force (EMF) to drive power generation and hydrogen production. Recent studies have indicated that the permselectivity of IEMs is vital to determining the performance of an RED stack. In this study, the influences of solution concentration, ion species, and solution temperature on the permselectivity of IEMs were experimentally investigated. The results demonstrate that the permselectivity of IEMs decreases with increasing concentrations of KAc, LiCl, and LiBr solutions for both concentrated solutions (3–5 M) and dilute solutions (0.02–0.2 M). Further, through comparing the LiBr and KBr solutions as well as the LiCl, KCl, and NH4Cl solutions, respectively, K+ demonstrates a higher permselectivity than Li+, and both of which are smaller than NH4+ under the same cation and concentration conditions. Moreover, another test was conducted using three potassium salt solutions with different anions, and the experimental permselectivity order is Ac > Br > Cl. A slight increase in solution temperature enhances the permselectivity of IEMs due to the increase in ionic mobility. However, an excessive temperature is detrimental to membrane stability and thus reduces permselectivity. It can be seen that ions with low hydration energy, a small hydration radius, and high mobility show a higher permselectivity. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

35 pages, 3497 KiB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 648
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Figure 1

19 pages, 4563 KiB  
Article
Designing Imidazolium-Mediated Polymer Electrolytes for Lithium-Ion Batteries Using Machine-Learning Approaches: An Insight into Ionene Materials
by Ghazal Piroozi and Irshad Kammakakam
Polymers 2025, 17(15), 2148; https://doi.org/10.3390/polym17152148 - 6 Aug 2025
Viewed by 417
Abstract
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery [...] Read more.
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery geometries, enhanced safety features, greater thermal stability, and effectiveness in reducing dendrite growth on the anode. However, their relatively low ionic conductivity compared to liquid electrolytes has limited their application in high-performance devices. This limitation has led to recent studies revolving around the development of poly(ionic liquids) (PILs), particularly imidazolium-mediated polymer backbones as novel electrolyte materials, which can increase the conductivity with fine-tuning structural benefits, while maintaining the advantages of both solid and gel electrolytes. In this study, a curated dataset of 120 data points representing eight different polymers was used to predict ionic conductivity in imidazolium-based PILs as well as the emerging ionene substructures. For this purpose, four ML models: CatBoost, Random Forest, XGBoost, and LightGBM were employed by incorporating chemical structure and temperature as the models’ inputs. The best-performing model was further employed to estimate the conductivity of novel ionenes, offering insights into the potential of advanced polymer architectures for next-generation LIB electrolytes. This approach provides a cost-effective and intelligent pathway to accelerate the design of high-performance electrolyte materials. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Figure 1

Back to TopTop