Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Vertical Burning Test for Flame-Retardant Rating
2.3. LIBS Experimental Platform
3. Flame-Retardant Performance Degradation Mechanism of SMC and Characterization Based on LIBS
3.1. Flame-Retardant Performance Degradation Mechanism of SMC at High Temperatures
3.2. Flame-Retardant Rating Characterization Using LIBS Spectral Data
4. Flame-Retardant Grade Prediction Based on Neural Networks
4.1. Introduction to One-Dimensional Convolutional Neural Networks
4.2. Training and Testing of the Neural Network Model
4.3. Prediction Study of Flame-Retardant Performance for Unknown Samples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shinohara, H. Approach on practical applications of phenolic sheet molding compound (SMC). J. Netw. Polym. 2011, 32, 43–48. [Google Scholar]
- Chen, Z.; Li, Y.; Shao, Y.; Huang, T.; Xu, H.; Li, Y.; Chen, W.; Zeng, D.; Avery, K.; Kang, H.; et al. A comparative study of two RVE modelling methods for chopped carbon fiber SMC. In Proceedings of the WCX™ 17: SAE World Congress Experience, Detroit, MI, USA, 4–6 April 2017. [Google Scholar]
- Ebrahimian, F.; Rodriguez, S.; Di Lorenzo, D.; Chinesta, F. Optimization of precharge placement in sheet molding compound process. Int. J. Mater. Form. 2024, 17, 34. [Google Scholar] [CrossRef]
- Shinoura, Y.; Ishikawa, T.; Kobayashi, T.; Miyauchi, T.; Sugawara, H. Process Simulation and Mechanical Testing of Sheet Molding Compound Products. In Proceedings of the 37th International Conference of the Polymer Processing Society (PPS-37), Fukuoka, Japan, 11–15 April 2022. [Google Scholar]
- Feng, X.; Guo, F.; Luo, L.; Wang, Y.; Long, Y.; Zhao, X.; Pan, F.; Guo, L.; Zeng, Q.; Feng, J.; et al. Engineering Design of Feedstock Powder and Relevant Thermal–Mechanical Performance of Thermal/Environmental Barrier Coatings. J. Adv. Ceram. 2025, 14, 9221033. [Google Scholar] [CrossRef]
- Guo, L.-B.; Zhang, D.; Sun, L.-X.; Yao, S.-C.; Zhang, L.; Wang, Z.-Z.; Wang, Q.-Q.; Ding, H.-B.; Lu, Y.; Hou, Z.-Y.; et al. Development in the Application of Laser-Induced Breakdown Spectroscopy in Recent Years: A Review. Front. Phys. 2021, 16, 22500. [Google Scholar] [CrossRef]
- Qiu, Y.; Shi, M.; Guo, X.; Li, J.; Wu, J.; Zhou, Y.; Sun, H.; Hang, Y.; Li, X.; Li, Y. Sensitivity improvement in the measurement of minor components by spatial confinement in fiber-optic laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2023, 209, 106800. [Google Scholar] [CrossRef]
- Yao, S.; Yu, Z.; Hou, Z.; Guo, L.; Zhang, L.; Ding, H.; Lu, Y.; Wang, Q.; Wang, Z. Development of laser-induced breakdown spectroscopy based spectral tandem technology: A topical review. TrAC Trends Anal. Chem. 2024, 177, 117795. [Google Scholar] [CrossRef]
- Liu, X.; Chen, M.; Zhao, J.; Zhang, H.; Peng, Y.; Wang, Q. Unique Composite Architecture of Phosphor-in-Glass Film Coated on Different Heat-Conducting Substrates for High-Brightness Laser Lighting. J. Adv. Ceram. 2025, 14, 9221027. [Google Scholar] [CrossRef]
- Tognoni, E.; Palleschi, V. Calibration-free laser-induced breakdown spectroscopy: A critical review. Spectrochim. Acta B At. Spectrosc. 2019, 158, 105679. [Google Scholar]
- Lopes, T.; Cavaco, R.; Capela, D.; Dias, F.; Teixeira, J.; Monteiro, C.S.; Lima, A.; Guimarães, D.; Jorge, P.A.S.; Silva, N.A. Improving LIBS-Based Mineral Identification with Raman Imaging and Spectral Knowledge Distillation. Talanta 2025, 283, 127110. [Google Scholar] [CrossRef]
- Jin, G.; Liu, J.; Liu, C.; Zhang, C. Evaluating Chemical Weathering Degree of Basalts Using Laser-Induced Breakdown Spectroscopy (LIBS) and Its Implications for Mars. Spectrochim. Acta Part B At. Spectrosc. 2025, 231, 107257. [Google Scholar] [CrossRef]
- Fortes, F.J.; Laserna, J.J. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim. Acta B At. Spectrosc. 2010, 65, 975–990. [Google Scholar] [CrossRef]
- Fu, G.; Hu, W.; Xie, W.; Yao, X.; Xu, J.; Yang, P.; Yao, M. Quantitative analysis of Cd based on the stress effect of minerals in rice by laser-induced breakdown spectroscopy. Anal. Methods 2023, 15, 5867–5874. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Xiong, S.; Yang, N.; Wang, Y.; Wang, Z.; Luo, M.; Yao, C.; Deguchi, Y. Applications of laser-induced breakdown spectroscopy in industrial measurement and monitoring: Multi-technology combination. Appl. Spectrosc. Rev. 2025, 60, 243–291. [Google Scholar] [CrossRef]
- Tawfik, W. Recent advances in the investigation of textiles using laser-induced breakdown spectroscopy (LIBS). Preserv. Restor. Tech. Anc. Egypt. Text. 2023, 143–163. [Google Scholar]
- Sivakumar, P.; Taleh, L.; Markushin, Y.; Melikechi, N. Packing density effects on the fluctuations of the emission lines in laser-induced breakdown spectroscopy. Spectrochim. Acta B At. Spectrosc. 2014, 92, 84–89. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, H.; Ha, Z.D.; Wang, L.M.; Zhang, X.H.; Gan, D.G.; Li, Y.W. A new method to measure RTV coatings thickness with laser-induced breakdown spectroscopy (LIBS) technique. In Proceedings of the 2016 IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 19–22 June 2016; pp. 81–84. [Google Scholar]
- He, Y.; Deng, Y.; Yang, C.; Wang, X.; Mei, H.; Liu, H.; Jia, Z. Hardness determination of thin film structural materials using laser-induced breakdown spectroscopy. IEEE Trans. Plasma Sci. 2023, 51, 705–714. [Google Scholar] [CrossRef]
- Chen, P.; Wang, X.; Li, X.; Lyu, Q.; Wang, N.; Jia, Z. A quick classifying method for tracking and erosion resistance of htv silicone rubber material via laser-induced breakdown spectroscopy. Sensors 2019, 19, 1087. [Google Scholar] [CrossRef]
- Elbasuney, S. Novel multi-component flame-retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technol. 2017, 305, 538–545. [Google Scholar] [CrossRef]
- Könnicke, D.; Kühn, A.; Mahrholz, T.; Sinapius, M. Polymer nanocomposites based on epoxy resin and ATH as a new flame-retardant for CFRP: Preparation and thermal characterisation. J. Mater. Sci. 2011, 46, 7046–7055. [Google Scholar] [CrossRef]
- GB/T 5169.16; Fire Hazard Testing for Electric and Electronic Products Part 16: Test Flames-50 W Horizontal and Vertical Flame Test Methods. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- NIST Atomic Spectra Database Lines Form. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 1 August 2025).
- Bousquet, B.; Gardette, V.; Ros, V.M.; Gaudiuso, R.; Dell, M.; De Giacomo, A. Plasma Excitation Temperature Obtained with Boltzmann Plot Method: Significance, Precision, Trueness and Accuracy. Spectrochim. Acta Part B At. Spectrosc. 2023, 204, 106686. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Ali, W.; Abdullah, T.A.A.; Malebary, S.J. Classifying cardiac arrhythmia from ECG signal using 1D CNN deep learning model. Mathematics 2023, 11, 562. [Google Scholar] [CrossRef]
Classification Criteria | Basis for Level Classification | ||
---|---|---|---|
V-0 | V-1 | V-2 | |
Afterflame time for a single specimen ( and ) | ≤10 s | ≤30 s | ≤30 s |
Total afterflame time | ≤50 s | ≤250 s | ≤250 s |
Combined afterflame and afterglow time after second ignition () | ≤30 s | ≤60 s | ≤60 s |
Whether afterflame and/or afterglow reaches the holding clamp | no | no | no |
Whether burning particles or dripping material ignite the cotton pad | no | no | yes |
Lines | (eV) | (s−1) | |
---|---|---|---|
Ca I 422.67 nm | 3 | 2.93 | 2.18 × 108 |
Ca I 430.25 nm | 5 | 4.78 | 1.36 × 108 |
Ca I 430.77 nm | 1 | 4.76 | 1.99 × 108 |
Ca I 585.75 nm | 5 | 5.05 | 6.60 × 107 |
Sample ID | Actual Flame-Retardant Grade | Probability Distribution | Standard Deviation | ||||
---|---|---|---|---|---|---|---|
V-0 | V-1 | V-2 | V-0 | V-1 | V-2 | ||
1 | V-0 | 98.8% | 0.8% | 0.4% | 1.8% | 1.1% | 0.9% |
2 | V-0 | 97.6% | 2.0% | 0.4% | 1.7% | 2.0% | 0.9% |
3 | V-0 | 99.2% | 0.4% | 0.4% | 1.1% | 0.9% | 0.9% |
4 | V-1 | 18.4% | 76.4% | 5.2% | 2.6% | 4.1% | 1.8% |
5 | V-1 | 5.6% | 88.4% | 6.0% | 2.6% | 1.7% | 4.0% |
6 | V-2 | 1.2% | 16.0% | 82.8% | 1.8% | 5.5% | 4.1% |
7 | V-2 | 1.2% | 0.4% | 98.4% | 1.8% | 0.9% | 1.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Q.; Xia, Z.; Ye, J.; Zhou, C.; Wu, Y.; Li, J.; Cui, X.; Jian, H.; Wang, X. Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy. Energies 2025, 18, 4353. https://doi.org/10.3390/en18164353
Liang Q, Xia Z, Ye J, Zhou C, Wu Y, Li J, Cui X, Jian H, Wang X. Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy. Energies. 2025; 18(16):4353. https://doi.org/10.3390/en18164353
Chicago/Turabian StyleLiang, Qishuai, Zhongchen Xia, Jiang Ye, Chuan Zhou, Yufeng Wu, Jie Li, Xuhui Cui, Honglin Jian, and Xilin Wang. 2025. "Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy" Energies 18, no. 16: 4353. https://doi.org/10.3390/en18164353
APA StyleLiang, Q., Xia, Z., Ye, J., Zhou, C., Wu, Y., Li, J., Cui, X., Jian, H., & Wang, X. (2025). Evaluation Method for Flame-Retardant Property of Sheet Molding Compound Materials Based on Laser-Induced Breakdown Spectroscopy. Energies, 18(16), 4353. https://doi.org/10.3390/en18164353