Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,450)

Search Parameters:
Keywords = ion-specific effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 5035 KB  
Review
Progress in the Expression, Purification, and Characterization of Recombinant Collagen
by Youlin Deng, Jiyao Kang, Xiaoqun Duan, Yingjun Kong, Weiquan Xie, Dongjie Lei, Tingchun Wang and Guifeng Zhang
Bioengineering 2026, 13(2), 159; https://doi.org/10.3390/bioengineering13020159 - 28 Jan 2026
Abstract
Synthesized by expressing natural collagen sequences in specific hosts, recombinant collagen exhibits multiple advantages, encompassing a higher content of bioactive domains, enhanced antioxidant activity, the absence of viral pathogens, favorable hydrophilicity, reproducible production, and low immunogenicity. Consequently, it has found extensive use in [...] Read more.
Synthesized by expressing natural collagen sequences in specific hosts, recombinant collagen exhibits multiple advantages, encompassing a higher content of bioactive domains, enhanced antioxidant activity, the absence of viral pathogens, favorable hydrophilicity, reproducible production, and low immunogenicity. Consequently, it has found extensive use in applications ranging from biomaterials and pharmaceuticals to skincare. This review systematically explores various expression systems for recombinant collagen, including those utilizing Escherichia coli, Pichia pastoris, plants, insect baculovirus, and mammalian cells. It provides a detailed comparison of their differences and commonalities in terms of production efficiency, post-translational modification capability, and cost-effectiveness. Key separation and purification techniques for recombinant collage-notably precipitation, affinity chromatography, ion-exchange chromatography, and gel filtration chromatography are further introduced, with an in-depth analysis of the applicable scenarios and purification outcomes for each method. Finally, the review comprehensively summarizes the characterization methods for both the physicochemical properties and biological functions of recombinant collagen. For physicochemical properties, techniques covered include scanning electron microscopy, micro-differential thermal analysis, circular dichroism spectroscopy, SDS-PAGE, mass spectrometry, and Fourier-transform infrared spectroscopy. For biological functions, the focus is on its roles and the corresponding assessment methods in processes such as cell proliferation, migration, adhesion, and wound healing. Building upon this comprehensive overview, current challenges facing recombinant collagen are identified, and future directions are proposed, emphasizing the need to reduce R&D costs, refine testing methods for cosmetic products, and improve safety evaluation protocols to advance the field. Full article
(This article belongs to the Topic Advances in Biomaterials—2nd Edition)
19 pages, 3833 KB  
Article
Cucurbitacin B Inhibits Hepatocellular Carcinoma by Inducing Ferroptosis and Activating the cGAS-STING Pathway
by Huizhong Zhang, Aqian Chang, Xiaohan Xu, Hulinyue Peng, Ke Zhang, Jingwen Yang, Wenjing Li, Xinzhu Wang, Wenqi Wang, Xingbin Yin, Changhai Qu, Xiaoxv Dong and Jian Ni
Curr. Issues Mol. Biol. 2026, 48(2), 138; https://doi.org/10.3390/cimb48020138 - 27 Jan 2026
Abstract
The incidence of primary liver cancer is increasing annually, with extremely high mortality and suboptimal therapeutic outcomes. The inefficient presentation of tumor antigens and low infiltration of specific cytotoxic T lymphocytes (CTLs) result in insufficient immunogenicity, which limits the efficacy of immunotherapy. Despite [...] Read more.
The incidence of primary liver cancer is increasing annually, with extremely high mortality and suboptimal therapeutic outcomes. The inefficient presentation of tumor antigens and low infiltration of specific cytotoxic T lymphocytes (CTLs) result in insufficient immunogenicity, which limits the efficacy of immunotherapy. Despite the popularity of immune checkpoint inhibitors (ICIs), insufficient immune activation means only a small subset of hepatocellular carcinoma (HCC) patients exhibit clinical responses to ICIs, showing significant inter-individual variability. The activation of the cyclic GMP-AMP synthase(cGAS)- stimulator of interferon genes(STING) pathway initiates the expression of type I interferons (IFNs) and inflammatory cytokines, promoting the formation of a pro-inflammatory environment at the tumor site. This pathway enhances anti-tumor immune responses by facilitating antigen processing and presentation, T cell priming and activation, and remodeling of the immunosuppressive microenvironment. Our research found that cucurbitacin B (CuB), a natural component derived from traditional Chinese medicine, had significant anti-hepatocellular carcinoma properties and exerted anti-tumor effects through the cGAS-STING pathway. Specifically, CuB regulated ferroptosis by down-regulating the expression of Solute Carrier Family 7 Member 11 (SLC7A11) and Glutathione Peroxidase 4 (GPX4) and upregulating the expression of Transferrin Receptor Protein 1 (TFR1) and Long-chain Acyl-CoA Synthetase 4 (ACSL4). These actions involved lipid substrates, iron ion homeostasis, and antioxidant defense systems. The release of mitochondrial DNA (mtDNA) triggered by ferroptosis activated the cGAS-STING immune signaling pathway, leading to the up-regulation of cGAS, phosphorylated STING (p-STING), phosphorylated TANK-binding kinase 1 (TBK1), phosphorylated Interferon regulatory factor3 (IRF3), and Interferon-β (IFN-β). This cascade activation pattern provides new insights into the drug treatment of tumors. Full article
Show Figures

Figure 1

16 pages, 2281 KB  
Article
Pore-Structure Modulation of Macadamia Shell-Derived Hard Carbon for High-Performance Sodium-Ion Battery Anodes
by Xiaoran Wang, Keren Luo, Yanling Zhang and Hao Wu
Processes 2026, 14(3), 419; https://doi.org/10.3390/pr14030419 - 25 Jan 2026
Viewed by 84
Abstract
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating [...] Read more.
Hard carbon is widely recognized as a viable anode candidate for sodium-ion batteries (SIBs) owing to its electrochemical advantages, yet simultaneously enhancing specific capacity and rate capability, arising from insufficient plateau capacity, remains a long-standing challenge. Herein, we present a strategy for fabricating ZnCl2-modified hard carbon (HCMZ-X) using waste macadamia shells and ZnCl2 as a multifunctional structural modifier through a facile high-temperature carbonization. This approach effectively expands the graphite interlayer spacing to 0.394 nm, reduces microcrystalline size, and induces abundant closed pores, synergistically improving sodium-ion storage kinetics within the hard carbon framework. Mechanistic investigations confirm an “adsorption-intercalation-filling” storage mechanism. Hence, the optimized HCMZ-3 delivers a high reversible capacity of 382.05 mAh g−1 at 0.05 A g−1, with the plateau region contributing approximately 70%, significantly outperforming that of unmodified hard carbon (262.64 mAh g−1). Remarkably, it achieves stable rate performance, delivering 190 mAh g−1 at 1 A g−1, along with excellent cycling stability, retaining over 90% after 500 cycles. By rational pore-structure modulation rather than excessive surface activation, this cost-effective method utilizing agricultural waste and ZnCl2 dual-functional modification partially alleviates the intrinsic energy-density limitation of hard carbon anodes, advancing the development of high-performance, eco-friendly anodes for scalable energy storage systems. Full article
Show Figures

Figure 1

28 pages, 1155 KB  
Review
Root-Specific Signal Modules Mediating Abiotic Stress Tolerance in Fruit Crops
by Lili Xu and Xianpu Wang
Plants 2026, 15(3), 363; https://doi.org/10.3390/plants15030363 - 24 Jan 2026
Viewed by 137
Abstract
Sustained abiotic stress severely impairs fruit crop growth and development. As plants’ primary environmental sensing organ, fruit tree roots experience disrupted morphogenesis and physiological functions, reducing yield, lowering fruit quality, and threatening orchard ecosystem stability. Abiotic stress is diverse: water deficit from drought, [...] Read more.
Sustained abiotic stress severely impairs fruit crop growth and development. As plants’ primary environmental sensing organ, fruit tree roots experience disrupted morphogenesis and physiological functions, reducing yield, lowering fruit quality, and threatening orchard ecosystem stability. Abiotic stress is diverse: water deficit from drought, extreme temperature fluctuations, and salinization-induced ion imbalance, heavy metal accumulation, or nutrient disorders. Its complexity requires synergistic and crosstalk regulation of multiple root-specific signaling modules and pathways in root stress perception and transduction. When responding to stress, roots activate hormone, reactive oxygen species (ROS), and calcium ion (Ca2+) signaling. These pathways mediate early stress recognition and regulate downstream gene expression and physiological metabolic reprogramming via transcription factors (TFs) and other regulators, determining stress tolerance and adaptability. Using typical abiotic stresses as models, this review outlines the composition, activation mechanisms, specificity, and synergistic effects of root-specific signaling modules/pathways, along with modern biotechnologies for decoding these modules and current research limitations, aiming to reveal the root signal network’s integration mode. Full article
Show Figures

Figure 1

17 pages, 3525 KB  
Article
Arsenic Trioxide and the MNK1 Inhibitor AUM001 Exert Synergistic Anti-Glioblastoma Effects by Modulating Key Translational, Cell Cycle, and Transmembrane Transport Pathways
by Yue Hao, Charles Shaffer, Nanyun Tang, Valerie DeLuca, Angela Baker and Michael E. Berens
Brain Sci. 2026, 16(2), 121; https://doi.org/10.3390/brainsci16020121 - 23 Jan 2026
Viewed by 129
Abstract
Background: The profound heterogeneity of glioblastoma and the often-limited efficacy of conventional treatments, including arsenic trioxide (ATO), underscore the urgent and critical demand for innovative combination strategies specifically designed to overcome treatment resistance. Methods: We evaluated the therapeutic effects of ATO as a [...] Read more.
Background: The profound heterogeneity of glioblastoma and the often-limited efficacy of conventional treatments, including arsenic trioxide (ATO), underscore the urgent and critical demand for innovative combination strategies specifically designed to overcome treatment resistance. Methods: We evaluated the therapeutic effects of ATO as a single agent and in combination with the MNK1 inhibitor AUM001 across patient-derived xenograft (PDX) models and investigated molecular determinants of sensitivity and synergy. Our results demonstrated that GBM models resistant to ATO, particularly those of the mesenchymal subtype, are more likely to show synergistic cytotoxicity when AUM001 is added. The combination significantly reduces the frequency of glioblastoma stem cells (GSCs) compared to either drug alone, especially in ATO-resistant models. Results: These observations suggest that targeting the MNK1 pathway in conjunction with ATO is a promising strategy to specifically eradicate GSCs, which are major drivers of GBM recurrence and therapeutic failure. Transcriptomic analyses revealed that ATO sensitivity correlated with activated translation-related pathways and cell cycle processes, while synergistic responses to the combination were driven by distinct molecular signatures in different GBM subtypes. Overall, synergistic response to the combination therapy is more associated with cellular organization, amino acid transmembrane transporter activity, ion channels, extracellular matrix organization and collagen formation. Conclusions: Our findings highlight that specific molecular pathways and their activities, including those involving translation, cell cycle and ion transport, appear to modulate the synergistic efficacy of the ATO and AUM001 combination, thereby offering potential biomarkers for improved patient stratification in future GBM clinical trials of such ATO-based treatments. Full article
(This article belongs to the Special Issue Brain Tumors: From Molecular Basis to Therapy)
Show Figures

Figure 1

26 pages, 7253 KB  
Article
Effects of Total Calcium and Iron(II) Concentrations on Heterogeneous Nucleation and Crystal Growth of Struvite
by Pengcheng Wei, Kaiyu Deng, Yang Huang, Jiayu Yang, Fujiang Hui, Dunqiu Wang and Kun Dong
Crystals 2026, 16(2), 80; https://doi.org/10.3390/cryst16020080 - 23 Jan 2026
Viewed by 65
Abstract
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different [...] Read more.
This study investigated the effects of calcium (Ca2+) and iron (II) Fe2+ concentrations (0–500 mg/L) on the heterogeneous nucleation and crystallization behavior of struvite (MgNH4PO4·6H2O) through controlled batch precipitation experiments. Struvite formed under different Ca2+ and Fe2+ concentrations were systematically characterized using XRD, SEM, FTIR, and XPS, while real-time pH and redox potential (Eh) monitoring was employed to elucidate reaction dynamics and thermodynamic speciation and saturation indices were calculated, and classical nucleation theory (CNT) was applied to interpret nucleation behavior. The results show that Ca2+ primarily suppresses struvite formation through bulk-phase competition with Mg2+ for phosphate, diverting phosphate into Ca–P phases and progressively reducing struvite supersaturation, which leads to decreased crystallinity and distorted Crystal habit. In contrast, Fe2+ does not form detectable crystalline Fe-P phases but inhibits struvite crystallization mainly through surface-mediated processes. Surface analyses indicate that Fe-bearing species adsorb onto struvite surfaces and promote amorphous Fe-P deposition, increasing interfacial resistance to nucleation and growth. CNT analysis further reveals that Ca2+ inhibition is governed by reduced thermodynamic driving force, whereas Fe2+ inhibition is dominated by surface-related kinetic barriers. This study provides mechanistic insight into ion-specific interference during struvite crystallization and offers guidance for optimizing phosphorus recovery in ion-rich wastewater systems. Full article
Show Figures

Figure 1

21 pages, 6329 KB  
Article
Transfer Learning-Enhanced Safety Modeling for Lithium-Ion Batteries Under Mechanical Abuse
by Hong Liang, Renjing Gao, Haihe Zhao and Zeyu Chen
Batteries 2026, 12(2), 39; https://doi.org/10.3390/batteries12020039 - 23 Jan 2026
Viewed by 214
Abstract
The widespread adoption of lithium-ion battery-powered electric vehicles has raised increasing concerns regarding battery safety under mechanical abuse conditions. However, mechanical abuse scenarios, such as battery extrusion, are highly diverse, making it impractical to conduct extensive destructive experiments and independent modeling for each [...] Read more.
The widespread adoption of lithium-ion battery-powered electric vehicles has raised increasing concerns regarding battery safety under mechanical abuse conditions. However, mechanical abuse scenarios, such as battery extrusion, are highly diverse, making it impractical to conduct extensive destructive experiments and independent modeling for each specific scenario. In this work, a cross-scenario mechanical safety modeling framework for lithium-ion batteries is proposed based on transfer learning. Three quasi-static mechanical abuse tests, including flat-plate, rigid-rod, and hemispherical compression, are conducted on 18650 lithium-ion batteries. An equivalent mechanical model with a spring–damper parallel structure is employed to characterize the mechanical response and generate simulation data. Based on data from a single mechanical abuse scenario, a backpropagation neural network (BPNN)-based safety model is established to predict the maximum stress in the battery. The learned knowledge is then transferred to other mechanical abuse scenarios using a transfer learning strategy. The results demonstrate that, under limited target-domain data, the transferred models achieve stable prediction performance, with the average relative error controlled within 3.6%, outperforming models trained from scratch under the same conditions. Compared with existing studies that focus on single-scenario modeling, this work explicitly investigates cross-scenario transferability and demonstrates the effectiveness of transfer learning in reducing experimental and modeling effort for battery mechanical safety analysis. Full article
(This article belongs to the Topic Battery Design and Management, 2nd Edition)
Show Figures

Figure 1

23 pages, 7078 KB  
Review
Progress on Suzuki–Miyaura Cross-Coupling Reactions Promoted by Palladium–Lanthanide Coordination Polymers as Catalytic Systems
by Fu Ding, Ileana Dragutan, Lixin You, Yaguang Sun and Valerian Dragutan
Molecules 2026, 31(2), 378; https://doi.org/10.3390/molecules31020378 - 21 Jan 2026
Viewed by 115
Abstract
Lanthanide coordination polymers have been developed at a fast rate during the past two decades due to their appealing applications in the modern field of materials science and emerging technologies like luminescence, magnetism, sensing, gas adsorption, and catalysis. The role of lanthanides in [...] Read more.
Lanthanide coordination polymers have been developed at a fast rate during the past two decades due to their appealing applications in the modern field of materials science and emerging technologies like luminescence, magnetism, sensing, gas adsorption, and catalysis. The role of lanthanides in imparting specific properties to the coordination polymers has been fully documented in extensive studies carried out by numerous research groups. It has been shown that because lanthanide(III) ions possess a variable coordination number, they readily build two-dimensional and three-dimensional architectures with definite channels, permanent pores, and distinct surface areas. Due to their strong oxophilic propensity and hard Lewis acid character, lanthanides favor the construction of stable coordination polymers and MOF configurations by strongly binding the coordinating groups of the organic linkers. Associated with palladium complexes, the lanthanide ions provide synergistic effects with Lewis acid sites, beneficial to the catalytic activity. These attractive characteristics of lanthanides enabled them to be fruitfully applied in Pd-Ln coordination polymers with catalytic properties. This review covers an array of Pd-Ln coordination polymers applied as heterogeneous catalysts in Suzuki–Miyaura C(sp2)-C(sp2) cross-coupling reactions. The activity and chemoselectivity of Pd(II) ions and Pd nanoparticles associated in coordination polymers with different lanthanides from a selected array of rare earth elements (Eu, Sm, Eu, Gd, Pr, Nd, Ce, La, or Tb) is discussed. High yields (>99%) are attained under optimized reaction conditions. The specific role of lanthanides and organic ligands in creating sustainable and recyclable heterogeneous Pd catalysts is evidenced. Mechanistic aspects of the C(sp2)-C(sp2) cross-coupling reactions are considered. The synergistic interaction between lanthanides and palladium as well as with the organic ligands is highlighted. Full article
Show Figures

Figure 1

13 pages, 607 KB  
Article
Phospholipid Profiling: A Computationally Assisted LC-HRMS Approach in Lecithin
by Ana Šijanec and Matevž Pompe
Separations 2026, 13(1), 40; https://doi.org/10.3390/separations13010040 - 21 Jan 2026
Viewed by 59
Abstract
The use of lecithin as an emulsifier in food supplements has increased in recent years. However, successful formation of liposomes or micelles requires an appropriate mixture of phospholipids in lecithin. To evaluate the emulsification properties of lecithin for food supplements, a reliable analytical [...] Read more.
The use of lecithin as an emulsifier in food supplements has increased in recent years. However, successful formation of liposomes or micelles requires an appropriate mixture of phospholipids in lecithin. To evaluate the emulsification properties of lecithin for food supplements, a reliable analytical procedure for characterizing phospholipids is necessary. A liquid chromatography–mass spectrometry method was developed to identify phospholipids in lecithin without standard reference materials. For efficient separation of phospholipids before mass spectrometric analysis, a reverse-phase high-performance liquid chromatography method was optimized using a Waters XBridge Protein BEH C4 column. The optimized chromatographic method demonstrated good linearity and precision. Molecular ions were detected in full scan mode to determine accurate mass-to-charge ratios for individual peaks in the chromatogram. A custom Python program was then used to generate a list of possible phospholipid species for each peak based on the measured mass-to-charge ratios. Tandem mass spectrometry was performed to confirm the identity of specific phospholipids by comparing experimental fragmentation patterns with theoretical predictions. Identification of the phospholipids was also confirmed with four commercially available standard reference compounds, demonstrating the reliability of the proposed approach. The developed method offers a practical and cost-effective strategy for identifying phospholipids in complex matrices, especially when standard reference compounds are unavailable. Additionally, it enables targeted selection of standard compounds for future quantitative analyses, making it a valuable tool for comprehensive lipid profiling. Full article
Show Figures

Graphical abstract

32 pages, 2757 KB  
Review
Factors Influencing Soil Corrosivity and Its Impact on Solar Photovoltaic Projects
by Iván Jares Salguero, Juan José del Campo Gorostidi, Guillermo Laine Cuervo and Efrén García Ordiales
Appl. Sci. 2026, 16(2), 1095; https://doi.org/10.3390/app16021095 - 21 Jan 2026
Viewed by 106
Abstract
Soil corrosion is a critical durability and cost factor for metallic foundations in photovoltaic (PV) power plants, yet it is still addressed with fragmented criteria compared with atmospheric corrosion. This paper reviews the main soil corrosivity drivers relevant to PV installations—moisture and aeration [...] Read more.
Soil corrosion is a critical durability and cost factor for metallic foundations in photovoltaic (PV) power plants, yet it is still addressed with fragmented criteria compared with atmospheric corrosion. This paper reviews the main soil corrosivity drivers relevant to PV installations—moisture and aeration dynamics, electrical resistivity, pH and buffer capacity, dissolved ions (notably chlorides and sulfates), microbiological activity, hydro-climatic variability and geological heterogeneity—highlighting their coupled and non-linear effects, such as differential aeration, macrocell formation and corrosion localization. Building on this mechanistic basis, an engineering-oriented methodological roadmap is proposed to translate soil characterization into durability decisions. The approach combines soil corrosivity classification according to DIN 50929-3 and DVGW GW 9, tiered estimation of hot-dip galvanized coating consumption using AASHTO screening, resistivity–pH correlations and ionic penalty factors, and verification against conservative NBS envelopes. When coating life is insufficient, a traceable steel thickness allowance based on DIN bare-steel corrosion rates is introduced to meet the target service life. The framework provides a practical and auditable basis for durability design and risk control of PV foundations in heterogeneous soils. The proposed framework shows that, for soils exceeding AASHTO mild criteria, zinc corrosion rates may increase by a factor of 1.3–1.7 when chloride and sulfate penalties are considered, potentially reducing coating service life by more than 40%. The methodology proposed enables designers to estimate the penalty factors for sulfates (fpSO42) and chlorides (fpCl) in each specific project, calculating the appropriate values of KSO42 and KCl using electrochemical techniques—ER/LPR and EIS—to estimate the effect of the soluble salts content in the ZnCorr Rate, not properly catch by the proxy indicator VcorrER, pH when sulfate and chloride content are over AAHSTO limits for mildly corrosive soils. Full article
(This article belongs to the Special Issue Application for Solar Energy Conversion and Photovoltaic Technology)
Show Figures

Figure 1

45 pages, 5089 KB  
Review
A Review on the Synthesis Methods, Properties, and Applications of Polyaniline-Based Electrochromic Materials
by Ge Cao, Yan Ke, Kaihua Huang, Tianhong Huang, Jiali Xiong, Zhujun Li and He Zhang
Coatings 2026, 16(1), 129; https://doi.org/10.3390/coatings16010129 - 19 Jan 2026
Viewed by 304
Abstract
Polyaniline (PANI), characterized by its proton-coupled redox mechanism and multicolor reversibility, is widely investigated for adaptive optical interfaces. Compared to inorganic oxides, PANI offers advantages in cost-effectiveness, mechanical flexibility, and molecular tunability; however, its practical implementation faces challenges related to kinetic limitations and [...] Read more.
Polyaniline (PANI), characterized by its proton-coupled redox mechanism and multicolor reversibility, is widely investigated for adaptive optical interfaces. Compared to inorganic oxides, PANI offers advantages in cost-effectiveness, mechanical flexibility, and molecular tunability; however, its practical implementation faces challenges related to kinetic limitations and environmental instability. This review presents a comprehensive analysis of PANI-based electrochromic materials, examining the intrinsic correlations among synthesis methodologies, microstructural characteristics, and optoelectronic performance. Synthesis strategies, including chemical oxidative polymerization, electrochemical deposition, and template-assisted techniques, are evaluated. Emphasis is placed on resolving the trade-off between optical contrast and switching kinetics by constructing high-surface-area porous nanostructures and inducing chain ordering via functional dopants to shorten ion diffusion paths and reduce charge transfer resistance. Fundamental electrochromic properties are subsequently discussed, with specific attention to degradation mechanisms triggered by environmental factors, such as pH drift, and stabilization strategies involving electrolyte engineering and composite design. Furthermore, the review addresses the evolution of applications from single-band monochromatic displays to dual-band smart windows for decoupled visible/near-infrared regulation and multifunctional integrated systems, including electrochromic supercapacitors and adaptive thermal management textiles. Finally, technical challenges regarding long-term durability, neutral color development, and large-area manufacturing are summarized to outline future research directions for PANI-based optical systems. Full article
Show Figures

Figure 1

18 pages, 17077 KB  
Article
Evaluation of Resource Efficiency and Environmental Impact in a Plant Factory Using an Ion-Selective Electrode-Based Precision Nutrient Management System
by Sanghyun Lee, Woo-Jae Cho, Hak-Jin Kim, Min-Seok Gang, Sung Kwon Park and Ronaldo B. Saludes
Agronomy 2026, 16(2), 232; https://doi.org/10.3390/agronomy16020232 - 19 Jan 2026
Viewed by 177
Abstract
Plant factories enable stable crop production, but face sustainability challenges due to intensive resource consumption. In particular, studies that quantitatively analyze nutrient use in plant cultivation and assess the environmental burdens remain scarce. To address this, this study developed and evaluated a precision [...] Read more.
Plant factories enable stable crop production, but face sustainability challenges due to intensive resource consumption. In particular, studies that quantitatively analyze nutrient use in plant cultivation and assess the environmental burdens remain scarce. To address this, this study developed and evaluated a precision nutrient management system using ion-selective electrodes (ISEs) for closed hydroponic lettuce cultivation. The system’s performance was compared with a conventional EC-based approach in terms of resource use efficiency and environmental impact using life cycle assessment (LCA). The ISE-based system effectively maintained NO3, K, and Ca concentrations within target ranges (root mean square error (RMSE) < 52 mg·L−1), producing healthy crops without the physiological disorders (tip-burn) observed in the EC-based control, while the EC-based system showed higher total fresh weight, which implies that the increase in fresh weight may not necessarily correspond to marketable yield due to the nutrient imbalances. In terms of efficiency, the ISE-based system improved water-use efficiency (WUE) by 48.4% and fertilizer-use efficiency (FUE) by 24.5%. Furthermore, LCA revealed that the ISE-based system reduced greenhouse gas emissions by 8% and freshwater ecotoxicity by 64% per kg of lettuce, primarily by extending the nutrient solution reuse period threefold. The results suggest that ion-specific precision management has the potential to enhance the sustainability and resource efficiency of plant factories. Full article
Show Figures

Figure 1

28 pages, 2875 KB  
Article
Chemical Profiling and Cheminformatic Insights into Piper Essential Oils as Sustainable Antimicrobial Agents Against Pathogens of Cocoa Crops
by Diannefair Duarte, Marcial Fuentes-Estrada, Yorladys Martínez Aroca, Paloma Sendoya-Gutiérrez, Manuel I. Osorio, Osvaldo Yáñez, Carlos Areche, Elena Stashenko and Olimpo García-Beltrán
Molecules 2026, 31(2), 326; https://doi.org/10.3390/molecules31020326 - 17 Jan 2026
Viewed by 206
Abstract
This study evaluates the chemical profile and antifungal efficacy of essential oils from Piper glabratum, Piper friedrichsthalii, and Piper cumanense against the cocoa pathogens Moniliophthora roreri and Phytophthora palmivora. Microwave-assisted hydrodistillation followed by GC-MS analysis identified 80 constituents, predominantly monoterpenes [...] Read more.
This study evaluates the chemical profile and antifungal efficacy of essential oils from Piper glabratum, Piper friedrichsthalii, and Piper cumanense against the cocoa pathogens Moniliophthora roreri and Phytophthora palmivora. Microwave-assisted hydrodistillation followed by GC-MS analysis identified 80 constituents, predominantly monoterpenes and sesquiterpenes, which exhibited significant mycelial inhibition comparable to commercial fungicides. Beyond basic characterization, a comprehensive chemoinformatic analysis was conducted to elucidate the molecular mechanisms driving this bioactivity. The computed physicochemical landscape reveals a dominant lipophilic profile (average LogP 3.4) and low polarity (TPSA 11.5 Å2), characteristics essential for effective fungal membrane penetration. Structural mining identified conserved benzene and cyclohexene scaffolds alongside specific 1,3-benzodioxole moieties, while Maximum Common Substructure (MCS) analysis uncovered high similarity clusters among phenylpropanoids and sesquiterpenes. These findings suggest a synergistic mode of action where conserved structural backbones and interchangeable diastereomers facilitate membrane destabilization and ion leakage. Consequently, the integrative chemoinformatic profiling elucidates the molecular basis of this efficacy, positioning these Piper essential oils not merely as empirical alternatives, but as sources of rationally defined synergistic scaffolds for next-generation sustainable fungicides. Full article
Show Figures

Figure 1

19 pages, 785 KB  
Article
Pharmacogenomic Pathways Underlying Variable Vedolizumab Response in Crohn’s Disease Patients: A Rare-Variant Analysis
by Biljana Stankovic, Mihajlo Stasuk, Vladimir Gasic, Bojan Ristivojevic, Ivana Grubisa, Branka Zukic, Aleksandar Toplicanin, Olgica Latinovic Bosnjak, Brigita Smolovic, Srdjan Markovic, Aleksandra Sokic Milutinovic and Sonja Pavlovic
Biomedicines 2026, 14(1), 203; https://doi.org/10.3390/biomedicines14010203 - 17 Jan 2026
Viewed by 323
Abstract
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical [...] Read more.
Background/Objectives: Vedolizumab (VDZ), a monoclonal antibody targeting α4β7 integrin, is used in Crohn’s disease (CD) management, yet patients’ responses vary, underscoring the need for pharmacogenomic (PGx) markers. This study aimed to identify PGx pathways associated with suboptimal VDZ response using a rare-variant analytical framework. Methods: DNA from 63 CD patients treated with VDZ as first-line advanced therapy underwent whole-exome sequencing. Clinical response at week 14 classified patients as optimal responders (ORs) or suboptimal responders (SRs). Sequencing data were processed using GATK Best Practices, annotated with variant effect predictors, and filtered for rare damaging variants (damaging missense and high-confidence loss-of-function; minor allele frequency < 0.05). Variants were mapped to genes specific for SRs and ORs, and analyzed for pathway enrichment using the Reactome database. Rare-variant burden and composition differences were assessed with Fisher’s exact test and SKAT-O gene-set association analysis. Results: Suboptimal VDZ response was associated with pathways related to membrane transport (ABC-family proteins, ion channels), L1–ankyrin interactions, and bile acid recycling, while optimal response was associated with pathways involving MET signaling. SKAT-O identified lipid metabolism-related pathways as significantly different—SRs harbored variants in pro-inflammatory lipid signaling and immune cell trafficking genes (e.g., PIK3CG, CYP4F2, PLA2R1), whereas ORs carried variants in fatty acid oxidation and detoxification genes (e.g., ACADM, CYP1A1, ALDH3A2, DECR1, MMUT). Conclusions: This study underscores the potential of exome-based rare-variant analysis to stratify CD patients and guide precision medicine approaches. The identified genes and pathways are potential PGx markers for CD patients treated with VDZ. Full article
Show Figures

Figure 1

35 pages, 3457 KB  
Review
Silver Nanoparticles in Antibacterial Research: Mechanisms, Applications, and Emerging Perspectives
by Hasan Karataş, Furkan Eker, Emir Akdaşçi, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2026, 27(2), 927; https://doi.org/10.3390/ijms27020927 - 16 Jan 2026
Viewed by 199
Abstract
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the [...] Read more.
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the disruption of bacterial cell membrane, generation of reactive oxygen species (ROS), inhibition of protein synthesis and interference with DNA replication. Variations in AgNPs’ shape, size, and surface characteristics are also considered key factors determining their effectivity as well as specificity. AgNPs are considered potent antibacterial agents, including against antibiotic- and drug-resistant strains. However, inappropriate dosages or unoptimized application of may result in potential toxicity, consisting one of the main drawbacks of the AgNPs’ safer administration. This article reviews the recent literature on the antibacterial potential of AgNPs, focusing on their broad mechanisms of action, applicability, especially in agriculture, biomedical and environmental fields, toxicity and future perspectives. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
Show Figures

Figure 1

Back to TopTop