Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,746)

Search Parameters:
Keywords = ion flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1411 KB  
Article
The Leaching of Valuable Metals (Li, Co, Ni, Mn, Cu) from Black Mass from Spent Lithium-Ion Batteries
by Rorie Gilligan, Glen P. O’Malley and Aleksandar N. Nikoloski
Metals 2025, 15(10), 1155; https://doi.org/10.3390/met15101155 - 19 Oct 2025
Abstract
Near-complete (>99%) dissolution of lithium and cobalt was achieved by the leaching of black mass from spent (end-of-life) lithium-ion batteries (LiBs) using 4 M H2SO4 or HCl at 60 °C. Raising the temperature to 90 °C did not increase the [...] Read more.
Near-complete (>99%) dissolution of lithium and cobalt was achieved by the leaching of black mass from spent (end-of-life) lithium-ion batteries (LiBs) using 4 M H2SO4 or HCl at 60 °C. Raising the temperature to 90 °C did not increase the overall extraction of lithium or cobalt, but it increased the rate of extraction. At 60 °C, 2 M H2SO4 or 2 M HCl performed similarly to the 4 M H2SO4/HCl solution, although extractions were lower using 1 M H2SO4 or HCl (~95% and 98%, respectively). High extractions were also observed by leaching in low pulp density (15 g/L) at 60 °C with 2 M CH2ClCOOH. Leaching was much slower with hydrogen peroxide reductant concentrations below 0.5 mol/L, with cobalt extractions of 90–95% after 3 h. Pulp densities of up to 250 g/L were tested when leaching with 4 M H2SO4 or HCl, with the stoichiometric limit estimated for each test based on the metal content of the black mass. Extractions were consistently high, above 95% for Li/Ni/Mn/Cu with a pulp density of 150 g/L, dropping sharply above this point because of insufficient remaining acid in the solution in the later stages of leaching. The final component of the test work used leaching parameters identified in the previous experiments as producing the largest extractions, and just sulphuric acid. A seven-stage semi-continuous sulphuric acid leach at 60 °C of black mass from LiBs that had undergone an oxidising roast (2h in a tube furnace at 500 °C under flowing air) to remove binder material resulted in high (93%) extraction of cobalt and near total (98–100%) extractions of lithium, nickel, manganese, and copper. Higher cobalt extraction (>98%) was expected, but a refractory spinel-type cobalt oxide, Co3O4, was generated during the oxidising roast as a result of inefficient aeration, which reduced the extraction efficiency. Full article
Show Figures

Figure 1

15 pages, 1954 KB  
Article
Comparative Study of Binder Stability for Aqueous Lithium-Ion and Solid-Boosted Flow Batteries
by Silver Sepp, Maarja Paalo and Pekka Peljo
Processes 2025, 13(10), 3338; https://doi.org/10.3390/pr13103338 (registering DOI) - 18 Oct 2025
Viewed by 41
Abstract
The replacement of polyvinylidene fluoride (PVDF) with environmentally friendly binders offers potential advantages in the development of aqueous lithium-ion batteries (ALIBs) and flow batteries (FBs) incorporating solid charge carriers (so-called solid boosters). This study investigates the electrochemical stability of ethyl cellulose and cross-linked [...] Read more.
The replacement of polyvinylidene fluoride (PVDF) with environmentally friendly binders offers potential advantages in the development of aqueous lithium-ion batteries (ALIBs) and flow batteries (FBs) incorporating solid charge carriers (so-called solid boosters). This study investigates the electrochemical stability of ethyl cellulose and cross-linked gluten as substitutes for PVDF in LiMn2O4 (LMO) cathodes for aqueous Li-ion battery electrodes and solid boosters for FBs. The millimetre-scaled solid booster beads must be easily produced on a large scale, and at the same time, their charging and discharging must be reversible over long durations under electrolyte tank conditions. The binders were tested under standardized conditions for discharge capacity and cycling stability. Our results demonstrate that ethyl cellulose and cross-linked gluten can rival the electrochemical stability of PVDF, maintaining initial discharge capacities near 100 mAh g−1 at 0.2 C for LMO cathodes and exhibiting reasonable capacity retention over hundreds of cycles. This work supports the feasibility of sustainable electrode processing, provides promising directions for scalable, eco-friendly electrode fabrication methods, and highlights promising binder candidates for use in aqueous energy storage systems. Full article
(This article belongs to the Special Issue Advances in Electrode Materials for Energy Storage Applications)
Show Figures

Figure 1

20 pages, 5178 KB  
Article
Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages
by Mahmoud Reda, Jana Kupka, Yuri Surace, Damian M. Cupid and Hans Flandorfer
Batteries 2025, 11(10), 378; https://doi.org/10.3390/batteries11100378 - 16 Oct 2025
Viewed by 230
Abstract
This study investigates the thermal behavior of SnS2 anodes for lithium-ion batteries at seven different states of charge (fully discharged (lithiated) at 0 mAh/g, partially charged at 100, 200, 300, 400, and 500 mAh/g, and fully charged (delithiated) at 550 mAh/g) using [...] Read more.
This study investigates the thermal behavior of SnS2 anodes for lithium-ion batteries at seven different states of charge (fully discharged (lithiated) at 0 mAh/g, partially charged at 100, 200, 300, 400, and 500 mAh/g, and fully charged (delithiated) at 550 mAh/g) using differential scanning calorimetry (DSC). To better understand the observed thermal behavior, complementary XRD and XPS analyses were performed. Generally, in all electrodes, the thermal decomposition of the electrode material is initiated by the exothermic decomposition of the SEI followed by a binder decomposition reaction around 265 °C. Interestingly, with increased states of delithiation from 400 mAh/g, endothermic peaks in the heat-flow signal of the DSC measurements are observed, which can be correlated with the structural and compositional changes in the electrode material as determined by XRD and XPS, respectively. These analyses confirmed the progressive formation of metallic tin on advanced delithiation. Additionally, the total heat generation from the electrodes decreased with increased delithiation. The results of this study serve as the basis for better understanding the thermal decomposition of SnS2-based anodes, which are considered promising for advanced lithium-ion battery chemistries. Full article
Show Figures

Graphical abstract

29 pages, 9861 KB  
Article
Multiscale Investigation of Interfacial Behaviors in Rubber Asphalt–Aggregate Systems Under Salt Erosion: Insights from Laboratory Tests and Molecular Dynamics Simulations
by Yun Li, Youxiang Si, Shuaiyu Wang, Peilong Li, Ke Zhang and Yuefeng Zhu
Materials 2025, 18(20), 4746; https://doi.org/10.3390/ma18204746 - 16 Oct 2025
Viewed by 171
Abstract
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber [...] Read more.
Deicing salt effectively melts ice and snow to maintain traffic flow in seasonal freezing zones, but its erosion effect compromises the water stability and structural integrity of asphalt pavements. To comprehensively explore the impacts of salt erosion on the interfacial behaviors of rubber asphalt–aggregate systems, this study developed a multiscale characterization method integrating a macroscopic mechanical test, microscopic tests, and molecular dynamics (MD) simulations. Firstly, laboratory-controlled salt–freeze–thaw cycles were employed to simulate field conditions, followed by quantitative evaluation of interfacial bonding properties through pull-out tests. Subsequently, the atomic force microscopy (AFM) and Fourier transform infrared spectrometer (FTIR) tests were conducted to characterize the microscopic morphology evolution and chemical functional group transformations, respectively. Moreover, by combining the diffusion coefficients of water molecules, salt solution ions, and asphalt components, the mechanism of interfacial salt erosion was elucidated. The results demonstrate that increasing NaCl concentration and freeze–thaw cycles progressively reduces interfacial pull-out strength and fracture energy, with NaCl-induced damage becoming limited after twelve salt–freeze–thaw cycles. In detail, with exposure to 15 freeze–thaw cycles in 6% NaCl solution, the pull-out strength and fracture energy of the rubber asphalt–limestone aggregate decrease by 50.47% and 51.57%, respectively. At this stage, rubber asphalt exhibits 65.42% and 52.34% increases in carbonyl and sulfoxide indexes, respectively, contrasted by 49.24% and 42.5% decreases in aromatic and aliphatic indexes. Long-term exposure to salt–freeze–thaw conditions promotes phase homogenization, ultimately reducing surface roughness and causing rubber asphalt to resemble matrix asphalt morphologically. At the rubber asphalt–NaCl solution–aggregate interface, the diffusion of Na+ is faster than that of Cl. Meanwhile, compared with other asphalt components, saturates exhibit notably enhanced mobility under salt erosion conditions. The synergistic effects of accelerated aging, salt crystallization pressure, and enhanced ionic diffusion jointly induce the deterioration of interfacial bonding, which accounts for the decrease in macroscopic pull-out strength. This multiscale investigation advances understanding of salt-induced deterioration while providing practical insights for developing durable asphalt mixtures in cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 1097 KB  
Systematic Review
Comparative Meta-Analysis of Long-Read and Short-Read Sequencing for Metagenomic Profiling of the Lower Respiratory Tract Infections
by Giovanni Lorenzin and Maddalena Carlin
Microorganisms 2025, 13(10), 2366; https://doi.org/10.3390/microorganisms13102366 - 15 Oct 2025
Viewed by 258
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly employed for the diagnosis of lower respiratory tract infections (LRTIs). However, the relative diagnostic performance of long-read versus short-read sequencing platforms remains incompletely defined. For this systematic review, a search was conducted in PubMed, Embase, Scopus, Web [...] Read more.
Metagenomic next-generation sequencing (mNGS) is increasingly employed for the diagnosis of lower respiratory tract infections (LRTIs). However, the relative diagnostic performance of long-read versus short-read sequencing platforms remains incompletely defined. For this systematic review, a search was conducted in PubMed, Embase, Scopus, Web of Science, and Google Scholar to identify studies directly comparing long-read (e.g., Oxford Nanopore, PacBio) and short-read (e.g., Illumina, Ion Torrent, BGISEQ) metagenomic sequencing for the diagnosis of LRTI. Eligible studies reported diagnostic accuracy or comparative performance between platforms. Risk of bias was evaluated using the QUADAS-2 tool. Thirteen studies met inclusion criteria. Reported platforms included Illumina, Oxford Nanopore, PacBio, Ion Torrent, and BGISEQ-500. A total of 13 studies met inclusion criteria. Across studies reporting sensitivity, average sensitivity was similar for Illumina (71.8%) and Nanopore (71.9%). Specificity varied substantially, ranging from 42.9 to 95% for Illumina and 28.6 to 100% for Nanopore. Concordance between platforms ranged from 56 to 100%. Illumina consistently produced superior genome coverage (approaching 100% in most reports) and higher per-base accuracy, whereas Nanopore demonstrated faster turnaround times (<24 h), greater flexibility in pathogen detection, and superior sensitivity for Mycobacterium species. Risk of bias was frequently high or unclear, particularly in patient selection (6 studies), index test interpretation (5), and flow and timing (4), limiting the robustness of pooled estimates. Long-read and short-read mNGS platforms exhibit comparable strengths in the diagnosis of LRTIs. Illumina remains optimal for applications requiring maximal accuracy and genome coverage, whereas Nanopore offers rapid, versatile pathogen detection, particularly for difficult-to-detect organisms such as Mycobacterium. However, there are certain limitations of the review, including a lack of comparable outcomes reported in all studies; therefore, further research is warranted to address this. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

20 pages, 7865 KB  
Article
Study on Development of Hydrogen Peroxide Generation Reactor with Pin-to-Water Atmospheric Discharges
by Sung-Young Yoon, Eun Jeong Hong, Junghyun Lim, Seungil Park, Sangheum Eom, Seong Bong Kim and Seungmin Ryu
Plasma 2025, 8(4), 41; https://doi.org/10.3390/plasma8040041 - 14 Oct 2025
Viewed by 184
Abstract
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), [...] Read more.
We present an experimentally validated, engineering-oriented framework for the design and operation of pin-to-water (PTW) atmospheric discharges to produce hydrogen peroxide (H2O2) on demand. Motivated by industrial needs for safe, point-of-use oxidant supply, we combine time-resolved diagnostics (FTIR, OES), liquid-phase analysis (ion chromatography, pH, conductivity), and coupled plasma-chemistry/fluid simulations to link plasma state to aqueous H2O2 yield. Under the tested conditions (14.3 kHz, 0.2 kW; electrode to quartz wall distance 12–14 mm; coolant setpoints 0–40 °C), H2O2 concentration follows a reproducible non-monotonic trajectory: rapid accumulation during the early treatment (typical peak at ~15–25 min), followed by decline with continued operation. The decline coincides with a robust vibrational-temperature (Tvib) threshold near ~4900 K measured from N2 emission, and with concurrent NOX accumulation and bulk acidification. Global chemistry modeling and Fluent flow fields reproduce the observed trend and show that both vibrational excitation (kinetics) and convective transport (mass/heat transfer) determine the productive time window. Based on these results, we formulate practical design rules—electrode gap (power density), discharge current control, thermal/flow management, water quality, and OES-based Tvib monitoring with an automated stop rule—that maximize H2O2 yield while avoiding NOX-dominated suppression. The study provides a clear path for transforming mechanistic plasma insights into deployable, industrial H2O2 generator designs. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Figure 1

12 pages, 1253 KB  
Article
Rapid Nanopore Sequencing of Positive Blood Cultures Using Automated Benzyl-Alcohol Extraction Improves Time-Critical Sepsis Management
by Chi-Sheng Tai, Hsing-Yi Chung, Tai-Han Lin, Chih-Kai Chang, Cherng-Lih Perng, Po-Shiuan Hsieh, Hung-Sheng Shang and Ming-Jr Jian
Antibiotics 2025, 14(10), 1001; https://doi.org/10.3390/antibiotics14101001 - 9 Oct 2025
Viewed by 337
Abstract
Background/Objective: Timely identification of bloodstream pathogens is critical for sepsis management; however, PCR inhibitors such as sodium polyanetholesulfonate (SPS) in blood culture broth compromise nucleic acid recovery and long read sequencing. We assessed whether coupling a benzyl alcohol SPS-removal step to the [...] Read more.
Background/Objective: Timely identification of bloodstream pathogens is critical for sepsis management; however, PCR inhibitors such as sodium polyanetholesulfonate (SPS) in blood culture broth compromise nucleic acid recovery and long read sequencing. We assessed whether coupling a benzyl alcohol SPS-removal step to the fully automated LabTurbo AIO extractor improves Oxford Nanopore-based pathogen detection. Methods: Thirteen positive blood culture broths were pre-treated with benzyl alcohol and divided: half volumes were purified on the LabTurbo AIO; paired aliquots underwent manual QIAamp extraction. DNA purity was evaluated by NanoDrop and Qubit. Barcoded libraries were sequenced on MinION R9.4.1 flow cells for 6 h. Results: Automated eluates showed a median A260/A280 of 1.92 and A260/A230 of 1.96, versus 1.80 and 1.48 for manual extracts. The automated workflow generated 1.69 × 106 total reads compared with 3.9 × 105 reads for manual extraction. The median N50 read length increased from 5.9 kb to 8.7 kb, and the median proportion of reads classified to species increased from 62% to 84%. The hands-on time was <5 min and the sample-to-answer turnaround was <8 h, compared with >9 h and 90 min for the manual protocol, respectively. Conclusions: Benzyl alcohol SPS removal integrated into the LabTurbo AIO extractor yielded purer, longer, and higher read counts, enhancing nanopore sequencing depth and accuracy while compressing diagnostic turnaround to a single working day. This represents a practical advance for rapid blood culture pathogen identification in critical care settings. Full article
Show Figures

Figure 1

12 pages, 2670 KB  
Article
Interfacial Mechanism of Biological Property Enhancement in Irradiated MAO Coatings by HIPIB
by Yi Wei, Yujie Shao, Yongxin Jiao and Xiaoguang Han
Coatings 2025, 15(10), 1184; https://doi.org/10.3390/coatings15101184 - 9 Oct 2025
Viewed by 216
Abstract
Magnesium alloy micro-arc oxidation (MAO) coatings are limited in biomedical applications due to their poor corrosion resistance. High-intensity pulsed ion beam (HIPIB) treatment enhances corrosion resistance as well as biocompatibility, but the underlying mechanisms are not well understood. In this study, CCK-8 assays, [...] Read more.
Magnesium alloy micro-arc oxidation (MAO) coatings are limited in biomedical applications due to their poor corrosion resistance. High-intensity pulsed ion beam (HIPIB) treatment enhances corrosion resistance as well as biocompatibility, but the underlying mechanisms are not well understood. In this study, CCK-8 assays, flow cytometry, and ALP activity tests were employed to investigate the bioactivity of the MAO coatings, and the surface properties of the coatings were characterized by SEM observation. Compared with pristine coating, the porosity of the MAO coating decreased by 9.44%, calcium content increased by 0.23%, and surface roughness and hydrophobicity increased to 7.57 and 102.11, respectively, with HIPIB irradiation. CCK-8 assays showed that the HIPIB-modified coating significantly improved cell proliferation, with a growth rate increase to 61.29% on Day 3. Flow cytometry analysis revealed accelerated cell cycle progression, especially a faster transition from the G1 to S and G2 phases, indicative of enhanced proliferation. Increased ALP activity further indicated that the irradiated coatings promoted osteogenic differentiation. The formed remelted dense layer with an increase in Ca content and high roughness induced by HIPIB irradiation not only acts as a corrosion barrier but also promotes the adhesion and differentiation of osteoblasts, which is mainly responsible for the enhancement of biological properties. Full article
(This article belongs to the Special Issue Advanced Surface Engineering of Alloys: Coatings and Thin Films)
Show Figures

Figure 1

19 pages, 3706 KB  
Article
Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs
by Simona Elena Avram, Lucian Barbu Tudoran, Gheorghe Borodi and Ioan Petean
Water 2025, 17(19), 2892; https://doi.org/10.3390/w17192892 - 4 Oct 2025
Viewed by 480
Abstract
Mineral water content strongly depends on the geologic layer characteristics. Therefore, the aim of the present study is to make a comparison between two renowned mineral water sources in Romania, Borsec and Tusnad. Two public springs were selected from each location: Boldizsar (about [...] Read more.
Mineral water content strongly depends on the geologic layer characteristics. Therefore, the aim of the present study is to make a comparison between two renowned mineral water sources in Romania, Borsec and Tusnad. Two public springs were selected from each location: Boldizsar (about 6600 L/day) and Lazar (about 500 L/day) from Borsec and Mikes (about 5000 L/day) and Young’s spring (about 600 L/day) from Tusnad. All investigated springs are naturally carbonated. Water properties were measured in situ and in laboratory for the collected samples; the results found that Borsec mineral water has a pH of about 7.5, while Tusnad mineral water is slightly acid (pH = 6.5). TDS strongly depends on the spring’s flow (for instance, Boldizsar has a TDS of about 900 mg/L, while Lazar has a TDS of about 1529 mg/L due to its high mineralization, while Young’s spring has a TDS of 165 mg/L due to its low mineralization, although it has low flow). Borsec mineral water has a lower salinity of about 1.22 PSU, while Tusnad water has a salinity of about 2 PSU, caused by a high amount of Na and Fe ions. Mineral waters dissolve ions from the geological layers, which react with carbonic acid during drying, generating specific crystallized compounds. The crystallized matter was investigated using XRD coupled with mineralogical optical microscopy (MOM); their microstructural features were observed using SEM coupled with elemental spectroscopy. Borsec water generates mainly Ca, Mg, and Na minerals like calcite, aragonite, pseudo-dolomite, natron, and traces of halite. Tusnad mineral waters have significant amounts of Ca, but also have Fe and much more Cl, since calcite and aragonite are mixed up with large amounts of halite and iron compounds. It looks like the presence of iron ions in the Tusnad mineral water collected from Mikes and Young’s spring explains the acidic pH. All these aspects are useful for further investigation regarding specific therapeutic purposes like chronic colitis and biliary lithiasis symptom amelioration (Boldizsar), chronic colitis, and enterocolitis symptoms (Lazar). Tusnad waters, like the water from Mikes spring, are recommended for anemia and neurasthenia, while Young’s spring is recommended for renal lithiasis amelioration. Full article
Show Figures

Figure 1

19 pages, 6040 KB  
Article
Impact of Ion Crossover on Mass Transfer Polarization Regulation in High-Power Vanadium Flow Batteries
by Jianbin Li, Zhengxiang Song and Zihan Li
Energies 2025, 18(19), 5192; https://doi.org/10.3390/en18195192 - 30 Sep 2025
Viewed by 267
Abstract
In order to solve the problems of mass transfer polarization spatiotemporal distribution variations, uncontrollable regulation error, and accelerated capacity decay caused by ion crossover in high-power vanadium liquid flow batteries (VFBs), a three-dimensional battery model with a flow-type flow field based on the [...] Read more.
In order to solve the problems of mass transfer polarization spatiotemporal distribution variations, uncontrollable regulation error, and accelerated capacity decay caused by ion crossover in high-power vanadium liquid flow batteries (VFBs), a three-dimensional battery model with a flow-type flow field based on the three-dimensional transient COMSOL Multiphysics® 6.1 numerical modeling method was developed in this study. The model combines the ion transmembrane migration equation with the mass transfer polarization theory, constructs an objective function to quantify the regulation error, and is validated by multifluid-field structural simulations. The results indicate the following: (1) Ion crossover induces a 3–5% electrolyte concentration deviation and a current density distribution bias reaching 11%; (2) The intensity of mass transfer polarization exhibits a linear increase with the flow rate difference between the positive and negative electrodes; (3) Ion crossover significantly degrades system performance, causing Coulombic efficiency (CE) and Energy efficiency (EE) to decrease by 1.1% and 1.5%, respectively. This research demonstrates that unlike conventional flow field optimization, our strategy quantifies the regulation error by directly compensating for the ΔQ caused by ion crossing, and further regulation minimizes the effect, providing a theoretical basis for mass transfer intensification and capacity recovery in flow batteries. Full article
Show Figures

Figure 1

11 pages, 10889 KB  
Article
Post-Irradiation Annealing of Bi Ion Tracks in Si3N4: In-Situ and Ex-Situ Transmission Electron Microscopy Study
by Anel Ibrayeva, Jacques O’Connell, Ruslan Rymzhanov, Arno Janse van Vuuren and Vladimir Skuratov
Crystals 2025, 15(10), 852; https://doi.org/10.3390/cryst15100852 - 30 Sep 2025
Viewed by 253
Abstract
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room [...] Read more.
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room temperature to 1000 °C in 50 °C increments, each held for 10 s. We observed a steady decrease in both the size and number of tracks, with only a small number of residual crystalline defects remaining at 1000 °C. Ex-situ annealing experiments were conducted at 400 °C, 700 °C, and 1000 °C for durations of 10, 20, and 30 min. Complete restoration of the crystalline lattice occurred after 30 min at 700 °C and 20 min at 1000 °C. Due to inherent differences in geometry, heat flow, and stress conditions between thin lamella and bulk specimens, in-situ and ex-situ results cannot be compared. Molecular dynamics simulations further revealed that track shrinkage begins in cells within picoseconds, supporting the notion that recrystallization can start on very short timescales. Overall, these findings demonstrate that thermal recrystallization of damage induced by swift heavy ion irradiation in polycrystalline Si3N4 is possible. This study provides a foundation for future research aimed at better understanding radiation damage recovery in this material. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

27 pages, 2865 KB  
Article
Cecytb-2, a Cytochrome b561 Homolog, Functions as an Ascorbate-Specific Transmembrane Ferric Reductase at Intestinal Lumens of Caenorhabditis elegans
by Masahiro Miura, Misaki Fukuzawa, Hiroshi Hori, Kazuo Kobayashi, Mariam C. Recuenco and Motonari Tsubaki
Biomolecules 2025, 15(10), 1385; https://doi.org/10.3390/biom15101385 - 29 Sep 2025
Viewed by 322
Abstract
One of the cytochrome b561 family members in C. elegans, named Cecytb-2, was investigated. Purified recombinant Cecytb-2 showed typical visible absorption spectra, EPR signals, and redox midpoint potentials, very similar to those of human Dcytb, which is responsible for intestinal iron [...] Read more.
One of the cytochrome b561 family members in C. elegans, named Cecytb-2, was investigated. Purified recombinant Cecytb-2 showed typical visible absorption spectra, EPR signals, and redox midpoint potentials, very similar to those of human Dcytb, which is responsible for intestinal iron acquisition by its ferric reductase activity. Fast kinetic experiments using pulse radiolysis and stopped-flow techniques showed that Cecytb-2 donates electrons to monodehydroascorbate radicals with a much lower reactivity than other cytochrome b561 members, but it can accept electrons from ascorbate (AsA) as rapidly as other members. DEPC treatment of Cecytb-2 caused significant inhibition of electron acceptance from AsA and lowered the midpoint potential of heme bL. MS/MS MASCOT analyses verified that N-carbethoxylations of conserved Lys98 and heme bL axial His101 residues on the cytosolic side were major causes of the inhibition. Reconstituted Cecytb-2 in sealed vesicle membranes, in which AsA was entrapped, showed significant transmembrane ferric reductase activity. In situ hybridization analysis revealed that Cecytb-2 mRNA was distributed in intestinal cells. Immunohistochemical analysis indicated that Cecytb-2 resided in intestinal lumens. Knockdown of the Cecytb-2 gene expression in N2 worms indicated a significant suppression of growth under ferrous ion-deficient conditions. Thus, the ferric reductase activity conferred by Cecytb-2 seems to participate in iron acquisition and is very important for normal growth in low-ferrous conditions, confirming that Cecytb-2 is a genuine Dcytb homolog in C. elegans. Full article
(This article belongs to the Special Issue Oxidative Stress and Ferroptosis in Health and Disease)
Show Figures

Figure 1

33 pages, 4216 KB  
Review
Myocardial Ischemia/Reperfusion Injury: Molecular Insights, Forensic Perspectives, and Therapeutic Horizons
by Maria Sofia Fede, Gloria Daziani, Francesco Tavoletta, Angelo Montana, Paolo Compagnucci, Gaia Goteri, Margherita Neri and Francesco Paolo Busardò
Cells 2025, 14(19), 1509; https://doi.org/10.3390/cells14191509 - 27 Sep 2025
Viewed by 834
Abstract
Acute myocardial infarction (AMI) remains the leading cause of death worldwide, with myocardial ischemia/reperfusion injury (MIRI) emerging as a significant factor influencing patient outcomes despite timely reperfusion therapy. MIRI refers to paradoxical myocardial damage that occurs upon restoration of coronary blood flow and [...] Read more.
Acute myocardial infarction (AMI) remains the leading cause of death worldwide, with myocardial ischemia/reperfusion injury (MIRI) emerging as a significant factor influencing patient outcomes despite timely reperfusion therapy. MIRI refers to paradoxical myocardial damage that occurs upon restoration of coronary blood flow and is driven by complex inflammatory, oxidative, and metabolic mechanisms, which can exacerbate infarct size (IS), contributing to adverse outcomes. This review explores the molecular and cellular pathophysiology of MIRI, emphasizing both its clinical and forensic relevance. The principal mechanisms discussed include oxidative stress and mitochondrial dysfunction, calcium overload and ion homeostasis imbalance, inflammatory responses, with particular focus on the NLRP3 inflammasome and cytokine pathways, and multiple forms of cell death (apoptosis, necroptosis, pyroptosis, and autophagy). Additionally, the authors present original immunohistochemical findings from autopsy cases of patients who suffered ST-segment elevation myocardial infarction (STEMI) and underwent percutaneous coronary intervention (PCI), but subsequently died. These findings underscore that successful reperfusion does not completely prevent delayed complications, like arrhythmias, ventricular fibrillation (VF), and sudden cardiac death (SCD), often caused by secondary MIRI-related mechanisms. Moreover, the case series highlight the diagnostic value of inflammatory markers for pathologists in identifying MIRI as a contributing factor in such fatalities. Finally, immunotherapeutic strategies—including IL-1 and IL-6 inhibitors such as Canakinumab and Tocilizumab—are reviewed for their potential to reduce cardiovascular events and mitigate the effects of MIRI. The review advocates for continued multidisciplinary research aimed at improving our understanding of MIRI, developing effective treatments, and informing forensic investigations of reperfusion-related deaths. Full article
Show Figures

Graphical abstract

17 pages, 7055 KB  
Article
Studies on the Migration of Metal Ions in the Aquifer and the Seepage Prevention of Intercepting Walls in Lead–Zinc Mining Areas
by Shuangcheng Tang, Xuehai Fu, Haiyue Lin, Zexuan Liao, Baolei Xie, Zhiwen Xue, Guanyu Zhao, Wei Qiao and Qiqing Wang
Water 2025, 17(19), 2828; https://doi.org/10.3390/w17192828 - 26 Sep 2025
Viewed by 456
Abstract
As metal resource extraction increases, heavy metal ion pollution in the saturated zone intensifies. Hence, research on the migration of heavy metal ions in aquifers and the efficacy of protective measures is essential to inform pollution prevention and control engineering. This study focuses [...] Read more.
As metal resource extraction increases, heavy metal ion pollution in the saturated zone intensifies. Hence, research on the migration of heavy metal ions in aquifers and the efficacy of protective measures is essential to inform pollution prevention and control engineering. This study focuses on the slag pond and its surrounding area of a smelting plant. Utilizing field hydrological surveys and experiments, and data from previous studies, we employed FEFLOW7.0 simulation software to model the groundwater system of the boulder aquifer in this region. The model divides the domain based on natural topography: the eastern river serves as a constant-head boundary, while other areas are set as specified-flux boundaries. The impermeable layer at the bottom is treated as a no-flow boundary, with a maximum simulation period of 2500 days. The simulation examines the natural movement of zinc ions and how the construction of the wall impacts their migration, as well as the wall’s effectiveness in preventing seepage. Findings indicate that the movement of zinc ions is significantly influenced by the reaction coefficient. When the reaction coefficient exceeds 10−8 s−1, zinc ions decrease rapidly in the area. After the construction of the cutoff wall, the maximum migration distance of zinc ions within 2500 days decreased from 220 m to 77 m, demonstrating its effectiveness in controlling zinc transport in groundwater. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 2181 KB  
Article
Continuous Separation of Lithium Iron Phosphate and Graphite Microparticles via Coupled Electric and Magnetic Fields
by Wenbo Liu, Xiaolei Chen, Pengfei Qi, Xiaomin Liu and Yan Wang
Micromachines 2025, 16(10), 1094; https://doi.org/10.3390/mi16101094 - 26 Sep 2025
Viewed by 337
Abstract
Driven by the growing demand for sustainable resource utilization, the recovery of valuable constituents from spent lithium-ion batteries (LIBs) has attracted considerable attention, whereas conventional recycling processes remain energy-intensive, inefficient, and environmentally detrimental. Herein, an efficient and environmentally benign separation strategy integrating dielectrophoresis [...] Read more.
Driven by the growing demand for sustainable resource utilization, the recovery of valuable constituents from spent lithium-ion batteries (LIBs) has attracted considerable attention, whereas conventional recycling processes remain energy-intensive, inefficient, and environmentally detrimental. Herein, an efficient and environmentally benign separation strategy integrating dielectrophoresis (DEP) and magnetophoresis (MAP) is proposed for isolating the primary components of “black mass” from spent LIBs, i.e., lithium iron phosphate (LFP) and graphite microparticles. A coupled electric–magnetic–fluid dynamic model is established to predict particle motion behavior, and a custom-designed microparticle separator is developed for continuous LFP–graphite separation. Numerical simulations are performed to analyze microparticle trajectories under mutual effects of DEP and MAP and to evaluate the feasibility of binary separation. Structural optimization revealed that the optimal separator configuration comprised an electrode spacing of 2 mm and a ferromagnetic body length of 5 mm with 3 mm spacing. Additionally, a numerical study also found that an auxiliary flow velocity ratio of 3 resulted in the best particle focusing effect. Furthermore, the effects of key operational parameters, including electric and magnetic field strengths and flow velocity, on particle migration were systematically investigated. The findings revealed that these factors significantly enhanced the lateral migration disparity between LFP and graphite within the separation channel, thereby enabling complete separation of LFP particles with high purity and recovery under optimized conditions. Overall, this study provides a theoretical foundation for the development of high-performance and environmentally sustainable LIBs recovery technologies. Full article
(This article belongs to the Collection Micro/Nanoscale Electrokinetics)
Show Figures

Figure 1

Back to TopTop