Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs
Abstract
1. Introduction
2. Materials and Methods
2.1. Water Sample Collection and Storage
2.2. Investigation Methods
3. Results
3.1. Water Sample Properties
3.2. Mineral Crystallization Assessement
3.3. Microstructural Observation and Elemental Spectroscopy
4. Discussion
- -
- Boldizsar spring: calcite, pseudo-dolomite, aragonite, halite, and natron;
- -
- Lazar spring: calcite, aragonite, pseudo-dolomite, halite, and natron;
- -
- Mikes spring: halite, sylvite, calcite, pseudo-dolomite, and iron nano-dispersoids;
- -
- Young’s spring: calcite, pseudo–dolomite, halite, and iron nano-dispersoids.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EDS | Energy Dispersive Spectroscopy |
MOM | Mineralogical Optical Microscopy |
RIR | Relative Intensity Ratio |
SEM | Scanning Electron Microscopy |
TDS | Total Dissolved Solids |
XRD | X-ray Diffraction |
References
- Li, C.; Shan, X.; Li, C.; Hao, S.; Cheng, B.; Lu, C.; Zhao, J.; Wang, X.; Su, Z. Analysis of the Occurrence Conditions and Formation Mechanism of Mineral Water in the Southern Region of Yaoquan Mountain, Wudalianchi. Water 2024, 16, 3130. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Wang, P.; Feng, C.; Cao, S.; Li, J. Unraveling the geochemical behaviors of rare earth elements (REEs) in Chinese drinking natural mineral waters: Environmental and health perspectives. J. Hazard. Mater. 2025, 494, 138731. [Google Scholar] [CrossRef] [PubMed]
- Stiller, M.; Yechieli, Y.; Gavrieli, I. Rates of halite dissolution in natural brines: Dead Sea solutions as a case study. Chem. Geol. 2016, 447, 161–172. [Google Scholar] [CrossRef]
- Bai, H.; Pan, T.; Han, G.; Fan, Q.; Miao, Q.; Bu, H. Hydrochemical Characteristics and Genesis of Sand–Gravel Brine Deposits in the Mahai Basin of the Northern Qinghai–Tibetan Plateau. Water 2024, 16, 3562. [Google Scholar] [CrossRef]
- Parag, Y.; Elimelech, E.; Opher, T. Bottled Water: An Evidence-Based Overview of Economic Viability, Environmental Impact, and Social Equity. Sustainability 2023, 15, 9760. [Google Scholar] [CrossRef]
- Ridder, Consumption Volume of Bottled Water Worldwide 2020, by Leading Countries, Statista, 26 June 2025. Available online: https://www.statista.com/statistics/1307883/consumption-of-bottled-water-worldwide-in-2009/?srsltid=AfmBOorZx9WuHBSGSNXNhDqHqQL2CzCVuNyE742p2ZS1R2klahWaJPW8 (accessed on 14 August 2025).
- Serbulea, M.; Payyappallimana, U. Onsen (hot springs) in Japan—Transforming terrain into healing landscapes. Health Place 2012, 18, 1366–1373. [Google Scholar] [CrossRef]
- Le Furo, Mineral Mist Bath. Available online: https://aquaignis.jp/en/spa_lefuro.php (accessed on 15 August 2025).
- Avram, S.E.; Platon, D.V.; Tudoran, L.B.; Borodi, G.; Petean, I. Mineral Powder Extraction by the Natural Drying of Water from the Public Springs in Borsec. Appl. Sci. 2024, 14, 10806. [Google Scholar] [CrossRef]
- Dewandel, B.; Alazard, M.; Lachassagne, P.; Bailly-Comte, V.; Couëffé, R.; Grataloup, S.; Ladouche, B.; Lanini, S.; Maréchal, J.C.; Wyns, R. Respective roles of the weathering profile and the tectonic fractures in the structure and functioning of crystalline thermo-mineral carbo-gaseous aquifers. J. Hydrol. 2017, 547, 690–707. [Google Scholar] [CrossRef]
- Dupuy, M.; Garel, E.; Chatton, E.; Labasque, T.; Mattei, A.; Santoni, S.; Vergnaud, V.; Aquilina, L.; Huneau, F. Using natural gas content of groundwater to improve the understanding of complex thermo-mineral spring systems. J. Hydrol. 2024, 634, 130956. [Google Scholar] [CrossRef]
- Pricajan, A. Mineral and Thermal Water from Romania (in Romanian: Apele Minerale Si Termale Din Romania); Technical Publishing House: Bucharest, Romania, 1972; 296p. [Google Scholar]
- Gal, E.E. Tusnad Baths Touristic Station and its Surroundings—Touristic Potential and Development Perspectives. Bachelor’s Thesis, Faculty of Economic, Law and Administrative Sciences, Petru Maior University, Targu Mures, Romania, 2008. (In Romanian). [Google Scholar]
- Schreiber, W.E. Geographical classification and genesis of massive Ciomadu. Studia Univ. Babes-Bolyai Geogr. 1972, 1, 15–22. [Google Scholar]
- Frunzeti, N.; Baciu, C. Diffuse CO2 Emission at Sfânta Ana Lake-Filled Crater (Eastern Carpathians, Romania). Procedia Environ. Sci. 2012, 14, 188–194. [Google Scholar] [CrossRef]
- Keller, C.K.; Bacon, D.H. Soil respiration and georespiration distinguished by transport analyses of vadose CO2, 13CO2 and 14CO2, Glob. Biogeochem. Cycles 1998, 12, 361–372. [Google Scholar] [CrossRef]
- Giggenbach, W.F.; Sano, Y.; Wakita, H. Isotopic composition of helium and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim. Cosmochim. Acta 1993, 57, 3427–3455. [Google Scholar] [CrossRef]
- Vaselli, O.; Minissale, A.; Tassi, F.; Magro, G.; Seghedi, I.; Ioane, D.; Szakacs, A. A geochemical traverse across the Eastern Carpathians (Romania): Constraints on the origin and evolution of the mineral water and gas discharges. Chem. Geol. 2002, 182, 637–654. [Google Scholar] [CrossRef]
- Yang, M.; Tan, L.; Batchelor-McAuley, C.; Compton, R.G. The solubility product controls the rate of calcite dissolution in pure water and seawater. Chem. Sci. 2024, 15, 2464–2472. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, Y.; Wang, G.; Li, T.; Liu, F.; Wei, S.; Yan, X.; Gan, H.; Zhang, W. Genesis Mechanisms of Geothermal Resources in Mangkang Geothermal Field, Tibet, China: Evidence from Hydrochemical Characteristics of Geothermal Water. Water 2022, 14, 4041. [Google Scholar] [CrossRef]
- Campean, R.F.; Petean, I.; Baraian, M.; Hosu-Prack, A.G.; Ristoiu, D.; Arghir, G. Mineral particulate matter from the St. ana lake sand related to the water suspensions. Carpathian J. Earth Environ. Sci. 2012, 7, 57–66. [Google Scholar]
- Liu, Y.; Ma, T.; Chen, J.; Peng, Z.; Xiao, C.; Qiu, W.; Liu, R.; Du, Y. Impact of clayey sediment compaction on pore water evolution and the release of iron. Appl. Geochem. 2023, 152, 105635. [Google Scholar] [CrossRef]
- Borsec Public Springs Composition Declaration Displayed on the Entrance Front, National Mineral Water Company of Romania. Available online: https://www.snam.ro/ (accessed on 21 February 2024).
- Hsieh, Z.-H.; Fan, C.-H.; Tu, H.-H.; Hu, C.-V.; Li, M.L.; Yeh, C.-K. Acoustic vortex induced bubble cage: An on-demand light guide in turbid media. Ultrasonics 2025, 156, 107761. [Google Scholar] [CrossRef] [PubMed]
- Choe, U.H.; Choe, J.H.; Kim, Y.J. Removal of deposits and improvement of shelf life in CO2 rich mineral water by ozone microbubbles. Qimica Nova 2025, 48, e-20250045. [Google Scholar] [CrossRef]
- Avram, S.E.; Birle, B.V.; Tudoran, L.B.; Borodi, G.; Petean, I. Investigation of Used Water Sediments from Ceramic Tile Fabrication. Water 2024, 16, 1027. [Google Scholar] [CrossRef]
- Villalobos, M.; Cruz-Valladares, A.X. Towards Building a Unified Adsorption Model for Goethite Based on Variable Crystal Face Contributions: III Carbonate Adsorption. Colloids Interfaces 2025, 9, 51. [Google Scholar] [CrossRef]
- Nie, X.; Wang, Z.; Wan, J.; Wang, G.; Li, Y.; Ouyang, S. Competition between homogeneous and heterogeneous crystallization of CaCO3 during water softening. Water Res. 2024, 250, 121061. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mendes, C.E.; de Melo, L.G.T.C.; Wang, J.; Santos, R.M. Production of Sodium Bicarbonate with Saline Brine and CO2 Co-Utilization: Comparing Modified Solvay Approaches. Crystals 2023, 13, 470. [Google Scholar] [CrossRef]
- Gregg, J.M.; Bish, D.L.; Kaczmarek, S.E.; Machel, H.G. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology 2015, 62, 1749–1769. [Google Scholar] [CrossRef]
- Land, L.S. Failure to precipitate dolomite at 25 °C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat. Geochem. 1998, 4, 361–368. [Google Scholar] [CrossRef]
- Pimentel, C.; Pina, C.M. Reaction pathways towards the formation of dolomite-analogues at ambient conditions. Geochim. Cosmochim. Acta 2016, 178, 259–267. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Wada, Y.; Hiaki, T.; Onoe, K.; Matsumoto, M. Effects of CO2 fine bubble injection on reactive crystallization of dolomite from concentrated brine. J. Cryst. Growth 2017, 469, 36–41. [Google Scholar] [CrossRef]
- Chruszcz-Lipska, K.; Zelek-Pogudz, S.; Solecka, U.; Solecki, M.L.; Szostak, E.; Zborowski, K.K.; Zając, M. Use of the Far Infrared Spectroscopy for NaCl and KCl Minerals Characterization—A Case Study of Halides from Kłodawa in Poland. Minerals 2022, 12, 1561. [Google Scholar] [CrossRef]
- Petean, I.; Arghir, G.; Câmpean, R.F.; Bărăian, M.; Hosu Prack, A.G. Crystalographyc relations applied to homogeneous cristalization of badenian salt. Acta Tech. Napoc. Ser. Appl. Mech. Math. 2011, 54, 193–200. [Google Scholar]
- Maior, I.; Badea, G.E.; Stănășel, O.D.; Sebeșan, M.; Cojocaru, A.; Petrehele, A.I.G.; Creț, P.; Blidar, C.F. Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water. Energies 2025, 18, 3634. [Google Scholar] [CrossRef]
- Avram, S.E.; Filip, M.R.; Barbu Tudoran, L.; Borodi, G.; Petean, I. Investigation of ferrous conglomerate particles found in carwash slurry and their environmental implications. Stud. UBB Chem. 2023, 68, 57–70. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Renard, F.; Chiriac, R.; Findling, N.; Ghanbaja, J.; Toche, F. Sequential precipitation of a new goethite–calcite nanocomposite and its possible application in the removal of toxic ions from polluted water. Chem. Eng. J. 2013, 214, 139–148. [Google Scholar] [CrossRef]
- Papp, D.C.; Niţoi, E. Isotopic composition and origin of mineral and geothermal waters from Tuşnad Băi Spa, Harghita Mountains, Romania. J. Geochem. Explor. 2006, 89, 314–317. [Google Scholar] [CrossRef]
- Kao, N.-C.; Wang, M.-K.; Chiang, P.-N.; Chang, S.-S. Characterization of wheat-rice-stone developed from porphyritic hornblende andesite. Appl. Clay Sci. 2003, 23, 337–346. [Google Scholar] [CrossRef]
- Topaz, A.; Golan, T.; Boneh, Y. Natural fabrics of a hornblende-rich amphibolite: Implications for hornblende crystallographic preferred orientation and seismic anisotropy of the lower crust. Tectonophysics 2023, 865, 230036. [Google Scholar] [CrossRef]
- Linc, R.; Pantea, E.; Șerban, E.; Ciurba, A.-P.; Serban, G. Hydrochemical and Microbiological Investigations and the Therapeutic Potential of Some Mineral Waters from Bihor County, Romania. Sustainability 2023, 15, 15640. [Google Scholar] [CrossRef]
- Romay-Barrero, H.; Herrero-López, J.; Llorente-González, J.A.; Melgar Del Corral, G.; Palomo-Carrión, R.; Martínez-Galán, I. Balneotherapy and health-related quality of life in individuals with Rheumatoid arthritis: An observational study under real clinical practice conditions. Balneo PRM Res. J. 2022, 13, 527. [Google Scholar] [CrossRef]
- Verhagen, A.P.; Bierma-Zeinstra, S.M.; Boers, M.; Cardoso, J.R.; Lambeck, J.; Bie, R.; Vet, H.C. Balneotherapy (or spa therapy) for rheumatoid arthritis. Cochrane Database Syst. Rev. 2015, 11, CD000518. [Google Scholar] [CrossRef]
- Dickson-Gomez, J.; Nyabigambo, A.; Rudd, A.; Ssentongo, J.; Kiconco, A.; Mayega, R.W. Water, Sanitation, and Hygiene Challenges in Informal Settlements in Kampala, Uganda: A Qualitative Study. Int. J. Environ. Res. Public Health 2023, 20, 6181. [Google Scholar] [CrossRef]
- Wangchuk, P.; Yeshi, K.; Ugyen, K.; Dorji, J.; Wangdi, K.; Samten; Tshering, P.; Nugraha, A.S. Water-Based Therapies of Bhutan: Current Practices and the Recorded Clinical Evidence of Balneotherapy. Water 2021, 13, 9. [Google Scholar] [CrossRef]
- Huang, A.; Seité, S.; Adar, T. The use of balneotherapy in dermatology, Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef]
- Milanković, V.; Djuriš, J.; Tubić, A.; Agbaba, J.; Forkapić, S.; Lukić, M. Assessing the safety of thermal mineral water for cosmetic applications: An integrated approach using physicochemical, cheminformatics, and bioinformatics techniques. RSC Adv. 2025, 15, 17755–17775. [Google Scholar] [CrossRef]
- Choudhury, N.; Siddiqua, T.J.; Ahmed, S.M.T.; Haque, M.A.; Ali, M.; Dil Farzana, F.; Naz, F.; Rahman, S.S.; Faruque, A.S.G.; Rahman, S.; et al. Iron content of drinking water is associated with anaemia status among children in high groundwater iron areas in Bangladesh. Trop. Med. Int. Health 2022, 27, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Noubactep, C.; Kenmogne-Tchidjo, J.F.; Vollmer, S. Iron-fortified water: A new approach for reducing iron deficiency anemia in resource-constrained settings. Sci. Rep. 2023, 13, 13565. [Google Scholar] [CrossRef]
- Dutra-de-Oliveira, J.E.; Lamounier, J.A.; de Almeida, C.N.A.; Marchini, J.S. Fortification of Drinking Water to Control Iron- Deficiency Anemia in Preschool Children. Food Nutr. Bull. 2007, 28, 173–180. [Google Scholar] [CrossRef] [PubMed]
Parameter | Measuring Unit | Boldizsar | Lazar | Mikes |
---|---|---|---|---|
pH | pH | 6.25 | 6.43 | 6.0 |
CO32− | mg/L | 1470 | 2430 | 378.2 |
CO2 free | mg/L | 1310 | 1450 | 1397.7 |
Ca2+ | mg/L | 250 | 465 | 91.4 |
Fe2+ | mg/L | 2.84 | 0.194 | 25.7 |
Mg2+ | mg/L | 78.4 | 163 | 35.5 |
K+ | mg/L | 17.3 | 29 | 74.0 |
Na+ | mg/L | 64.4 | 111 | 300.9 |
Si4+ | mg/L | 18.8 | 28.5 | 103.6 |
Cl− | mg/L | bdl | bdl | 509.9 |
SO42- | mg/L | bdl | bdl | 6.7 |
NH4 | mg/L | bdl | bdl | 3.0 |
Mn2+ | mg/L | bdl | bdl | bdl |
BO2− | mg/L | bdl | bdl | 89.1 |
Characteristics | Mineral Composition | ||||||
---|---|---|---|---|---|---|---|
Aragonite | Calcite | Pseudo-Dolomite | Halite | Sylvite | Natron | ||
Chemical formula | CaCO3 | CaCO3 | CaMg(CO3)2 | NaCl | KCl | Na2CO3‧10H2O | |
Crystal system | Orthorhombic | Trigonal | Trigonal | Cubic | Cubic | Monoclinic | |
Habit | rhombic granular | pseudo-hexagonal | columnar granular | rectangular plates | rectangular plates | prismatic columnar | |
MOM colors | Violet–blue | Yellow white –brown | Yellow white –brown | Transparent pale blue | Transparent pale blue | Yellow– yellow gray | |
Boldizsar | Amount, wt.% | 12 | 58 | 15 | 9 | - | 6 |
Size range, μm | 2.5–5 | 5–10 | 5–12 | * | - | 5–10 | |
Lazar | Amount, wt.% | 23 | 37 | 20 | 12 | - | 8 |
Size range, μm | 3–10 | 5–30 | 5–22 | * | - | 5–15 | |
Mikes | Amount, wt.% | - | 13 | 10 | 45 | 32 | - |
Size range, μm | - | 5–15 | 15–25 | 25–250 | 25–250 | - | |
Young’s | Amount, wt.% | - | 53 | 32 | 15 | - | - |
Size range, μm | - | 5–20 | 10–25 | * | - | - |
Element, at.% | Boldizsar | Lazar | Mikes | Young’s |
---|---|---|---|---|
O | 57.5 | 64.5 | 41.7 | 57.0 |
C | 33.8 | 19.2 | 27.8 | 21.9 |
Ca | 2.1 | 6.0 | 0.9 | 2.4 |
Mg | 6.2 | 5.0 | 2.5 | 1.4 |
Na | 0.3 | 4.7 | 11.8 | 11.6 |
Cl | - | 0.3 | 12.1 | 1.1 |
K | - | 0.3 | 2.7 | 0.7 |
S | 0.1 | - | - | 3.0 |
Fe | - | - | 0.4 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avram, S.E.; Tudoran, L.B.; Borodi, G.; Petean, I. Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs. Water 2025, 17, 2892. https://doi.org/10.3390/w17192892
Avram SE, Tudoran LB, Borodi G, Petean I. Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs. Water. 2025; 17(19):2892. https://doi.org/10.3390/w17192892
Chicago/Turabian StyleAvram, Simona Elena, Lucian Barbu Tudoran, Gheorghe Borodi, and Ioan Petean. 2025. "Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs" Water 17, no. 19: 2892. https://doi.org/10.3390/w17192892
APA StyleAvram, S. E., Tudoran, L. B., Borodi, G., & Petean, I. (2025). Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs. Water, 17(19), 2892. https://doi.org/10.3390/w17192892