Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DSC | Differential Scanning Calorimetry |
| LIB | Lithium-ion Battery |
| SEI | Solid Electrolyte Interphase |
| XRD | X-ray Diffraction |
| XPS | X-ray Photoelectron Spectroscopy |
| AM | Active Material |
| CMC | Carboxymethyl Cellulose |
| SBR | Styrene–Butadiene Rubber |
| ETD | Everhart–Thornley Detector |
| TLD | Through-Lens Detector |
| EC: DEC | Ethylene Carbonate: Di-Ethylene Carbonate |
| FEC | Fluoroethylene Carbonate |
| CCCV | Constant Current Constant Voltage |
| SOC | State of Charge |
| DMC | Dimethyl Carbonate |
| VBS | Valence Band Spectra |
| SEM | Scanning Electron Microscopy |
References
- Obrovac, M.N. Si-alloy negative electrodes for Li-ion batteries. Curr. Opin. Electrochem. 2018, 9, 8–17. [Google Scholar] [CrossRef]
- Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 2020, 4, 5387–5416. [Google Scholar] [CrossRef]
- Reichmann, T.L.; Gebert, C.; Cupid, D.M. Investigation of the Li solubility in the intermediate phase Li17Sn4 relevant to understanding lithiation mechanisms in Sn-based anode materials. J. Alloys Compd. 2017, 714, 593–602. [Google Scholar] [CrossRef]
- Wang, C.; Yang, C.; Zheng, Z. Toward Practical High-Energy and High-Power Lithium Battery Anodes: Present and Future. Adv. Sci. 2022, 9, 2105213. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; An, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Nitta, N.; Yushin, G. High-capacity anode materials for lithium-ion batteries: Choice of elements and structures for active particles. Particle and Particle Systems Characterization. Part. Part. Syst. Charact. 2014, 31, 317–336. [Google Scholar] [CrossRef]
- Li, D.; Fürtauer, S.; Flandorfer, H.; Cupid, D. Thermodynamic assessment and experimental investigation of the Li-Sn system. Calphad 2014, 47, 181–195. [Google Scholar] [CrossRef]
- Drüe, M.; Seyring, M.; Kozlov, A.; Song, X.; Schmid-Fetzer, R.; Rettenmayr, M. Thermodynamic stability of Li2C2 and LiC6. J. Alloys Compd. 2013, 575, 403–407. [Google Scholar] [CrossRef]
- Xin, F.; Whittingham, M.S. Challenges and Development of Tin-Based Anode with High Volumetric Capacity for Li-Ion Batteries. Electrochem. Energy Rev. 2020, 3, 643–655. [Google Scholar] [CrossRef]
- Obrovac, M.N.; Chevrier, V.L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502. [Google Scholar] [CrossRef]
- Glibo, A.; Eshraghi, N.; Surace, Y.; Mautner, A.; Flandorfer, H.; Cupid, D.M. Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries. Electrochim. Acta 2023, 441, 141725. [Google Scholar] [CrossRef]
- Huang, Z.X.; Wang, Y.; Liu, B.; Kong, D.; Zhang, J.; Chen, T.; Yang, H.Y. Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions. Sci. Rep. 2017, 7, 41015. [Google Scholar] [CrossRef]
- Youn, D.H.; Stauffer, S.K.; Xiao, P.; Park, H.; Nam, Y.; Dolocan, A.; Henkelman, G.; Heller, A.; Mullins, C.B. Simple Synthesis of Nanocrystalline Tin Sulfide/N-Doped Reduced Graphene Oxide Composites as Lithium Ion Battery Anodes. ACS Nano 2016, 10, 10778–10788. [Google Scholar] [CrossRef]
- Office of the European Union; Council of the European Union. Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020 Text with EEA Relevance. 2024. Available online: http://data.europa.eu/eli/reg/2024/1252/oj (accessed on 4 June 2024).
- Momma, K.; Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Yoo, H.; Moon, J.H.; Seong, H.; Jin, Y.; Kim, G.; Jung, T.; Lee, J.B.; Kwon, S.-R.; Yang, M.; Choi, J. Enhanced reversible reaction of hexagonal SnS2@rGO as anode materials for lithium-ion batteries: Analysis of the morphological change mechanism. J. Energy Storage 2024, 96, 112599. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, J.; Zhang, Y.; Zhang, Y.; Lin, R. Si/SnS2 Nanocomposite for Lithium Ion Battery Anodes. ACS Appl. Nano Mater. 2023, 6, 22767–22773. [Google Scholar] [CrossRef]
- Yang, R.; Liang, H.; Chen, M.; Lu, F. Entropy enhancement drived high initial Coulombic efficiency and capacity integrated SnS2 nanosheets for lithium-ion batteries. Electrochim. Acta 2024, 504, 144932. [Google Scholar] [CrossRef]
- Bekzhanov, A.; Daniyeva, N.; Jiang, Q.; Surace, Y.; Kleitz, F.; Cupid, D. Hydrothermally Synthesized SnS2 Anode Materials with Selectively Tuned Crystallinity. Small Sci. 2024, 5, 2400516. [Google Scholar] [CrossRef] [PubMed]
- Glibo, A.; Reda, M.; Surace, Y.; Cupid, D.M.; Flandorfer, H. Correlation between microstructure, thermodynamic stability, and electric work of tin sulfide active anode materials for Li-ion batteries. J. Alloys Compd. 2023, 969, 172320. [Google Scholar] [CrossRef]
- Mukaibo, H.; Yoshizawa, A.; Momma, T.; Osaka, T. Particle size and performance of SnS2 anodes for rechargeable lithium batteries. J. Power Sources 2003, 119–121, 60–63. [Google Scholar] [CrossRef]
- Kong, X.; Wu, X.; Li, J.; Zhang, L.; Ouyang, H.; Feng, Q. One-Step Urothermal Synthesis of Li+-Intercalated SnS2 Anodes with High Initial Coulombic Efficiency for Li-Ion Batteries. ACS Appl. Nano Mater. 2023, 6, 946–952. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, H.; Zhou, L.; Shi, B.; Guo, L.; Huang, J. In-situ liquid-phase transformation of SnS2/CNTs composite from SnO2/CNTs for high performance lithium-ion battery anode. Appl. Surf. Sci. 2021, 566, 150645. [Google Scholar] [CrossRef]
- Li, J.; Wu, P.; Lou, F.; Zhang, P.; Tang, Y.; Zhou, Y.; Lu, T. Mesoporous carbon anchored with SnS2 nanosheets as an advanced anode for lithium-ion batteries. Electrochim. Acta 2013, 111, 862–868. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Preger, Y.; Ivanov, S.; Langendorf, J.; Torres-Castro, L.; Lamb, J.; Chalamala, B.; Ferreira, S.R. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge. J. Power Sources 2019, 435, 226777. [Google Scholar] [CrossRef]
- Yu, S.; Mao, Y.; Xie, J.; Xu, C.; Lu, T. Thermal runaway chain reaction determination and mechanism model establishment of NCA-graphite battery based on the internal temperature. Appl. Energy 2024, 353, 122097. [Google Scholar] [CrossRef]
- Kim, H.S.; Chung, Y.H.; Kang, S.H.; Sung, Y.-E. Electrochemical behavior of carbon-coated SnS2 for use as the anode in lithium-ion batteries. Electrochim. Acta 2009, 54, 3606–3610. [Google Scholar] [CrossRef]
- Park, Y.-S.; Lee, S.-M. Effects of particle size on the thermal stability of lithiated graphite anode. Electrochim. Acta 2009, 54, 3339–3343. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.-C.; Jenkins, D.M.; Chernova, N.A.; Chung, Y.; Radhakrishnan, B.; Chu, I.-H.; Fang, J.; Wang, Q.; Omenya, F.; et al. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries. ACS Appl Mater Interfaces. ACS Appl. Mater. Interfaces 2016, 8, 7013–7021. [Google Scholar] [CrossRef]
- Roth, E.; Doughty, D.; Franklin, J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders. J. Power Sources 2004, 134, 222–234. [Google Scholar] [CrossRef]
- Zhang, Z.; Fouchard, D.; Rea, J. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells. J. Power Sources 1998, 70, 16–20. [Google Scholar] [CrossRef]
- Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit. Joule 2018, 2, 2047–2064. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Akram, M.; Taha, I.; Ghobashy, M.M. Low temperature pyrolysis of carboxymethylcellulose. Cellulose 2016, 23, 1713–1724. [Google Scholar] [CrossRef]
- Williams, P.T.; Besler, S. Pyrolysis-thermogravimetric analysis of tyres and tyre components. Fuel 1995, 74, 1277–1283. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Yao, X.; Chen, C. Thermal Behavior of Lithiated Graphite with Electrolyte in Lithium-Ion Batteries. J. Electrochem. Soc. 2006, 153, A274–A329. [Google Scholar] [CrossRef]
- Doi, T.; Zhao, L.; Zhou, M.; Okada, S.; Yamaki, J.-I. Quantitative studies on the thermal stability of the interface between graphite electrode and electrolyte. J. Power Sources 2008, 185, 1380–1385. [Google Scholar] [CrossRef]
- Gachot, G.; Grugeon, S.; Eshetu, G.G.; Mathiron, D.; Ribière, P.; Armand, M.; Laruelle, S. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochim. Acta 2012, 83, 402–409. [Google Scholar] [CrossRef]
- Jennifer, V.; Hang, L. Safety Evaluation of Lithium-ion Battery Cathode and Anode Materials Using Differential Scanning Calorimetry. Available online: https://www.tainstruments.com/applications-notes/safety-evaluation-of-lithium-ion-battery-cathode-and-anode-materials-using-differential-scanning-calorimetry/ (accessed on 5 June 2025).
- Robert, F.; Lippens, P.; Olivier-Fourcade, J.; Jumas, J.-C.; Gillot, F.; Morcrette, M.; Tarascon, J.-M. Mössbauer spectra as a “fingerprint” in tin-lithium compounds: Applications to Li-ion batteries. J. Solid State Chem. 2007, 180, 339–348. [Google Scholar] [CrossRef]
- Nguyen, C.C.; Yoon, T.; Seo, D.M.; Guduru, P.; Lucht, B.L. Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation. ACS Appl. Mater. Interfaces 2016, 8, 12211–12220. [Google Scholar] [CrossRef]
- Sopinskyy, M.V.; Khomchenko, V.S.; Strelchuk, V.V.; Nikolenko, A.S.; Olchovyk, G.P.; Vishnyak, V.V.; Stonis, V.V. Possibility of graphene growth by close space sublimation. Nanoscale Res. Lett. 2014, 9, 182. [Google Scholar] [CrossRef]
- Kupka, J.; Surace, Y.; Cupid, D.M.; Flandorfer, H. Understanding and Comparing the Stability of Water-versus NMP-Based Tin(IV)Sulfide Electrodes Using Post-Mortem Analysis. ChemElectroChem 2025, 12, e202400702. [Google Scholar] [CrossRef]
- Sharova, V.; Moretti, A.; Diemant, T.; Varzi, A.; Behm, R.; Passerini, S. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J. Power Sources 2018, 375, 43–52. [Google Scholar] [CrossRef]
- Böhme, S.; Philippe, B.; Edström, K.; Nyholm, L. Photoelectron Spectroscopic Evidence for Overlapping Redox Reactions for SnO2 Electrodes in Lithium-Ion Batteries. J. Phys. Chem. C 2017, 121, 4924–4936. [Google Scholar] [CrossRef]
- Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempik, G.; Szuber, J. XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation. Thin Solid Films 2005, 490, 36–42. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Zhang, D.; Pei, C.; Sun, B.; Ni, S. Lithium difluoro(oxalate)borate as an efficient and multifunctional additive for extended cycling life of LiFePO4 cathodes. Ionics 2024, 30, 2493–2501. [Google Scholar] [CrossRef]
- Keefe, A.S.; Weber, R.; Hill, I.G.; Dahn, J.R. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/Artificial Graphite Cells after Formation and after Cycling. J. Electrochem. Soc. 2020, 167, 120507. [Google Scholar] [CrossRef]
- Crist, B.V. Monochromatic XPS Spectra the Elements and Native Oxides. 2024. Available online: https://xpsmetrology.com (accessed on 27 March 2025).
- Fantauzzi, M.; Elsener, B.; Atzei, D.; Rigoldi, A.; Rossi, A. Exploiting XPS for the identification of sulfides and polysulfides. RSC Adv. 2015, 5, 75953–75963. [Google Scholar] [CrossRef]
- Kato, A.; Kowada, H.; Deguchi, M.; Hotehama, C.; Hayashi, A.; Tatsumisago, M. XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ion. 2018, 322, 1–4. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, Y.; Liang, G. Li2S as a cathode additive to compensate for the irreversible capacity loss of lithium iron phosphate batteries. Ionics 2022, 28, 1573–1581. [Google Scholar] [CrossRef]
- Zha, C.; Wang, S.; Liu, C.; Zhao, Y.; He, B.; Lyu, C.; Li, J.; Ji, S.; Chen, S.; Hui, K.S.; et al. Single-atom tailoring of Li2S to Form Li2S2 for building better lithium-sulfur batteries. Energy Storage Mater. 2022, 47, 79–86. [Google Scholar] [CrossRef]
- Lu, F.; Ji, X.; Yang, Y.; Deng, W.; Banks, C.E. Room temperature ionic liquid assisted well-dispersed core-shell tin nanoparticles through cathodic corrosion. RSC Adv. 2013, 3, 18791–18793. [Google Scholar] [CrossRef]
- Paparazzo, E. On the interpretation of XPS spectra of metal (Pt, Pt–Sn) nanoparticle/graphene systems. Carbon 2013, 63, 578–581. [Google Scholar] [CrossRef]
- Pan, S.S.; Wang, S.; Zhang, Y.X.; Luo, Y.Y.; Kong, F.Y.; Xu, S.C.; Xu, J.M.; Li, G.H. P-type conduction in nitrogen-doped SnO2 films grown by thermal processing of tin nitride films. Appl. Phys. A 2012, 109, 267–271. [Google Scholar] [CrossRef]
- Szuber, J.; Czempik, G.; Larciprete, R.; Koziej, D.; Adamowicz, B. XPS study of the L-CVD deposited SnO thin films exposed to 2 oxygen and hydrogen. Thin Solid Films 2001, 391, 198–203. [Google Scholar]
- Bulíř, J.; Zikmund, T.; Novotný, M.; Lančok, J.; Fekete, L.; Juha, L. Photoluminescence excitation of lithium fluoride films by surface plasmon resonance in Kretschmann configuration. Appl. Phys. A 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Crist, V. Tin [Internet]. Tin Basic XPS Information. Available online: https://xpsdatabase.net/tin-sn-z50-tin-compounds (accessed on 11 July 2025).
- Dedryvère, R.; Leroy, S.; Martinez, H.; Blanchard, F.; Lemordant, D.; Gonbeau, D. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J. Phys. Chem. B 2006, 110, 12986–12992. [Google Scholar] [CrossRef]
- Valence Band Spectra—The Elements. Available online: https://xpslibrary.com/valence-band-spectra-elements/?srsltid=AfmBOor98J3-jhYHNOjWIilDb88VvnmAVhWYmOxOSdWIZ1lJRu0GSLzF (accessed on 11 July 2025).
- Isaacs, M. Knowledge Base (Tin). Available online: https://www.harwellxps.guru/knowledgebase/tin/#1703157303003-17a320fc-c273e144-93715127-1815f90a-7b0d43aa-31ebae8a-9f85 (accessed on 11 July 2025).
- Zatsepin, D.; Zatsepin, A.; Boukhvalov, D.; Kurmaev, E.; Gavrilov, N. Sn-loss effect in a Sn-implanted a-SiO2 host-matrix after thermal annealing: A combined XPS, PL, and DFT study. Appl. Surf. Sci. 2016, 367, 320–326. [Google Scholar] [CrossRef]
- Schwöbel, A.; Precht, R.; Motzko, M.; Solano, M.A.C.; Calvet, W.; Hausbrand, R.; Jaegermann, W. Determination of the valence band structure of an alkali phosphorus oxynitride glass: A synchrotron XPS study on LiPON. Appl. Surf. Sci. 2014, 321, 55–60. [Google Scholar] [CrossRef]
- Dedryvère, R.; Laruelle, S.; Grugeon, S.; Gireaud, L.; Tarascon, J.-M.; Gonbeau, D. XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode. J. Electrochem. Soc. 2005, 152, A689–A696. [Google Scholar] [CrossRef]
- Gao, T.; Bai, J.; Ouyang, D.; Wang, Z.; Bai, W.; Mao, N.; Zhu, Y. Effect of aging temperature on thermal stability of lithium-ion batteries: Part A—High-temperature aging. Renew. Energy 2023, 203, 592–600. [Google Scholar] [CrossRef]
- An, S.J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D.L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52–76. [Google Scholar] [CrossRef]
- Andersson, A.; Herstedt, M.; Bishop, A.; Edström, K. The Influence of Lithium Salt on the Interfacial Reactions Controlling the Thermal Stability of Graphite Anodes. Electrochim. Acta 2002, 47, 1885–1898. [Google Scholar] [CrossRef]
- Aupperle, F.; von Aspern, N.; Berghus, D.; Weber, F.; Eshetu, G.G.; Winter, M.; Figgemeier, E. The Role of Electrolyte Additives on the Interfacial Chemistry and Thermal Reactivity of Si-Anode-Based Li-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 6513–6527. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, J.; Chen, C. Effects of solvents and salt on the thermal stability of lithiated graphite used in lithium ion battery. J. Hazard. Mater. 2009, 167, 1209–1214. [Google Scholar] [CrossRef]
- Ryou, M.-H.; Lee, J.-N.; Lee, D.J.; Kim, W.-K.; Jeong, Y.K.; Choi, J.W.; Park, J.-K.; Lee, Y.M. Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Electrochim. Acta 2012, 83, 259–263. [Google Scholar] [CrossRef]
- Yoon, T.; Milien, M.S.; Parimalam, B.S.; Lucht, B.L. Thermal Decomposition of the Solid Electrolyte Interphase (SEI) on Silicon Electrodes for Lithium Ion Batteries. Chem. Mater. 2017, 29, 3237–3245. [Google Scholar] [CrossRef]
- Wu, J.; Weng, S.; Zhang, X.; Sun, W.; Wu, W.; Wang, Q.; Yu, X.; Chen, L.; Wang, Z.; Wang, X. In Situ Detecting Thermal Stability of Solid Electrolyte Interphase (SEI). Small 2023, 19, e2208239. [Google Scholar] [CrossRef]
- Zu, C.; Yu, H.; Li, H. Enabling the thermal stability of solid electrolyte interphase in Li-ion battery. InfoMat 2021, 3, 648–661. [Google Scholar] [CrossRef]
- Kim, J.; Gil Lee, J.; Kim, H.-S.; Lee, T.J.; Park, H.; Ryu, J.H.; Oh, S.M. Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF 5) Attack. J. Electrochem. Soc. 2017, 164, A2418–A2425. [Google Scholar] [CrossRef]
- Veith, G.M.; Doucet, M.; Sacci, R.L.; Vacaliuc, B.; Baldwin, J.K.; Browning, J.F. Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive. Sci. Rep. 2017, 7, 6326. [Google Scholar] [CrossRef]
- Fears, T.M.; Doucet, M.; Browning, J.F.; Baldwin, J.K.S.; Winiarz, J.G.; Kaiser, H.; Taub, H.; Sacci, R.L.; Veith, G.M. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of: Ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Phys. Chem. Chem. Phys. 2016, 18, 13927–13940. [Google Scholar] [CrossRef] [PubMed]
- Menachem, C.; Golodnitsky, D.; Peled, E. Effect of mild oxidation of natural graphite (NG7) on anode-electrolyte thermal reactions. J. Solid State Electrochem. 2001, 5, 81–87. [Google Scholar] [CrossRef]
- El Moutchou, S.; Aziam, H.; Mansori, M.; Saadoune, I. Thermal stability of Lithium-ion batteries: Case study of NMC811 and LFP cathode materials. Mater. Today Proc. 2021, 51, A1–A7. [Google Scholar] [CrossRef]
- He, R.; Guo, B.; Li, Y.; Yang, S. Revealing the impact of extreme temperatures and dynamic conditions on thermal safety of NCA/Si-graphite battery. Energy 2025, 324, 136043. [Google Scholar] [CrossRef]










| Material | Brand Name | Company | State |
|---|---|---|---|
| Tin(IV)Sulfide | MKN-SnS2-900 | mkNANO, Missisauga, ON, Canada | Powder (APS: 3 µm, hexagonal flakes) |
| Carboxymethyl cellulose | TEXTURECEL™ 2000 PA 07 | IFF, Maastricht, Netherlands | Powder dissolved in H2O |
| Styrene–butadiene rubber | SBR TRD104A | JSR Corporation, Tokyo, Japan | 40 wt.% emulsion |
| Carbon black | C-NERGY™ SUPER C45 | Imerys, Paris, France | Powder |
| Electrode Charged Until (mAh/g) | Exothermic SEI Effect (J/g) | Endothermic Sn Effect (J/g) | Total Exothermic Effect (J/g) |
|---|---|---|---|
| 0 | 4 | not observed | 29 |
| 100 | 4 | not observed | 29 |
| 200 | 4 | not observed | 29 |
| 300 | 4 | not observed | 29 |
| 400 | 4 | 1 | 29 |
| 500 | 4 | 1 | 29 |
| 550 | 4 | 1 | 29 |
| Electrode Charged Until (mAh/g) | Phases Found in XRD |
|---|---|
| 0 | Cu, Li17Sn4 |
| 100 | Cu |
| 200 | Sn, Cu |
| 300 | Sn, Cu |
| 400 | Sn |
| 500 | Sn |
| 550 | Sn, Cu |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, M.; Kupka, J.; Surace, Y.; Cupid, D.M.; Flandorfer, H. Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages. Batteries 2025, 11, 378. https://doi.org/10.3390/batteries11100378
Reda M, Kupka J, Surace Y, Cupid DM, Flandorfer H. Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages. Batteries. 2025; 11(10):378. https://doi.org/10.3390/batteries11100378
Chicago/Turabian StyleReda, Mahmoud, Jana Kupka, Yuri Surace, Damian M. Cupid, and Hans Flandorfer. 2025. "Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages" Batteries 11, no. 10: 378. https://doi.org/10.3390/batteries11100378
APA StyleReda, M., Kupka, J., Surace, Y., Cupid, D. M., & Flandorfer, H. (2025). Unveiling the Thermal Behavior of SnS2 Anodes Across Delithiation Stages. Batteries, 11(10), 378. https://doi.org/10.3390/batteries11100378

