Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (165)

Search Parameters:
Keywords = intumescent flame-retardants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3967 KiB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 274
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 444
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

15 pages, 3991 KiB  
Article
Development of Silylated Lignin-Based Intumescent Flame Retardants for Biodegradable Plastics
by Heesu Yoo, Jaemin Jo, Sung Jin Kim and Bonwook Koo
Polymers 2025, 17(13), 1727; https://doi.org/10.3390/polym17131727 - 20 Jun 2025
Viewed by 445
Abstract
The global market for flame-retardant materials is expected to grow steadily, from USD 7.0 billion in 2022 to USD 16.6 billion in 2030, driven by increasing demand for environment-friendly fire safety solutions in transportation, construction, and electronics. Polylactic acid (PLA), a biodegradable polymer [...] Read more.
The global market for flame-retardant materials is expected to grow steadily, from USD 7.0 billion in 2022 to USD 16.6 billion in 2030, driven by increasing demand for environment-friendly fire safety solutions in transportation, construction, and electronics. Polylactic acid (PLA), a biodegradable polymer which possesses excellent mechanical properties, is increasingly being considered for future mobility applications. However, it is characterized by high heat release and toxic smoke during combustion, which are significant drawbacks. In order to address this, the chemical modification of Kraft lignin was achieved through a phenolation and subsequent silylation with tetraethoxysilane, aiming to mitigate the degradation of PLA’s mechanical properties while utilizing its inherent char-forming ability. The modified lignins were combined with ammonium polyphosphate (APP) and melt-mixed with PLA using an injection-mixing molder to prepare test specimens. Analysis by FT-IR, NMR spectroscopy, and SEM-EDS confirmed successful grafting of phenolic and silane functionalities, and thermogravimetric analysis demonstrated enhanced thermal stability of the modified lignins compared to unmodified ones. Vertical burning tests and limiting oxygen index (LOI) measurements showed that the PLA/APP/SPKL composite material achieved a V-0 UL-94 rating and 31.95% LOI, demonstrating the highest level of flame retardancy. This compares to the LOI of neat PLA, 19 to 21%. Despite the enhancement in flame retardancy to the V-0 level, the decline in tensile strength was limited, and the composite retained comparable mechanical strength to PLA-APP composites with V-2 flame retardancy. The findings indicate that the combination of phenolation and silylation of lignin with APP, a flame-retardant material, offers a viable and sustainable methodology for the fabrication of PLA composites that exhibit both flame retardancy and mechanical strength. Full article
(This article belongs to the Special Issue Innovations in Bioplastic and Sustainable Plastics)
Show Figures

Figure 1

23 pages, 10568 KiB  
Article
Bio-Based Flame-Retardant Systems for Polymers Obtained via Michael 1,4-Addition
by Kamila Salasinska, Mateusz Barczewski, Mikelis Kirpluks, Ralfs Pomilovskis, Paweł Sulima, Sławomir Michałowski, Patryk Mietliński, Jerzy Andrzej Przyborowski and Anna Boczkowska
Molecules 2025, 30(12), 2556; https://doi.org/10.3390/molecules30122556 - 11 Jun 2025
Viewed by 699
Abstract
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) [...] Read more.
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) and modified with developed intumescent flame retardant systems (FRs), in which lignocellulose components, such as sunflower husk (SH) and peanut shells (PS), replaced a part of the synthetic ones. The thermal and thermomechanical properties of the rP, with 20 wt.% each from six FRs, were determined by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Moreover, the flammability and evolved gas were studied with pyrolysis combustion flow calorimetry (PCFC) and thermogravimetric analysis connected with Fourier transform infrared spectroscopy tests (TGA/FT-IR). The effects were compared to those achieved for unmodified rP and a polymer with a commercially available intumescent flame retardant (IFR). The notable improvement, especially in terms of the heat release rate and heat release capacity, indicates that the system with melamine phosphate (MP) and peanut shells (PS) can be used to decrease the flammability of new polymers. An extensive analysis of the composition and geometry of the ground shells and husk particles preceded the research. Full article
Show Figures

Graphical abstract

19 pages, 4975 KiB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 673
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

16 pages, 19309 KiB  
Article
Morphology-Engineered CeO2 as a Synergistic Flame Retardant in Polypropylene/Intumescent Systems: Mechanisms and Performance Enhancement
by Bangmin Li, Wayne Hsu, Tingyi Zheng, Yincai Wu, Shenglong Wang, Fenglong Lin, Lijun Song and Xianfa Rao
Molecules 2025, 30(10), 2102; https://doi.org/10.3390/molecules30102102 - 9 May 2025
Viewed by 466
Abstract
This study systematically examines the effect of the morphology of cerium oxide (CeO2) on the flame retardancy, thermal stability, and mechanical properties of polypropylene composites with intumescent flame retardant (PP/IFR). Layer-CeO2 (L-CeO2) outperforms Particulate-CeO2 (P-CeO2) [...] Read more.
This study systematically examines the effect of the morphology of cerium oxide (CeO2) on the flame retardancy, thermal stability, and mechanical properties of polypropylene composites with intumescent flame retardant (PP/IFR). Layer-CeO2 (L-CeO2) outperforms Particulate-CeO2 (P-CeO2) in enhancing the flame retardancy of PP/IFR composites, showing higher limiting oxygen index (LOI) and greater reductions in the total heat release rate (THR) and total smoke production (TSR). The substitution of 1% IFR with 1% L-CeO2 significantly increased the LOI from 29.4% to 32.6%, while reducing the THR and TSR by 38.9% and 74.3%, respectively. L-CeO2 incorporation improves thermal stability, increasing the residual char yield to 8.53% at 800 °C under air (vs. 3.87% for PP/IFR). Additionally, L-CeO2 improved the mechanical properties of the composites, increasing tensile strength and rigidity. The synergistic flame-retardant mechanism is hypothesized to involve CeO2 catalyzing the formation of a P-O-C crosslinked network in the carbon layer, leading to a denser carbon structure and improved flame-retardant performance in the PP/IFR composites. These findings demonstrate the efficacy of L-CeO2 as a flame-retardant synergist, providing a foundation for developing fire-safe polymeric materials. Full article
(This article belongs to the Special Issue Recent Advances in Flame Retardant Polymeric Materials, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 7056 KiB  
Article
Numerical Investigation of the Wan’an Bridge Fire and the Protection Effect of Intumescent Flame-Retardant Coatings
by Huiling Jiang, Jie Teng, Dong Wang, Liang Zhou and Yirui Chen
Fire 2025, 8(5), 184; https://doi.org/10.3390/fire8050184 - 7 May 2025
Cited by 1 | Viewed by 459
Abstract
The Wan’an Bridge, the longest wooden lounge bridge in China with a history of more than 900 years, was devastated by a catastrophic fire in 2022. This tragic event underscores the susceptibility of historical wooden structures to fire damage. In this article, the [...] Read more.
The Wan’an Bridge, the longest wooden lounge bridge in China with a history of more than 900 years, was devastated by a catastrophic fire in 2022. This tragic event underscores the susceptibility of historical wooden structures to fire damage. In this article, the bridge’s intricate structure and the development of the fire incident are introduced in detail. To gain a deeper insight into the patterns of fire propagation across the bridge and assess the reliability of fire simulations in predicting fire spread in historical wooden structures, we utilized the Fire Dynamics Simulator (FDS), with a sophisticated pyrolysis model and thermal response parameters specifically tailored to ancient fir wood. The modeling results reveal that the FDS simulation reflects the actual fire spread process well. Both the investigation and simulation findings indicate that once the flame reaches above the bridge deck, it enters a rapid three-dimensional propagation phase that is exceptionally challenging to control. Furthermore, the modeling results suggest that the application of intumescent fire-retardant coatings can significantly delay fire spread, reduce heat release rates, and suppress smoke production, thereby making them an effective fire prevention measure for historical wooden buildings. Full article
Show Figures

Figure 1

37 pages, 23423 KiB  
Review
Thermally Stable Carbon Materials from Polybenzoxazines: Structure, Properties, and Supercapacitor Potential
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Batteries 2025, 11(4), 140; https://doi.org/10.3390/batteries11040140 - 4 Apr 2025
Viewed by 739
Abstract
This review explores the structural and electrochemical characteristics of carbon materials derived from polybenzoxazines, emphasizing their potential in supercapacitors. A detailed analysis of thermal degradation by-products during carbonization reveals distinct competing mechanisms, underscoring the exceptional thermal stability of benzoxazines. These materials exhibit significant [...] Read more.
This review explores the structural and electrochemical characteristics of carbon materials derived from polybenzoxazines, emphasizing their potential in supercapacitors. A detailed analysis of thermal degradation by-products during carbonization reveals distinct competing mechanisms, underscoring the exceptional thermal stability of benzoxazines. These materials exhibit significant pseudocapacitive behavior and excellent charge retention, making them strong candidates for energy storage applications. The versatility of polybenzoxazine-based carbons enables the formation of diverse morphologies—nanospheres, foams, films, nanofibers, and aerogels—each tailored for specific functionalities. Advanced synthesis techniques allow for precise control over porosity at the nanoscale, optimizing performance for supercapacitors and beyond. Their exceptional thermal stability, electrical conductivity, and tunable porosity extend their utility to gas adsorption, catalysis, and electromagnetic shielding. Additionally, their intumescent properties (unique ability to expand when exposed to high heat) make them promising candidates for flame-retardant coatings. The combination of customizable architecture, superior electrochemical performance, and high thermal resistance highlights their transformative potential in sustainable energy solutions and advanced protective applications. Full article
(This article belongs to the Special Issue High-Performance Supercapacitors: Advancements & Challenges)
Show Figures

Figure 1

17 pages, 3558 KiB  
Article
Sustainable Fire-Resistant Materials: Recycled Polyethylene Composites with Non-Halogenated Intumescent Flame Retardants for Construction Applications
by Oluwatobi Elijah Akindele, Erick Gabriel Ribeiro dos Anjos, Antonio Benjamim Mapossa and Uttandaraman Sundararaj
Recycling 2025, 10(2), 45; https://doi.org/10.3390/recycling10020045 - 13 Mar 2025
Cited by 2 | Viewed by 1319
Abstract
This study explores the development of sustainable fire-resistant composites using a blend of recycled linear low-density polyethylene (rLLDPE) and low-density polyethylene (rLDPE) for construction applications. The incorporation of non-halogenated intumescent flame retardants (IFRs), specifically ammonium polyphosphate (APP) and melamine polyphosphate (MPP), was shown [...] Read more.
This study explores the development of sustainable fire-resistant composites using a blend of recycled linear low-density polyethylene (rLLDPE) and low-density polyethylene (rLDPE) for construction applications. The incorporation of non-halogenated intumescent flame retardants (IFRs), specifically ammonium polyphosphate (APP) and melamine polyphosphate (MPP), was shown to enhance the flame retardance, thermal stability, and mechanical performance of these recycled polymer blends. IFRs were introduced at 5 wt.% and 10 wt.% concentrations, and their effects were evaluated using limiting oxygen index (LOI) testing and thermogravimetric analysis (TGA). Results showed that 10 wt.% APP and a combination of 5 wt.% APP with 5 wt.% MPP increased LOI values from 18.5% (neat polymer blend) to 21.2% and 22.4%, respectively, demonstrating improved fire resistance. Enhanced char formation, facilitated by IFRs, contributes to superior thermal stability and fire protection. TGA results confirmed higher char yields, with the rLLDPE/rLDPE/MPP5/APP5 composition exhibiting the highest residue (3.00%), indicating a synergistic effect between APP and MPP. Rheological and mechanical analysis showed that APP had more impact on viscoelastic behavior, while the combination of IFRs provided balanced mechanical properties despite a slight reduction in tensile strength. This research highlights the potential of recycled polyethylene composites in promoting circular economy principles by developing sustainable, fire-resistant materials for the construction industry, reducing plastic waste, and enhancing the safety of recycled polymer-based applications. Full article
Show Figures

Figure 1

22 pages, 10059 KiB  
Article
Ultrathin Biomaterial Coating for Flame-Retardant Medical Paper
by Zhihao Sun, Xinlong Liu, Jingxian Li, Xiaohong Xu, Xuhai Pan and Chuanyong Yan
Coatings 2025, 15(2), 192; https://doi.org/10.3390/coatings15020192 - 6 Feb 2025
Viewed by 754
Abstract
Paper has the multiple advantages of being breathable, sustainable, environmentally friendly, and non-toxic for medical care. However, the flammability stemming from the raw materials of paper has limited its use in medical heat therapy. In this paper, a composite flame-retardant coating is assembled [...] Read more.
Paper has the multiple advantages of being breathable, sustainable, environmentally friendly, and non-toxic for medical care. However, the flammability stemming from the raw materials of paper has limited its use in medical heat therapy. In this paper, a composite flame-retardant coating is assembled layer by layer on a medical paper surface using medically safe natural biomaterials with starch and adenosine triphosphate as internal layers, and starch and phytic acid as external layers. With the layer-by-layer assembly using the ultrathin adsorption method, the microscopic morphology and elemental mapping reveal that all the biomaterials are deposited uniformly and have completely capsulated the paper surface fiber. The flame-retardant coating shows less impact on medical paper appearance morphology and mechanical properties in medical usability. The coated medical paper exhibits significant flame-retardant performance, such that the limiting oxygen index increases from 19.70% to 25.40% where both internal and external layers reached 100 layers (BL), and relevant residual charring in the thermogravimetric test increases 17.00 wt% in a nitrogen atmosphere and 18.00 wt% in an air atmosphere at 800 °C. The peak and total heat release rates of 100 BL medical paper reduced by approximately 91.10% and 53.10%, respectively, and the variations in both CO and CO2 production also suggest that flame-retardant coating could effectively inhibit combustion. Benefiting from the intumescent flame-retardant function of different biomaterial combinations and the multilayer design on different thermal response temperatures, the flame retardancy of medical paper significantly improved, and this advancement will make medical heat therapy safer and healthier for patients. Full article
(This article belongs to the Special Issue Surface Modification and Strengthening of Bio-Based Materials)
Show Figures

Figure 1

16 pages, 13832 KiB  
Article
Experimental Investigation of Fire—Technical Characteristics of Selected Flame Retardants for the Protection of Wooden Structures
by Patrik Mitrenga, Miroslava Vandlíčková and Milan Konárik
Coatings 2025, 15(2), 193; https://doi.org/10.3390/coatings15020193 - 6 Feb 2025
Cited by 3 | Viewed by 1065
Abstract
This study evaluates selected flame retardants on the basis of their influence on the change of fire-technical parameters of soft and hard woods (spruce and oak) during exposure to a flame heat source. The parameters evaluated were mass loss, mass loss rate and [...] Read more.
This study evaluates selected flame retardants on the basis of their influence on the change of fire-technical parameters of soft and hard woods (spruce and oak) during exposure to a flame heat source. The parameters evaluated were mass loss, mass loss rate and depth of the charred layer. The experiments were carried out on simple test equipment on which the samples were exposed to direct flame while their mass was monitored. The measured data and their statistical evaluation showed a significant dependence of the mass loss on the type of retardant used (inorganic salt-based flame retardant—IS and intumescent flame retardant—IFR) and on the type of wood species. In spite of the same reaction to fire class specified by the manufacturers for both types of retardants studied, significant differences were observed in the parameters monitored. The mass loss, mass loss rate and charred layer reached much lower values when using IFR retardant, whose efficiency was higher in the order of tens of percent compared to the use of IS retardant. The use of IFR flame retardant reduced the depth of the charred layer on oak samples by up to 84% compared to untreated samples, indicating its high effectiveness and potential to increase the fire resistance of wooden structures. These results show that IFRs are more effective in the parameters studied compared to ISs despite their equal class of reaction to fire, which may have wider implications for the construction industry and highlight the need for a thorough evaluation of flame retardants based on their performance under real-world conditions. Full article
Show Figures

Figure 1

16 pages, 5523 KiB  
Article
Surface Modification of Intumescent Flame Retardant and Its Application in Polypropylene with Excellent Fire Performance and Water Resistance
by Xuqiang Zheng, Mike Deng, Hao Jia, Xinyu Chen, Ruicheng Wang, Jun Sun, Hongfei Li, Xiaoyu Gu and Sheng Zhang
Polymers 2025, 17(3), 399; https://doi.org/10.3390/polym17030399 - 2 Feb 2025
Cited by 1 | Viewed by 1292
Abstract
Polypropylene (PP) has a wide range of applications in daily life but it is highly flammable. Intumescent flame retardants (IFRs) are used to improve the flame-retardant performance of polypropylene. However, the poor compatibility between IFRs and PP poses significant challenges. In this study, [...] Read more.
Polypropylene (PP) has a wide range of applications in daily life but it is highly flammable. Intumescent flame retardants (IFRs) are used to improve the flame-retardant performance of polypropylene. However, the poor compatibility between IFRs and PP poses significant challenges. In this study, an IFR was reacted with γ-aminopropyl triethoxysilane (KH550) to introduce necessary reactive sites on the surface of the IFR. Subsequently, maleic anhydride-grafted SBS (SBS-g-MAH) was reacted with KH550 to further coat the IFR, resulting in a modified IFR named MA-IFR. The effects of MA-IFR on the flame retardancy, mechanical properties, and water resistance of PP composites were systematically investigated. The limiting oxygen index of the PP/MA-IFR composite reached up to 39.7%, with the vertical burning test (UL-94) achieving a V-0 rating. Moreover, compared to the control PP, the peak heat release rate and peak smoke release rate were reduced by 85.0% and 82.5%, respectively. In addition, the mechanical properties of the PP composites were significantly improved, with tensile strength and impact strength increasing by 29% and 18%, respectively, compared to those of the PP/IFR composite. Notably, the PP/MA-IFR composite maintained excellent flame retardancy, even after being immersed in water at 70 °C for 168 h. These results demonstrate that MA-IFR offers a promising solution for producing flame-retardant and water-resistant PP composites. Full article
Show Figures

Figure 1

14 pages, 5152 KiB  
Article
Fire Performance Comparison of Expanded Polystyrene External Thermal Insulation Composites Systems and Expandable Graphite-Modified Surface Covers at Different Scales
by Mingwei Tang, Serge Bourbigot, Thomas Rogaume, Tsilla Bensabath, Benjamin Batiot and Virginie Drean
Fire 2025, 8(2), 45; https://doi.org/10.3390/fire8020045 - 25 Jan 2025
Viewed by 1302
Abstract
Numerous fire disasters have involved thermoplastic expanded polystyrene (EPS) external thermal insulation composite systems (ETICS) on building façades. This study evaluates the flame-retardant efficiency of expandable graphite (EG)-blended EPS ETICS across different scales: micro-scale thermogravimetric (TG) analysis, small-scale bench tests, and large-scale LEPIR [...] Read more.
Numerous fire disasters have involved thermoplastic expanded polystyrene (EPS) external thermal insulation composite systems (ETICS) on building façades. This study evaluates the flame-retardant efficiency of expandable graphite (EG)-blended EPS ETICS across different scales: micro-scale thermogravimetric (TG) analysis, small-scale bench tests, and large-scale LEPIR 2 tests. TG analysis confirmed EG’s primary role as a physical intumescent, with no significant chemical interactions detected. While EG effectively reduced heat penetration in both small-scale and large-scale fire tests, challenges arose from char layer detachment and oxidation at elevated temperatures (exceeding 540 °C). Despite these limitations, the EG-treated façade exhibited significantly lower peak temperatures compared to the untreated control in the large-scale LEPIR 2 test, with a measured temperature difference of approximately 470 °C. These findings demonstrate the potential of EG to enhance the fire safety of EPS ETICS. The small-scale test bench proved effective for preliminary material screening, providing valuable insights into ignition resistance and flame-retardant properties before proceeding to more resource-intensive large-scale evaluations. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

33 pages, 5363 KiB  
Review
Current Advances in Flame-Retardant Performance of Tunnel Intumescent Fireproof Coatings: A Review
by Guochen Tang, Chuankai Shang, Yiwen Qin and Jinxing Lai
Coatings 2025, 15(1), 99; https://doi.org/10.3390/coatings15010099 - 16 Jan 2025
Cited by 12 | Viewed by 1810
Abstract
As building safety standards keep escalating, research on intumescent fireproof coatings has garnered growing attention. Among them, tunnels, with their enclosed configuration and relatively high accident occurrence rate, impose higher demands on the environmental friendliness, durability, and thermal stability of fireproof coatings. At [...] Read more.
As building safety standards keep escalating, research on intumescent fireproof coatings has garnered growing attention. Among them, tunnels, with their enclosed configuration and relatively high accident occurrence rate, impose higher demands on the environmental friendliness, durability, and thermal stability of fireproof coatings. At present, intumescent fireproof coatings have been extensively applied in tunnels; however, a comprehensive and in-depth overview of intumescent fireproof coatings and their application in tunnels is still lacking. This paper summarizes the fire prevention mechanism of intumescent fireproof coatings, the intumescent fireproof system, the impact of functional fillers on the fire resistance performance of intumescent fireproof coatings, and the application of intumescent fireproof coatings in tunnels. Additionally, we present the synergistic effect of the combined use of different functional fillers. Finally, some key challenges regarding the use of intumescent fireproof coatings in tunnel environments are put forward, along with prospects and opportunities. Full article
Show Figures

Figure 1

38 pages, 10310 KiB  
Review
Recent Advances in Fire Safety of Carbon Fiber-Reinforced Epoxy Composites for High-Pressure Hydrogen Storage Tanks
by Omar Dagdag and Hansang Kim
Polymers 2024, 16(23), 3343; https://doi.org/10.3390/polym16233343 - 28 Nov 2024
Cited by 6 | Viewed by 1541
Abstract
The increasing use of hydrogen as a clean energy carrier has underscored the necessity for advanced materials that can provide safe storage under extreme conditions. Carbon fiber-reinforced epoxy (CFRP) composites are increasingly utilized in various high-performance applications, including automotive, aerospace, and particularly hydrogen [...] Read more.
The increasing use of hydrogen as a clean energy carrier has underscored the necessity for advanced materials that can provide safe storage under extreme conditions. Carbon fiber-reinforced epoxy (CFRP) composites are increasingly utilized in various high-performance applications, including automotive, aerospace, and particularly hydrogen storage tanks, due to their exceptional strength-to-weight ratio, durability, excellent corrosion resistance, and low thermal conductivity. However, the inherent flammability of epoxy matrices poses significant safety concerns, particularly in hydrogen storage, where safety is paramount. This review paper provides a comprehensive overview of the recent progress in enhancing the fire safety of CFRP. The focus is on innovative strategies such as developing novel flame-retardant (FR) additives, intumescent coatings, and nanomaterial reinforcements. It analyzes the effectiveness of these strategies in improving the fire performance of CFRP composites, including their flame retardancy, smoke suppression, and heat release rate reduction. The review paper also explores the application of fire modeling tools to predict the fire behavior of CFRP composite hydrogen storage tanks under various fire scenarios. Additionally, the review discusses the implications of these advancements on the performance and safety of hydrogen storage tanks, highlighting both the progress made and the challenges that remain. Full article
(This article belongs to the Special Issue Polymer Composite Analysis and Characterization II)
Show Figures

Figure 1

Back to TopTop