Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (648)

Search Parameters:
Keywords = interleavers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6962 KiB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

18 pages, 1769 KiB  
Article
Students’ Perceptions of Effective Math Learning Strategies
by Marissa K. Hartwig and Doug Rohrer
Behav. Sci. 2025, 15(8), 1047; https://doi.org/10.3390/bs15081047 - 1 Aug 2025
Viewed by 193
Abstract
Two highly effective math learning strategies are spaced practice (in which problems of the same kind are distributed across many sessions) and interleaved practice (in which problems of different kinds are mixed rather than blocked). Though these strategies are supported by data, students [...] Read more.
Two highly effective math learning strategies are spaced practice (in which problems of the same kind are distributed across many sessions) and interleaved practice (in which problems of different kinds are mixed rather than blocked). Though these strategies are supported by data, students may be reluctant to use them if they perceive the strategies as ineffective or unpleasant. In Study 1, we surveyed 174 grade 7 math students about the efficacy and likability of spaced and interleaved practice. Spaced practice was often judged likable, but nearly half of students failed to recognize its efficacy. Interleaved practice was judged both unlikable and inefficacious by most students. In Study 2, we further explored perceptions of interleaving in a survey of 233 grade 7 math students. Again, students erroneously judged interleaved practice to have low efficacy. Compared to blocked practice, interleaved practice was judged less effective, less preferable, more time-consuming, and more difficult. This work identifies perceptions that may discourage students from using effective learning strategies and also shows that specific perceptions differ by strategy. Helping students overcome their negative perceptions of spacing and interleaving is an important future direction. Full article
(This article belongs to the Special Issue Educational Applications of Cognitive Psychology)
Show Figures

Figure 1

16 pages, 2389 KiB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

23 pages, 16115 KiB  
Article
Image Privacy Protection Communication Scheme by Fibonacci Interleaved Diffusion and Non-Degenerate Discrete Chaos
by Zhiyu Xie, Weihong Xie, Xiyuan Cheng, Zhengqin Yuan, Wenbin Cheng and Yiting Lin
Entropy 2025, 27(8), 790; https://doi.org/10.3390/e27080790 - 25 Jul 2025
Viewed by 170
Abstract
The rapid development of network communication technology has led to an increased focus on the security of image storage and transmission in multimedia information. This paper proposes an enhanced image security communication scheme based on Fibonacci interleaved diffusion and non-degenerate chaotic system to [...] Read more.
The rapid development of network communication technology has led to an increased focus on the security of image storage and transmission in multimedia information. This paper proposes an enhanced image security communication scheme based on Fibonacci interleaved diffusion and non-degenerate chaotic system to address the inadequacy of current image encryption technology. The scheme utilizes a hash function to extract the hash characteristic values of the plaintext image, generating initial perturbation keys to drive the chaotic system to generate initial pseudo-random sequences. Subsequently, the input image is subjected to a light scrambling process at the bit level. The Q matrix generated by the Fibonacci sequence is then employed to diffuse the obtained intermediate cipher image. The final ciphertext image is then generated by random direction confusion. Throughout the encryption process, plaintext correlation mechanisms are employed. Consequently, due to the feedback loop of the plaintext, this algorithm is capable of resisting known-plaintext attacks and chosen-plaintext attacks. Theoretical analysis and empirical results demonstrate that the algorithm fulfils the cryptographic requirements of confusion, diffusion, and avalanche effects, while also exhibiting a robust password space and excellent numerical statistical properties. Consequently, the security enhancement mechanism based on Fibonacci interleaved diffusion and non-degenerate chaotic system proposed in this paper effectively enhances the algorithm’s resistance to cryptographic attacks. Full article
Show Figures

Figure 1

26 pages, 6051 KiB  
Article
A Novel Sound Coding Strategy for Cochlear Implants Based on Spectral Feature and Temporal Event Extraction
by Behnam Molaee-Ardekani, Rafael Attili Chiea, Yue Zhang, Julian Felding, Aswin Adris Wijetillake, Peter T. Johannesen, Enrique A. Lopez-Poveda and Manuel Segovia-Martínez
Technologies 2025, 13(8), 318; https://doi.org/10.3390/technologies13080318 - 23 Jul 2025
Viewed by 360
Abstract
This paper presents a novel cochlear implant (CI) sound coding strategy called Spectral Feature Extraction (SFE). The SFE is a novel Fast Fourier Transform (FFT)-based Continuous Interleaved Sampling (CIS) strategy that provides less-smeared spectral cues to CI patients compared to Crystalis, a predecessor [...] Read more.
This paper presents a novel cochlear implant (CI) sound coding strategy called Spectral Feature Extraction (SFE). The SFE is a novel Fast Fourier Transform (FFT)-based Continuous Interleaved Sampling (CIS) strategy that provides less-smeared spectral cues to CI patients compared to Crystalis, a predecessor strategy used in Oticon Medical devices. The study also explores how the SFE can be enhanced into a Temporal Fine Structure (TFS)-based strategy named Spectral Event Extraction (SEE), combining spectral sharpness with temporal cues. Background/Objectives: Many CI recipients understand speech in quiet settings but struggle with music and complex environments, increasing cognitive effort. De-smearing the power spectrum and extracting spectral peak features can reduce this load. The SFE targets feature extraction from spectral peaks, while the SEE enhances TFS-based coding by tracking these features across frames. Methods: The SFE strategy extracts spectral peaks and models them with synthetic pure tone spectra characterized by instantaneous frequency, phase, energy, and peak resemblance. This deblurs input peaks by estimating their center frequency. In SEE, synthetic peaks are tracked across frames to yield reliable temporal cues (e.g., zero-crossings) aligned with stimulation pulses. Strategy characteristics are analyzed using electrodograms. Results: A flexible Frequency Allocation Map (FAM) can be applied to both SFE and SEE strategies without being limited by FFT bandwidth constraints. Electrodograms of Crystalis and SFE strategies showed that SFE reduces spectral blurring and provides detailed temporal information of harmonics in speech and music. Conclusions: SFE and SEE are expected to enhance speech understanding, lower listening effort, and improve temporal feature coding. These strategies could benefit CI users, especially in challenging acoustic environments. Full article
(This article belongs to the Special Issue The Challenges and Prospects in Cochlear Implantation)
Show Figures

Figure 1

24 pages, 5470 KiB  
Article
Research on Improved Technology of Totem-Pole Bridgeless PFC Circuit Based on Triangular Current Mode
by Pingjuan Niu, Jingying Guo, Zhigang Gao, Jingwen Yan and Shengwei Gao
Energies 2025, 18(14), 3886; https://doi.org/10.3390/en18143886 - 21 Jul 2025
Viewed by 343
Abstract
The totem-pole bridgeless power factor correction (PFC) circuit based on the triangular current mode (TCM) in the front-end PFC of a switching power supply has the advantage of realizing zero-voltage switching (ZVS) in the full working range. However, the TCM control based on [...] Read more.
The totem-pole bridgeless power factor correction (PFC) circuit based on the triangular current mode (TCM) in the front-end PFC of a switching power supply has the advantage of realizing zero-voltage switching (ZVS) in the full working range. However, the TCM control based on the critical conduction mode (CRM) further increases the inductance current ripple, and the traditional input voltage AC sampling circuit increases the circuit complexity and device cost. Therefore, this paper studies the corresponding improvement technology from two dimensions. Firstly, the coordinated interleaved parallel technology is employed to design the system’s overall control-improvement strategy. This approach not only achieves full working-range ZVS but also reduces both the inductor current ripple and power device stress. Simultaneously, an optimized input voltage sampling circuit is designed to accommodate varying voltage requirements of control chip pins. This circuit demonstrates strong synchronization in both voltage and phase sampling, and the structural characteristics of the optocoupler can also suppress electrical signal interference. Finally, a 600 W totem-pole bridgeless PFC prototype is developed. The experimental results demonstrate the effectiveness of the proposed improved method. The prototype efficiency peak reaches 97.3%. Full article
Show Figures

Figure 1

24 pages, 1605 KiB  
Article
Quantum-Secure Coherent Optical Networking for Advanced Infrastructures in Industry 4.0
by Ofir Joseph and Itzhak Aviv
Information 2025, 16(7), 609; https://doi.org/10.3390/info16070609 - 15 Jul 2025
Viewed by 446
Abstract
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory [...] Read more.
Modern industrial ecosystems, particularly those embracing Industry 4.0, increasingly depend on coherent optical networks operating at 400 Gbps and beyond. These high-capacity infrastructures, coupled with advanced digital signal processing and phase-sensitive detection, enable real-time data exchange for automated manufacturing, robotics, and interconnected factory systems. However, they introduce multilayer security challenges—ranging from hardware synchronization gaps to protocol overhead manipulation. Moreover, the rise of large-scale quantum computing intensifies these threats by potentially breaking classical key exchange protocols and enabling the future decryption of stored ciphertext. In this paper, we present a systematic vulnerability analysis of coherent optical networks that use OTU4 framing, Media Access Control Security (MACsec), and 400G ZR+ transceivers. Guided by established risk assessment methodologies, we uncover critical weaknesses affecting management plane interfaces (e.g., MDIO and I2C) and overhead fields (e.g., Trail Trace Identifier, Bit Interleaved Parity). To mitigate these risks while preserving the robust data throughput and low-latency demands of industrial automation, we propose a post-quantum security framework that merges spectral phase masking with multi-homodyne coherent detection, strengthened by quantum key distribution for key management. This layered approach maintains backward compatibility with existing infrastructure and ensures forward secrecy against quantum-enabled adversaries. The evaluation results show a substantial reduction in exposure to timing-based exploits, overhead field abuses, and cryptographic compromise. By integrating quantum-safe measures at the optical layer, our solution provides a future-proof roadmap for network operators, hardware vendors, and Industry 4.0 stakeholders tasked with safeguarding next-generation manufacturing and engineering processes. Full article
Show Figures

Figure 1

17 pages, 6890 KiB  
Technical Note
Research on Task Interleaving Scheduling Method for Space Station Protection Radar with Shifting Constraints
by Guiqiang Zhang, Haocheng Zhou, Hong Yang, Jiacheng Hou, Guangyuan Xu and Dawei Wang
Telecom 2025, 6(3), 49; https://doi.org/10.3390/telecom6030049 - 10 Jul 2025
Viewed by 210
Abstract
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation [...] Read more.
To ensure the on-orbit safety of crewed spacecraft and avoid the threat of constellations such as Starlink to manned spacecraft, the industry has started to research equipping phased array radars for situational awareness of collision threat. In order to enhance the resource allocation capability of the space station’s protection radar system, this paper proposes a task scheduling method based on time shifting constraints and pulse interleaving. The time shifting constraint is designed to minimize the deviation between the actual execution and the desired execution time of the task, and it is negatively correlated with the threat degree of the target. Pulse interleaving is intended to utilize the idle time between the transmitted pulse and the received pulse of a task to perform other tasks, thereby improving the utilization of radar resources. Through computer simulation under typical parameters, our proposed method reduces the average time shifting ratio by about 60% compared to traditional task scheduling methods, and the scheduling success ratio is also higher than that of traditional scheduling methods. This demonstrates the effectiveness of the proposed method in enhancing scheduling efficiency and overall system performance. Full article
Show Figures

Figure 1

15 pages, 3116 KiB  
Article
Joint Phase–Frequency Distribution Manipulation Method for Multi-Band Phased Array Radar Based on Optical Pulses
by Defu Zhou, Na Qian, Yinfu Liu, Peilin Li, Ruiheng Qin and Weiwen Zou
Electronics 2025, 14(14), 2747; https://doi.org/10.3390/electronics14142747 - 8 Jul 2025
Viewed by 279
Abstract
The demand for versatility and finer resolution drives phased array radars to develop towards multi-band operating. However, the bandwidth limitations of conventional electronic devices make multi-band manipulation of frequency and phase rather challenging. This paper introduces a joint phase–frequency distribution manipulation method. By [...] Read more.
The demand for versatility and finer resolution drives phased array radars to develop towards multi-band operating. However, the bandwidth limitations of conventional electronic devices make multi-band manipulation of frequency and phase rather challenging. This paper introduces a joint phase–frequency distribution manipulation method. By introducing a time delay line after optical pulses, the frequency conversion and phase shift are tightly coupled. Then, the phase–frequency–time mapping for multi-band signals in a single phased array system is established. The generation, transmission, and reception of multi-band signals are simultaneously achieved. Our approach enables multi-band frequency conversion and phase shifting in a single hardware framework, ensuring synchronization and coherence across multiple bands. We experimentally demonstrate the generation, frequency conversion, and phase control of signals across four bands (S, X, Ku, and K). Beamforming and data fusion of four-band linear frequency-modulated signals with a total bandwidth of 4 GHz are achieved, resulting in a four-fold improvement in range resolution. It is also verified that the number of bands and total bandwidth can be further expanded through channel interleaving. Full article
Show Figures

Figure 1

15 pages, 1351 KiB  
Article
An Overlapping IBM-PISO Algorithm with an FFT-Based Poisson Solver for Parallel Incompressible Flow Simulations
by Jiacheng Lian, Qinghe Yao and Zichao Jiang
Fluids 2025, 10(7), 176; https://doi.org/10.3390/fluids10070176 - 4 Jul 2025
Viewed by 333
Abstract
This study addresses computational challenges in the immersed boundary method (IBM) with the pressure implicit with split operator (PISO) algorithm for simulating incompressible flows. We introduce a novel time-step splitting method to implement communication overlapping optimization, aiming to reduce costs dominated by the [...] Read more.
This study addresses computational challenges in the immersed boundary method (IBM) with the pressure implicit with split operator (PISO) algorithm for simulating incompressible flows. We introduce a novel time-step splitting method to implement communication overlapping optimization, aiming to reduce costs dominated by the pressure Poisson solver. Using a fast Fourier transform (FFT)-based approach, the Poisson equation is solved efficiently with O(NlogN) complexity. Our method interleaves IBM force calculations with Poisson phases, employing asynchronous communication to overlap computation with global data exchanges. This reduces communication overhead, enhancing scalability. Validation through benchmark simulations, including flow around a cylinder and particle-laden flows, shows improved efficiency and accuracy comparable with traditional methods. Implemented in a custom C++ solver using the FFTW library, tests indicate substantial acceleration, with results showing a 40% speed-up and less than 3% deviation in drag and lift coefficients. This research provides an efficient and promising simulation tool for complex flow. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

21 pages, 18259 KiB  
Article
Ensembling a Learned Volterra Polynomial with a Neural Network for Joint Nonlinear Distortions and Mismatch Errors Calibration of Time-Interleaved Pipelined ADCs
by Yan Liu, Mingyu Hao, Hui Xu, Xiang Gao and Haiyong Zheng
Sensors 2025, 25(13), 4059; https://doi.org/10.3390/s25134059 - 29 Jun 2025
Viewed by 373
Abstract
The inherent non-ideal characteristics of circuit components and inter-channel mismatch errors induce nonlinear amplitude and phase distortions in time-interleaved pipelined analog-to-digital converters (TI-pipelined ADCs), significantly degrading system performance. Limited by prior modeling, conventional digital calibration methods only correct partial errors, while machine learning [...] Read more.
The inherent non-ideal characteristics of circuit components and inter-channel mismatch errors induce nonlinear amplitude and phase distortions in time-interleaved pipelined analog-to-digital converters (TI-pipelined ADCs), significantly degrading system performance. Limited by prior modeling, conventional digital calibration methods only correct partial errors, while machine learning (ML) approaches achieve comprehensive calibration at a high computational cost. This work proposes an ensemble calibration framework that combines polynomial modeling and ML techniques. The ensemble calibration framework employs a two-stage correction: a learned Volterra front-end performs forward mapping to compensate static baseline nonlinear distortions, while a lightweight neural network back-end implements inverse mapping to correct dynamic nonlinear distortions and inter-channel mismatch errors adaptively. Experiments conducted on TI-pipelined ADCs show improvements in both the spurious-free dynamic range (SFDR) and signal-to-noise and distortion ratio (SNDR). It is noteworthy that in two ADCs fabricated using 40 nm CMOS technology, the 12-bit, 3000 MS/s silicon-validated four-channel TI-pipelined ADC exhibits SFDR and SNDR improvements from 35.47 dB and 35.35 dB to 79.70 dB and 55.63 dB, respectively, while the 16-bit, 1000 MS/s silicon-validated four-channel TI-pipelined ADC demonstrates an enhancement from 38.62 dB and 40.21 dB to 80.90 dB and 62.43 dB, respectively. Furthermore, a comparison with related studies reveals that our method achieves comprehensive calibration performance for wide-band inputs while substantially reducing computational complexity, requiring only 4.4 K parameters and 8.57 M floating-point operations per second (FLOPs). Full article
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
A Novel Reconfigurable Vector-Processed Interleaving Algorithm for a DVB-RCS2 Turbo Encoder
by Moshe Bensimon, Ohad Boxerman, Yehuda Ben-Shimol, Erez Manor and Shlomo Greenberg
Electronics 2025, 14(13), 2600; https://doi.org/10.3390/electronics14132600 - 27 Jun 2025
Viewed by 246
Abstract
Turbo Codes (TCs) are a family of convolutional codes that provide powerful Forward Error Correction (FEC) and operate near the Shannon limit for channel capacity. In the context of modern communication systems, such as those conforming to the DVB-RCS2 standard, Turbo Encoders (TEs) [...] Read more.
Turbo Codes (TCs) are a family of convolutional codes that provide powerful Forward Error Correction (FEC) and operate near the Shannon limit for channel capacity. In the context of modern communication systems, such as those conforming to the DVB-RCS2 standard, Turbo Encoders (TEs) play a crucial role in ensuring robust data transmission over noisy satellite links. A key computational bottleneck in the Turbo Encoder is the non-uniform interleaving stage, where input bits are rearranged according to a dynamically generated permutation pattern. This stage often requires the intermediate storage of data, resulting in increased latency and reduced throughput, especially in embedded or real-time systems. This paper introduces a vector processing algorithm designed to accelerate the interleaving stage of the Turbo Encoder. The proposed algorithm is tailored for vector DSP architectures (e.g., CEVA-XC4500), and leverages the hardware’s SIMD capabilities to perform the permutation operation in a structured, phase-wise manner. Our method adopts a modular Load–Execute–Store design, facilitating efficient memory alignment, deterministic latency, and hardware portability. We present a detailed breakdown of the algorithm’s implementation, compare it with a conventional scalar (serial) model, and analyze its compatibility with the DVB-RCS2 specification. Experimental results demonstrate significant performance improvements, achieving a speed-up factor of up to 3.4× in total cycles, 4.8× in write operations, and 7.3× in read operations, relative to the baseline scalar implementation. The findings highlight the effectiveness of vectorized permutation in FEC pipelines and its relevance for high-throughput, low-power communication systems. Full article
(This article belongs to the Special Issue Evolutionary Hardware-Software Codesign Based on FPGA)
Show Figures

Figure 1

13 pages, 1245 KiB  
Article
An Experimental Study on the Formation of Spatial Cognitive Maps in Humans
by Otmar Bock
Appl. Sci. 2025, 15(13), 7234; https://doi.org/10.3390/app15137234 - 27 Jun 2025
Viewed by 290
Abstract
This study investigated how cognitive maps of the environment are formed. During learning trials, participants encoded the spatial locations of objects in a virtual maze either through simulated movement within the maze (first-person perspective) or by inspecting a schematic map (survey perspective). During [...] Read more.
This study investigated how cognitive maps of the environment are formed. During learning trials, participants encoded the spatial locations of objects in a virtual maze either through simulated movement within the maze (first-person perspective) or by inspecting a schematic map (survey perspective). During interleaved test trials, they indicated where the object were on a schematic map (survey perspective). Response accuracy, averaged across objects and participants, increased gradually across test trials. At the level of individual participants and objects, however, accuracy improved abruptly. Furthermore, response accuracy was unaffected by the number of encoded objects used. Notably, the speed of map formation and the absence of a set-size effect were comparable across the two encoding perspectives, despite the fact that first-person encoding required transformation into a survey perspective for testing. Unlike the speed, the accuracy was lower in the first-person perspective compared to the survey encoding perspective. These findings suggest that cognitive maps can be holistic rather than item-dependent representations that emerge in a locally abrupt fashion, regardless of the encoding perspective. In contrast to the emergence speed, map accuracy can be lower when the encoding perspective differs from the test perspective. Full article
(This article belongs to the Topic The Computational Brain)
Show Figures

Figure 1

16 pages, 8906 KiB  
Article
Construction of Isotropy-Enhanced Honeycomb and Its Deformation Behaviors in Multi-Directions
by Junyuan Zheng and Guangdong Tian
Polymers 2025, 17(12), 1717; https://doi.org/10.3390/polym17121717 - 19 Jun 2025
Viewed by 474
Abstract
Honeycomb structures are widely constructed as cores in sandwich panels with lightweight characteristics and excellent out-of-plane properties. However, their in-plane performances are significantly inferior. This research proposed a novel isotropy-enhanced honeycomb (IEH) with interleaved layers, which is constructed by offsetting the initial seed [...] Read more.
Honeycomb structures are widely constructed as cores in sandwich panels with lightweight characteristics and excellent out-of-plane properties. However, their in-plane performances are significantly inferior. This research proposed a novel isotropy-enhanced honeycomb (IEH) with interleaved layers, which is constructed by offsetting the initial seed distributions across layers and then generating hexagonal cells via Voronoi tessellation. Numerical models with three layer-to-layer interval gradients were developed for simulations, and corresponding samples were additively manufactured for experimental validations. The in-plane and out-of-plane performances of IEH and the regular hexagonal honeycombs (RHHs) were comprehensively compared and investigated from quasi-static compression, energy absorption, mechanical properties, and dynamic loading. The results demonstrated that the IEH extremely enhances the in-plane properties by around 500% compared to the RHH, including stiffness, strength, plateau stress, and specific energy absorption (SEA). Although the improvements come at the expense of a partial reduction in out-of-plane stiffness, strength, and SEA, the in-plane performances of IEH reach approximately 70% of their out-of-plane performances, greatly improving the structural isotropy. Introducing layer-to-layer interval gradient leads to a slight reduction in out-of-plane mechanical properties while improving the early-stage deceleration under impact. These findings promote the considerable potential of sandwich panels utilizing IEH cores for applications requiring enhanced resistance to multi-directional impacts. Full article
(This article belongs to the Special Issue Structure, Properties and Analyses of Polymer Composites)
Show Figures

Figure 1

19 pages, 4437 KiB  
Article
A High-Conversion Ratio Multiphase Converter Realized with Generic Modular Cells
by Eli Hamo, Michael Evzelman and Mor Mordechai Peretz
Appl. Sci. 2025, 15(12), 6818; https://doi.org/10.3390/app15126818 - 17 Jun 2025
Viewed by 299
Abstract
This paper introduces a high-conversion ratio multiphase nonisolated converter built from generic LC cells. The unique architecture that hinges on a generic capacitor inductor switching module enables the high modularity of the topology, providing a quick extension of the converter design in an [...] Read more.
This paper introduces a high-conversion ratio multiphase nonisolated converter built from generic LC cells. The unique architecture that hinges on a generic capacitor inductor switching module enables the high modularity of the topology, providing a quick extension of the converter design in an interleaved configuration for lower ripple and higher current output. The generic module comprises the basic power components of a nonisolated DC–DC converter, where the unique interaction between the capacitor and the inductor results in a soft charging operation, which curbs the losses of the converter, and contributes to a higher efficiency. Additional features of the new converter include a significantly extended effective duty ratio, and a lower voltage stress on the switches, a very high output current, and architecture-inherent output current sharing that balances the loading between the phases. In addition, a power extension using a paralleling and interleaving approach is presented to provide higher output current capabilities. Simulation and experimental results of a modular interleaved three-phase prototype demonstrate an excellent proof of concept and agree well with the theoretical analyzes developed in this study. Full article
Show Figures

Figure 1

Back to TopTop