Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (586)

Search Parameters:
Keywords = interfacial degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3198 KB  
Article
Interface-Engineered Zn@TiO2 and Ti@ZnO Nanocomposites for Advanced Photocatalytic Degradation of Levofloxacin
by Ishita Raval, Atindra Shukla, Vimal G. Gandhi, Khoa Dang Dang, Niraj G. Nair and Van-Huy Nguyen
Catalysts 2026, 16(1), 109; https://doi.org/10.3390/catal16010109 - 22 Jan 2026
Viewed by 17
Abstract
The extensive consumption of freshwater resources and the continuous discharge of pharmaceutical residues pose serious risks to aquatic ecosystems and public health. In this study, pristine ZnO, TiO2, Zn@TiO2, and Ti@ZnO nanocomposites were synthesized via a precipitation-assisted solid–liquid interference [...] Read more.
The extensive consumption of freshwater resources and the continuous discharge of pharmaceutical residues pose serious risks to aquatic ecosystems and public health. In this study, pristine ZnO, TiO2, Zn@TiO2, and Ti@ZnO nanocomposites were synthesized via a precipitation-assisted solid–liquid interference method and systematically evaluated for the photocatalytic degradation of the antibiotic levofloxacin under UV and visible light irradiation. The structural, optical, and surface properties of the synthesized materials were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), UV–visible diffuse reflectance spectroscopy (UV–DRS), and X-ray photoelectron spectroscopy (XPS). XRD analysis confirmed the crystalline nature of all samples, while SEM images revealed spherical and agglomerated morphologies. Photocatalytic experiments were conducted using a 50-ppm levofloxacin solution with a catalyst dosage of 1 g L−1. Pristine ZnO exhibited limited visible-light activity (33.81%) but high UV-driven degradation (92.98%), whereas TiO2 showed comparable degradation efficiencies under UV (78.6%) and visible light (78.9%). Notably, Zn@TiO2 nanocomposites demonstrated superior photocatalytic performance, achieving over 90% and near 70% degradation under both UV and visible light, respectively, while Ti@ZnO composites exhibited less than 60% degradation. The enhanced activity of Zn@TiO2 is attributed to improved interfacial charge transfer, suppressed electron–hole recombination, and extended light absorption. These findings highlight Zn@TiO2 nanocomposites as promising photocatalysts for efficient treatment of pharmaceutical wastewater under dual-light irradiation. Full article
Show Figures

Graphical abstract

19 pages, 28667 KB  
Article
Electrochemical and Optical Insights into Interfacial Connection for Fast Pollutant Removal: Experimental Study of g-C3N4/BiOCl Heterojunction for Rhb and MO Photodegradation
by Hadja Kaka Abanchime Zenaba, Mi Long, Xue Liu, Mengying Xu, Wen Luo and Tian Zhang
Coatings 2026, 16(1), 138; https://doi.org/10.3390/coatings16010138 - 21 Jan 2026
Viewed by 224
Abstract
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride [...] Read more.
Developing efficient heterojunction photocatalysts is essential to address the challenge of degrading persistent organic pollutants. In this study, a multi-scale characterization strategy was employed to investigate the implications of interfacial connectivity between synthesized graphitic carbon nitride (g-C3N4) /bismuth oxychloride (BiOCl)e removal of Rhodamine B (RhB) and Methyl Orange (MO). Morpho-structural characterizations, including Scanning/Transmission Electron Microscopy (SEM/TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 physisorption (Brunauer–Emmett–Teller (BET)) analyses, confirmed the successful construction of an intimate interfacial contact between g-C3N4 and BiOCl. The optimized composite (15% g-C3N4/BiOCl), prepared via a one-step hydrothermal method, exhibited enhanced photocatalytic performance following pseudo-first-order kinetics described by the Langmuir–Hinshelwood model, with apparent rate constants of 0.166 min−1 for MO and 0.519 min−1 for RhB. Under visible-light irradiation, degradation efficiencies of 98% for MO (120 min) and 99% for RhB (35 min) were achieved, outperforming the pristine components. Complementary optical and electrochemical analyses indicate improved light absorption and charge-separation efficiency in the heterojunction system. In addition, the photocatalyst demonstrated good operational stability over four consecutive cycles, maintaining 91.70% activity for MO and 99.76% for RhB. Overall, this work highlights the synergistic photocatalytic g-C3N4/BiOCl heterojunction and provides a valuable insight to guide the design of advanced materials for pollutant remediation. Full article
(This article belongs to the Special Issue Coatings for Batteries and Energy Storage)
Show Figures

Figure 1

16 pages, 4784 KB  
Article
Low-Thermal-Budget Enhancement of Electrically Conductive Adhesive Interconnection for HPBC Photovoltaic Modules
by Min Kwak, Woocheol Choi, Geonu Kim, Kiseok Jeon, Jinyong Seok, Jinho Shin and Chaehwan Jeong
Energies 2026, 19(2), 528; https://doi.org/10.3390/en19020528 - 20 Jan 2026
Viewed by 76
Abstract
The growing demand for high-efficiency photovoltaic (PV) technologies has intensified interest in advanced cell architectures, including hybrid passivated back contact (HPBC) solar cells. Conventional solder-based interconnection processes require high thermal budgets, which can induce thermomechanical stress and lead to performance degradation in thin [...] Read more.
The growing demand for high-efficiency photovoltaic (PV) technologies has intensified interest in advanced cell architectures, including hybrid passivated back contact (HPBC) solar cells. Conventional solder-based interconnection processes require high thermal budgets, which can induce thermomechanical stress and lead to performance degradation in thin back-contact cell structures. In this study, electrically conductive adhesive (ECA) interconnection is investigated as a low-thermal-budget, solder-free alternative for HPBC solar cells. The curing behavior of an acrylic-based, silver-filled ECA is systematically examined by controlling the upper lamp temperature and the welding time during the interconnection process. Electrical performance is evaluated through current–voltage characterization, fill factor, and series resistance analysis, while interfacial microstructural evolution is examined using scanning electron microscopy. The results identify a well-defined processing window in which adequate curing enables stable electrical contact formation. In contrast, both insufficient curing and excessive curing result in degraded electrical performance. To assess practical applicability, HPBC modules with an industry-relevant size of ~1000 × 1160 mm2 are fabricated and evaluated using electroluminescence imaging and I–V measurements. By identifying a robust curing window and demonstrating its successful transfer from string-level interconnections to full-size HPBC modules, this study establishes a practical, low-thermal-budget, solder-free interconnection strategy for advanced back-contact PV architectures. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

30 pages, 37337 KB  
Review
Research Progress on Polymer Materials in High-Voltage Applications: A Review
by Xuxuan Pan, Zhuo Wang, Wenhao Zhou, Feng Liu and Jun Chen
Energies 2026, 19(2), 504; https://doi.org/10.3390/en19020504 - 20 Jan 2026
Viewed by 171
Abstract
High-voltage equipment imposes increasingly stringent demands on polymeric insulating materials, particularly in terms of dielectric strength, space charge suppression, thermo-electrical stability, and interfacial reliability. Conventional polymers are prone to critical failure modes under high electric fields, including electrical treeing, partial discharge, interfacial degradation, [...] Read more.
High-voltage equipment imposes increasingly stringent demands on polymeric insulating materials, particularly in terms of dielectric strength, space charge suppression, thermo-electrical stability, and interfacial reliability. Conventional polymers are prone to critical failure modes under high electric fields, including electrical treeing, partial discharge, interfacial degradation, and thermo-oxidative aging. This review systematically summarizes recent advances in polymer modification strategies specifically designed for high-voltage applications, covering nanofiller reinforcement, plasma surface engineering, and the development of self-healing insulating polymers. Multi-scale structural control and interface engineering, aligned with the specific requirements of high-voltage environments, have emerged as pivotal approaches to enhance insulation performance. Moreover, the integration of artificial intelligence-driven materials design, digital characterization, and application-oriented modeling holds significant promise for accelerating the development of next-generation high-voltage polymeric systems, thereby offering robust materials solutions for the reliable long-term operation of high-voltage equipment. Full article
(This article belongs to the Special Issue Innovation in High-Voltage Technology and Power Management)
Show Figures

Figure 1

20 pages, 5021 KB  
Article
Bio-Inspired Reduced TiO2 Nanotube Photocatalyst Modified with Polydopamine and Silk Fibroin Quantum Dots for Enhanced UV and Visible-Light Photocatalysis
by Cristina Dumitriu, Simona Popescu, Roberta Miftode, Angela Gabriela Păun, Andreea Mădălina Pandele, Andrei Kuncser and Mihaela Mîndroiu
Materials 2026, 19(2), 358; https://doi.org/10.3390/ma19020358 - 16 Jan 2026
Viewed by 220
Abstract
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed [...] Read more.
Y-branched TiO2 nanotubes (NTs) were produced by anodizing titanium plates derived from aerospace production leftovers and subsequently engineered to develop an enhanced TiO2-based photocatalytic system. The NTs were electrochemically reduced to obtain reduced TiO2 nanotubes (rTN) with a narrowed bandgap, followed by surface modification with polydopamine (PD) and silk fibroin-derived quantum dots (QDs) to promote enhanced UV and visible-light photocatalysis for wastewater treatment. The QDs were hydrothermally synthesized from Bombyx mori silk fibroin. Scanning Electron Microscopy (SEM) revealed spherical QD agglomerates encapsulated within the PD layer, while Energy Dispersive X-ray Spectroscopy (EDX) confirmed the presence of carbon and nitrogen originating from both PD and QD. The resulting rNT/PD/QD photocatalyst exhibited a significantly reduced bandgap (1.03 eV), increased Urbach energy (1.35 eV), and moderate hydrophilicity. A high double-layer capacitance (Cdl) indicated an enlarged electrochemically active surface due to the combination of treatments. Electrochemical characterization demonstrated reduced electrical resistance, higher charge density, and lower electron–hole recombination, leading to improved interfacial charge transfer efficiency and electrochemical stability during multi-cycle cyclic voltammetry measurements. Preliminary photocatalytic tests show that the rNT/PD/QD photocatalyst achieved a degradation efficiency of 79.26% for methyl orange (MO) and 35% for tetracycline (TC). Full article
Show Figures

Graphical abstract

12 pages, 1388 KB  
Article
Ageing and Water Detection in Hydroscopic Organic Electrolytes
by Eva Alonso-Muñoz, Janwa El Maiss, Wejdene Gongi, Divya Balakrishnan, Delphine Faye, Karine Mougin and César Pascual García
Electrochem 2026, 7(1), 2; https://doi.org/10.3390/electrochem7010002 - 16 Jan 2026
Viewed by 118
Abstract
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute [...] Read more.
Electrolyte degradation and trace water contamination critically affect the lifetime and safety of lithium-ion batteries. In organic-based electrolytes such as acetonitrile (MeCN), even small amounts of water can trigger PF6 hydrolysis, producing HF, POF3, and related species that contribute to electrolyte ageing and alter interfacial reactions. This study explores the electrochemical signatures of ageing and moisture contamination in Bu4NPF6- and LiPF6-based MeCN electrolytes through a systematic cyclic voltammetry protocol. Platinum electrodes with different surface morphologies—flat, Nafion-coated, and nanostructured—were compared to assess their sensitivity to water-induced degradation. Cathodic Faradaic currents appearing around −0.7 to −1.0 V vs. Ag/AgCl were attributed to the protonic species generated by PF6-induced hydrolysis. The presence of LiPF6, commonly used in battery electrolytes, further increases the concentration of anions responsible for the protonic species, therefore contributing to the acceleration of the electrolyte degradation. Experiments using a Nafion proton-conductive membrane assess the protonic origin of these peaks. Meanwhile, nanostructured platinum exhibits approximately four times higher current responses and enhanced sensitivity to water additions, reflecting the influence of surface roughness and active area. Overall, the findings indicate that electrode morphology significantly influences the detectability of ageing- and water-driven reactions, supporting the potential of nanostructured Pt as a diagnostic material for in situ monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

31 pages, 4459 KB  
Review
Prospects and Challenges for Achieving Superlubricity in Porous Framework Materials (MOFs/POFs): A Review
by Ruishen Wang, Xunyi Liu, Sifan Huo, Mingming Liu, Jiasen Zhang, Yuhong Liu, Yanhong Cheng and Caixia Zhang
Lubricants 2026, 14(1), 42; https://doi.org/10.3390/lubricants14010042 - 15 Jan 2026
Viewed by 260
Abstract
Metal–organic frameworks (MOFs) and porous organic frameworks (POFs) have been extensively explored in recent years as lubricant additives for various systems due to their structural designability, pore storage capacity, and tunable surface chemistry. These materials are utilized to construct low-friction, low-wear interfaces and [...] Read more.
Metal–organic frameworks (MOFs) and porous organic frameworks (POFs) have been extensively explored in recent years as lubricant additives for various systems due to their structural designability, pore storage capacity, and tunable surface chemistry. These materials are utilized to construct low-friction, low-wear interfaces and investigate the potential for superlubricity. This paper systematically reviews the tribological behavior and key mechanisms of MOFs/POFs in oil-based, water-based, and solid coating systems. In oil-based systems, MOFs/POFs primarily achieve friction reduction and wear resistance through third-body particles, layer slip, and synergistic friction-induced chemical/physical transfer films. However, limitations in achieving superlubricity stem from the multi-component heterogeneity of boundary films and the dynamic evolution of shear planes. In water-based systems, MOFs/POFs leverage hydrophilic functional groups to induce hydration layers, promote polymer thickening, and soften gels through interfacial anchoring. Under specific conditions, a few cases exhibit superlubricity with coefficients of friction entering the 10−3 range. In solid coating systems, two-dimensional MOFs/COFs with controllable orientation leverage interlayer weak interactions and incommensurate interfaces to reduce potential barriers, achieving structural superlubricity at the 10−3–10−4 level on the micro- and nano-scales. However, at the engineering scale, factors such as roughness, contamination, and discontinuities in the lubricating film still constrain performance, leading to amplified energy dissipation and degradation. Finally, this paper discusses key challenges in achieving superlubricity with MOFs/POFs and proposes future research directions, including the design of shear-plane structures. Full article
(This article belongs to the Special Issue Superlubricity Mechanisms and Applications)
Show Figures

Figure 1

16 pages, 7264 KB  
Article
Study on the Efficiency and Mechanism of a Novel Copper-Based Composite Material Activated by Supramolecular Self-Assembly for Degrading Reactive Red 3BS
by Jiangming Dai, Xinrong Wang, Bo Chen and Liang Chen
Nanomaterials 2026, 16(2), 111; https://doi.org/10.3390/nano16020111 - 15 Jan 2026
Viewed by 265
Abstract
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade [...] Read more.
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade the Reactive Red 3BS dye within a sodium bicarbonate-activated hydrogen peroxide (BAP) system. This material was applied to degrade the Reactive Red 3BS dye using a sodium bicarbonate-activated hydrogen peroxide system. The morphology, crystal structure, and surface chemistry of the material were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Electron paramagnetic resonance (EPR) was employed to identify reactive species generated during the reaction. The effects of dye concentration, H2O2 concentration, MEL-Cu-6HNA dosage, and coexisting substances in water on degradation efficiency were systematically investigated, with active species identified via EPR. This study marks the first application of the supramolecular self-assembled CuO/Cu2O(SO4)2 composite material MEL-Cu-6HNA, prepared via pyrolysis, in a sodium bicarbonate-activated hydrogen peroxide system. It achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS dye. The three-dimensional sulfate framework and dual Cu2+ sites of the material significantly enhanced the degradation efficiency. MEL-Cu-6HNA achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS in a sodium bicarbonate-activated hydrogen peroxide system. The material’s three-dimensional sulfate framework and dual Cu2+ sites significantly enhanced interfacial electron transfer and Cu2+/Cu+ cycling activation capacity. ·OH served as the primary reactive oxygen species (ROS), with SO42−, 1O2, and ·O2 contributing to sustained radical generation. This system achieved 95% decolorization within 30 min, demonstrating outstanding green treatment potential and providing a reliable theoretical basis and practical pathway for efficient, low-energy treatment of dyeing wastewater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

22 pages, 3584 KB  
Article
Photocatalytic Performance of the Synergetic Coupling of NiO-MgO Nanostructures on a g-C3N4 Composite Towards Methylene Blue Under Visible-Light Irradiation
by Shaojun Hao, Siew Wen Ching, Timm Joyce Tiong, Yeow Hong Yap and Chao-Ming Huang
J. Compos. Sci. 2026, 10(1), 45; https://doi.org/10.3390/jcs10010045 - 13 Jan 2026
Viewed by 288
Abstract
In this study, a ternary Ni/Mg/g-C3N4 composite was synthesized via a controlled precipitation–calcination route and evaluated for its visible-light-assisted degradation of methylene blue (MB). The structural, morphological, and optical characteristics of the composites were systematically investigated using XRD, FT-IR, FESEM, [...] Read more.
In this study, a ternary Ni/Mg/g-C3N4 composite was synthesized via a controlled precipitation–calcination route and evaluated for its visible-light-assisted degradation of methylene blue (MB). The structural, morphological, and optical characteristics of the composites were systematically investigated using XRD, FT-IR, FESEM, BET, and UV–Vis analyses. The results confirmed the successful construction of Ni/Mg/g-C3N4 heterojunctions with strong interfacial coupling and enhanced surface porosity. Among all samples, the Ni/Mg/CN20 composite exhibited the highest activity, achieving 66% MB degradation within 180 min under visible light. This superior performance was attributed to synergistic effects arising from efficient interfacial charge transfer, broadened light absorption, and abundant active sites. The composite also displayed excellent thermal stability. This work demonstrates that the rational control of g-C3N4 loading plays a decisive role in tuning the physicochemical and catalytic properties of Ni/Mg/g-C3N4 composites. The findings provide new insights into the design of cost-effective, thermally stable, and high-performance photocatalysts for visible-light-driven wastewater treatment. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

25 pages, 4785 KB  
Article
Predictive Constitutive Modelling of Oxidation-Induced Degradation in 2.5D Woven C/SiC Composites
by Tao Wu, Yukang Wang, Wenxuan Qi, Xingling Luo, Peng Luo, Xiguang Gao and Yingdong Song
Materials 2026, 19(2), 307; https://doi.org/10.3390/ma19020307 - 12 Jan 2026
Viewed by 180
Abstract
Oxidation can lead to intrinsic degradation and loss in the load-bearing capacity of ceramic matrix composites (CMCs) in high-temperature service, thereby compromising structural integrity and operational safety. To elucidate the mechanism of its oxidation effects, this study predicted the oxygen diffusion coefficient within [...] Read more.
Oxidation can lead to intrinsic degradation and loss in the load-bearing capacity of ceramic matrix composites (CMCs) in high-temperature service, thereby compromising structural integrity and operational safety. To elucidate the mechanism of its oxidation effects, this study predicted the oxygen diffusion coefficient within 2.5D woven C/SiC fibre bundles based on gas diffusion and oxidation kinetics theory, and subsequently constructed a meso-scale constitutive model incorporating oxidation damage and fibre defect distribution. Furthermore, a micro-scale framework for yarns was established by integrating interfacial slip behaviour, and an RVE model for 2.5D woven C/SiC was constructed based on X-ray computed tomography reconstruction of the actual microstructure. Building upon this foundation, an oxidation constitutive model applicable to loading–unloading cycles was proposed and validated through high-temperature oxidation tests at 700 °C, 900 °C, and 1100 °C. Results demonstrate that this model effectively characterizes the strength degradation and stiffness reduction caused by oxidation, enabling prediction of CMCs’ mechanical properties under oxidizing conditions and providing a physics-based foundation for the reliable design and life assessment of C/SiC components operating in oxidizing environments. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

23 pages, 7007 KB  
Review
Fe-Based Catalysts in MgH2 Hydrogen Storage: Mechanistic Insights, Stability Challenges, and a Roadmap for Scalable Design
by Quanhui Hou, Qianyang Wang, Xue Du, Zhihao Xu, Xiao Xu, Yunxuan Zhou and Zhao Ding
Coatings 2026, 16(1), 92; https://doi.org/10.3390/coatings16010092 - 11 Jan 2026
Viewed by 190
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts [...] Read more.
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts have emerged as attractive candidates due to their abundance, compositional tunability, and effective promotion of hydrogen sorption reactions in MgH2 systems. This review critically summarizes recent progress in Fe-based catalysts for MgH2 hydrogen storage, encompassing elemental Fe, iron oxides, Fe-based alloys, and advanced composite catalysts with nanostructured and multicomponent architectures. Mechanistic insights into catalytic enhancement are discussed, with particular emphasis on interfacial electron transfer, catalytic phase evolution, hydrogen diffusion pathways, and synergistic effects between Fe-containing species and MgH2, supported by experimental and theoretical studies. In addition to catalytic activity, key stability challenges—including catalyst agglomeration, phase segregation, interfacial degradation, and performance decay during cycling—are analyzed in relation to structural evolution and kinetic–thermodynamic trade-offs. Finally, a roadmap for the scalable design of Fe-based catalysts is proposed, highlighting rational catalyst selection, interface engineering, and compatibility with large-scale synthesis. This review aims to bridge fundamental mechanisms with practical design considerations for developing durable and high-performance MgH2-based hydrogen storage materials. Full article
(This article belongs to the Special Issue The Research of Change: Catalysts for a Sustainable Future)
Show Figures

Figure 1

11 pages, 4386 KB  
Article
Tribological Performance Under Silica Debris in PAO–Fe Interfaces: An Atomistic Study
by Xiang Jiao, Guochen Huang, Yuyan Zhang, Juan Li, Chenchen Peng and Guoqing Wang
Coatings 2026, 16(1), 91; https://doi.org/10.3390/coatings16010091 - 11 Jan 2026
Viewed by 295
Abstract
Silica-rich dust intrusion is a persistent challenge for lubrication systems in agricultural machinery, where abrasive third-body particles can accelerate wear and shorten component service life. Here, molecular dynamics simulations are employed to elucidate how SiO2 nanoparticle contamination degrades polyalphaolefin (PAO) boundary lubrication [...] Read more.
Silica-rich dust intrusion is a persistent challenge for lubrication systems in agricultural machinery, where abrasive third-body particles can accelerate wear and shorten component service life. Here, molecular dynamics simulations are employed to elucidate how SiO2 nanoparticle contamination degrades polyalphaolefin (PAO) boundary lubrication at the atomic scale. Two confined sliding models are compared: a pure PAO film and a contaminated PAO film containing 7 wt% SiO2 nanoparticles between crystalline Fe substrates under a constant normal load and sliding velocity. The contaminated system exhibits a higher steady-state friction force, faster lubricant film disruption and migration, and consistently higher interfacial temperatures, indicating intensified energy dissipation. Substrate analyses reveal deeper and stronger von Mises stress penetration, increased severe plastic shear strain, elevated Fe potential energy associated with defect accumulation, and reduced structural order. Meanwhile, PAO molecules store more intramolecular deformation energy (bond, angle, and dihedral terms), reflecting stress concentration and disturbed shear alignment induced by nanoparticles. These results clarify the multi-pathway mechanisms by which abrasive SiO2 contaminants transform PAO from a protective boundary film into an agent promoting abrasive wear, providing insights for designing wear-resistant lubricants and improved filtration strategies for particle-laden applications. Full article
Show Figures

Figure 1

39 pages, 4037 KB  
Review
Nanostructured Silicon Anodes for Lithium-Ion Batteries: Advances, Challenges, and Future Prospects
by Alexander A. Pavlovskii, Konstantin Pushnitsa, Alexandra Kosenko, Pavel Novikov and Anatoliy A. Popovich
Materials 2026, 19(2), 281; https://doi.org/10.3390/ma19020281 - 9 Jan 2026
Viewed by 312
Abstract
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase [...] Read more.
Silicon is considered one of the most promising next-generation anode materials for lithium-ion batteries (LIBs) because of its very high theoretical specific capacity (≈3579 mAh·g−1). However, its practical application is limited by severe volume expansion (>300%), an unstable solid electrolyte interphase (SEI), and low electronic conductivity. Recent progress in nanostructuring has significantly improved the electrochemical performance and durability of silicon anodes. In particular, nanosilicon particles, porous structures, and Si–carbon composites enhance structural stability, cycling life, and coulombic efficiency. These improvements arise from better mechanical integrity and more stable electrode–electrolyte interfaces. This review summarizes recent advances in nanostructured silicon anodes, focusing on particle size control, pore design, composite architectures, and interfacial engineering. We discuss how these nanoscale strategies reduce mechanical degradation and improve lithiation kinetics while also addressing the remaining challenges. Finally, future research directions and industrial prospects for the practical use of nanostructured silicon anodes in next-generation LIBs are outlined. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

17 pages, 2799 KB  
Article
Development and Multi-Scale Evaluation of a Novel Polyfluorosilicone Triple-Layer Anti-Seepage Coating for Hydraulic Concrete
by Nazim Hussain, Guoxin Zhang, Songhui Li, Xunan Liu, Xiangyu Luo and Junhua Hu
Coatings 2026, 16(1), 85; https://doi.org/10.3390/coatings16010085 - 9 Jan 2026
Viewed by 263
Abstract
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a [...] Read more.
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a novel polyfluorosilicone-based coating system is presented, which integrates a deep-penetrating nano-primer for substrate reinforcement, a crack-bridging polymer intermediate layer for impermeability, and a polyfluorosilicone topcoat providing UV and weather resistance. The multilayer architecture addresses the inherent trade-offs between adhesion, flexibility, and durability observed in conventional waterproofing systems. Informed by a mechanistic study of interfacial adhesion and failure modes, the coating exhibits outstanding high mechanical and performance characteristics, including a mean pull-off bond strength of 4.56 ± 0.14 MPa for the fully cured triple-layer coating system, with cohesive failure occurring within the concrete substrate, signifying a bond stronger than the material it protects. The system withstood 2.2 MPa water pressure and 200 freeze–thaw cycles with 87.2% modulus retention, demonstrating stable mechanical and environmental durability. The coating demonstrated excellent resilience, showing no evidence of degradation after 1000 h of UV aging, 200 freeze–thaw cycles, and exposure to alkaline solutions. This water-based formulation meets green-material standards, with low volatile organic compound (VOC) levels and minimal harmful chemicals. The results validate that a multi-scale, layered design strategy effectively decouples and addresses the distinct failure mechanisms in hydraulic environments, providing a robust and sustainable solution. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

21 pages, 11335 KB  
Article
Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber
by Xi Yuan, Zhineng Tan, Shengwen Liu, Hang Luo, Zhuo Chen and Dou Zhang
Polymers 2026, 18(2), 184; https://doi.org/10.3390/polym18020184 - 9 Jan 2026
Viewed by 307
Abstract
Toughening modification of epoxy resin (EP) matrices is important for advancing high-performance fiber-reinforced composites. A promising strategy involves the use of multi-component additive systems. However, synergistic effects in such additive systems are difficult to achieve for multidimensional performance optimization due to insufficient interfacial [...] Read more.
Toughening modification of epoxy resin (EP) matrices is important for advancing high-performance fiber-reinforced composites. A promising strategy involves the use of multi-component additive systems. However, synergistic effects in such additive systems are difficult to achieve for multidimensional performance optimization due to insufficient interfacial interactions and competing toughening mechanisms. Herein, a “hard–soft” biphasic synergistic toughening system was engineered for epoxy resin, composed of furan-ring-grafted polyhedral oligomeric silsesquioxane (FPOSS) and liquid polysulfide rubber. The hybrid toughening agent significantly enhanced the integrated performance of the epoxy system: Young’s modulus, tensile strength, and elongation at break increased by 13%, 56%, and 101%, respectively. These improvements are attributed to the formation of enriched molecular chain entanglement sites and optimized dispersion, facilitated by nucleophilic addition reactions between flexible rubber segments and rigid FPOSS units with the epoxy matrix. The marked enhancement in toughness primarily stems from the synergistic toughening mechanism involving “crazing pinning” and “crazing-shear band”. Concurrently, FPOSS incorporation effectively modulated the curing reaction kinetics, rendering the process more gradual while substantially elevating the glass transition temperature (Tg) of the cured system by 16.82 °C and endowing it with superior thermal degradation stability. This work provides a simple and unique strategy to leverage multi-scale mechanisms for the construction of epoxy-based composites with good toughness and strength, and enhanced heat resistance. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Electronic Materials)
Show Figures

Graphical abstract

Back to TopTop