Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Synthesis of Octaepoxysilsesquioxane (EP-POSS)
2.3. Synthesis of FPOSS
2.4. Preparation of PSR Toughened Epoxy Resin
2.5. Preparation of POSS-Modified Epoxy Resin Nanocomposite
2.6. Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of EP-POSS
3.2. Characterization of FPOSS
3.3. Curing Behaviors and Mechanism
3.4. Mechanical Properties of Epoxy Resins
3.5. Morphology and the Toughening Mechanism of Epoxy Resins
3.6. Thermal Properties of Epoxy Resins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Liu, X.; Chen, H.; Li, J.; Wang, X.; Zhu, J. Application of epoxy resin in cultural relics protection. Chin. Chem. Lett. 2024, 35, 109194. [Google Scholar] [CrossRef]
- Beylergil, B.; Duman, V. Enhancing Mode-I and Mode-II fracture toughness of carbon fiber/epoxy laminated composites using 3D-printed polyamide interlayers. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 238, 578–591. [Google Scholar] [CrossRef]
- Beylergil, B. Interlaminar fracture and crack-healing capability of carbon fiber/epoxy composites toughened with 3D-printed poly-ε-caprolactone grid structures. J. Appl. Polym. Sci. 2022, 139, 52038. [Google Scholar] [CrossRef]
- Hu, J.; Hang, G.; Zhang, T.; Li, L.; Zheng, S. Toughened and recyclable epoxy networks featuring nanostructures and dynamic covalent bonds. ACS Appl. Polym. Mater. 2024, 6, 7716–7729. [Google Scholar] [CrossRef]
- Ji, H.; Yang, H.; Zhou, X.; Sun, C.; Li, L.; Zhao, S.; Yu, J.; Li, S.; Wang, R.; Zhang, L. Preparation of bio-based elastomer and its nanocomposites based on dimethyl itaconate with versatile properties. Compos. Part B 2023, 248, 110383. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Liu, X.; Fu, S.; Zong, E.; Song, P. A lignin-based epoxy/TiO2 hybrid nanoparticle for multifunctional bio-based epoxy with improved mechanical, UV absorption and antibacterial properties. Int. J. Biol. Macromol. 2022, 210, 85–93. [Google Scholar] [CrossRef]
- Yang, J.; Wang, H.; Liu, X.; Fu, S.; Song, P. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins. Compos. Sci. Technol. 2021, 212, 108884. [Google Scholar] [CrossRef]
- Zanjani, J.S.M.; Beylergil, B.; Poudeh, L.H.; Alkhateab, B.; Menceloglu, Y.; Yildiz, M. Effect of nanomaterials/nanofibers on the structure and properties of fiber-reinforced composites. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 157–182. [Google Scholar]
- Jayan, J.S.; Saritha, A.; Joseph, K. Innovative materials of this era for toughening the epoxy matrix: A review. Polym. Compos. 2018, 39, E1959–E1986. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Tao, L.; Wang, Q.; Zhang, X.; Zhang, Y.; Wang, T. Designing Rigid–Flexible Epoxy Resins to Unlock Shape Memory and Enhance Toughness. ACS Appl. Polym. Mater. 2024, 7, 354–367. [Google Scholar] [CrossRef]
- Chen, J.; Kinloch, A.J.; Sprenger, S.; Taylor, A.C. The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles. Polymer 2013, 54, 4276–4289. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, L.; Chen, Z.; Wang, Y.; Tusiime, R.; Cheng, C.; Zhou, S.; Liu, Y.; Yu, M.; Zhang, H. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone. Polymers 2019, 11, 461. [Google Scholar] [CrossRef]
- Mi, X.; Liang, N.; Xu, H.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D. Toughness and its mechanisms in epoxy resins. Prog. Mater Sci. 2022, 130, 100977. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Z.; Chen, W.; Jiang, D. Improved Toughness, Flexural Strength, and Dielectric Performances of Epoxy-Dicyclopentadiene Interpenetrating Polymer Networks via Simultaneous Frontal Polymerization. ACS Appl. Polym. Mater. 2025, 7, 9920–9932. [Google Scholar] [CrossRef]
- Fröhlich, J.; Thomann, R.; Mülhaupt, R. Toughened epoxy hybrid nanocomposites containing both an organophilic layered silicate filler and a compatibilized liquid rubber. Macromolecules 2003, 36, 7205–7211. [Google Scholar] [CrossRef]
- Ricciardi, M.R.; Papa, I.; Langella, A.; Langella, T.; Lopresto, V.; Antonucci, V. Mechanical properties of glass fibre composites based on nitrile rubber toughened modified epoxy resin. Compos. Part B 2018, 139, 259–267. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Wu, X.; Li, W.; Cheng, C. Organic-Inorganic dual modified graphene: Improving the dispersibility of graphene in epoxy resin and the fire safety of epoxy resin. Polym. Degrad. Stab. 2019, 165, 80–91. [Google Scholar] [CrossRef]
- Xia, Z.; Liu, G.; Dong, Y.; Zhang, Y. Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Prog. Org. Coat. 2019, 133, 154–160. [Google Scholar] [CrossRef]
- Sasidharan, S.; Anand, A. Epoxy-based hybrid structural composites with nanofillers: A review. Ind. Eng. Chem. Res. 2020, 59, 12617–12631. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Z.; Liu, Y.; Liu, J.; Zhao, D.; Du, J.; Chang, K.; Shao, H.; Zhu, P.; Sun, R. Synergistic Strategy to Break Trade-Off in Thermal-Mechanical Properties via ZIF-8 Enhanced Epoxy Nanocomposites. ACS Appl. Polym. Mater. 2025, 7, 6965–6973. [Google Scholar] [CrossRef]
- George, J.S.; Vijayan, P.P.; Poncot, M.; Vahabi, H.; Maria, H.J.; Thomas, S. Insights into the synergistic effect of graphene oxide/silica hybrid nanofiller for advancing the properties of epoxy resin. ACS Appl. Polym. Mater. 2024, 6, 5932–5944. [Google Scholar] [CrossRef]
- Tsang, W.L.; Taylor, A.C. Fracture and toughening mechanisms of silica-and core–shell rubber-toughened epoxy at ambient and low temperature. J. Mater. Sci. 2019, 54, 13938–13958. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, G.-T.; Mai, Y.-W.; Zeng, Y. On fracture toughness of nano-particle modified epoxy. Compos. Part B 2011, 42, 2170–2175. [Google Scholar] [CrossRef]
- Marouf, B.T.; Pearson, R.A.; Bagheri, R. Anomalous fracture behavior in an epoxy-based hybrid composite. Mater. Sci. Eng. A 2009, 515, 49–58. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H. Cage-like silsesquioxanes-based hybrid materials. Dalton Trans. 2020, 49, 5396–5405. [Google Scholar] [CrossRef]
- Kuo, S.-W.; Chang, F.-C. POSS related polymer nanocomposites. Prog. Polym. Sci. 2011, 36, 1649–1696. [Google Scholar] [CrossRef]
- Soldatov, M.; Liu, H. Hybrid porous polymers based on cage-like organosiloxanes: Synthesis, properties and applications. Prog. Polym. Sci. 2021, 119, 101419. [Google Scholar] [CrossRef]
- Chruściel, J.J.; Leśniak, E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Prog. Polym. Sci. 2015, 41, 67–121. [Google Scholar] [CrossRef]
- Croissant, J.G.; Cattoën, X.; Durand, J.-O.; Man, M.W.C.; Khashab, N.M. Organosilica hybrid nanomaterials with a high organic content: Syntheses and applications of silsesquioxanes. Nanoscale 2016, 8, 19945–19972. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shen, J.; Yang, X.; Zhao, D.; Feng, Y. Epoxy-functionalized POSS and glass fiber for improving thermal and mechanical properties of epoxy resins. Appl. Sci. 2023, 13, 2461. [Google Scholar] [CrossRef]
- Thitsartarn, W.; Fan, X.; Sun, Y.; Yeo, J.C.C.; Yuan, D.; He, C. Simultaneous enhancement of strength and toughness of epoxy using POSS-Rubber core–shell nanoparticles. Compos. Sci. Technol. 2015, 118, 63–71. [Google Scholar] [CrossRef]
- Misasi, J.M.; Jin, Q.; Knauer, K.M.; Morgan, S.E.; Wiggins, J.S. Hybrid POSS-Hyperbranched polymer additives for simultaneous reinforcement and toughness improvements in epoxy networks. Polymer 2017, 117, 54–63. [Google Scholar] [CrossRef]
- Hao, L.; Chen, J.; Ma, T.; Cheng, J.; Zhang, J.; Zhao, F. Low dielectric and high performance of epoxy polymer via grafting POSS dangling chains. Eur. Polym. J. 2022, 173, 111313. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, L.; Toghiani, H.; Daulton, T.L.; Koyama, K.; Pittman, C.U. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules 2001, 34, 8686–8693. [Google Scholar] [CrossRef]
- Hu, R.; He, K.; Zheng, X.; Zeng, B.; Chen, G.; Xu, Y.; Yuan, C.; Luo, W.; Dai, L. Preparation and properties of flame retardant epoxy resin modified by additive nitrogen-containing POSS-based molecule with eight DOPO units. J. Polym. Res. 2021, 28, 195. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Nie, K.; Zheng, S. Thermomechanical, surface and shape memory properties of thermosetting blends of epoxy with Poly (ethylene oxide): An impact of POSS microdomain formation. Mater. Chem. Phys. 2020, 240, 122183. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, G.; Fang, C.; Pei, J.; Chen, S. Curing octaepoxysilsesquioxane with different curing agents. J. Appl. Polym. Sci. 2012, 125, 2281–2288. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, P.; Sun, L.; Wang, L. Hydrophobic epoxy caged silsesquioxane film (EP-POSS): Synthesis and performance characterization. Nanomaterials 2021, 11, 472. [Google Scholar] [CrossRef]
- Dong, J.; Kostjuk, S.V.; Liu, H. Epoxy SQ-based amine functionalized superhydrophilic hybrid network for Ag+ adsorption and catalytic degradation of Rhodamine B. React. Funct. Polym. 2023, 192, 105726. [Google Scholar] [CrossRef]
- Chimjarn, S.; Kunthom, R.; Chancharone, P.; Sodkhomkhum, R.; Sangtrirutnugul, P.; Ervithayasuporn, V. Synthesis of aromatic functionalized cage-rearranged silsesquioxanes (T 8, T 10, and T 12) via nucleophilic substitution reactions. Dalton Trans. 2015, 44, 916–919. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Li, J.; Wang, B.; Liu, J.; Chen, P.; Miao, M.; Gu, Q. Chitin nanocrystals grafted with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and their effects on thermal behavior of PHBV. Carbohydr. Polym. 2012, 87, 784–789. [Google Scholar] [CrossRef]
- Guo, X.-J.; Xue, C.-H.; Jia, S.-T.; Ma, J.-Z. Mechanically durable superamphiphobic surfaces via synergistic hydrophobization and fluorination. Chem. Eng. J. 2017, 320, 330–341. [Google Scholar] [CrossRef]
- Mishra, K.; Singh, R.P. Quantitative evaluation of the effect of dispersion techniques on the mechanical properties of polyhedral oligomeric silsesquioxane (POSS)–epoxy nanocomposites. Polym. Compos. 2018, 39, E2445–E2453. [Google Scholar] [CrossRef]
- Mishra, K.; Gidley, D.; Singh, R.P. Influence of self-assembled compliant domains on the polymer network and mechanical properties of POSS-epoxy nanocomposites under cryogenic conditions. Eur. Polym. J. 2019, 116, 283–290. [Google Scholar] [CrossRef]
- Sultania, M.; Rai, J.S.P.; Srivastava, D. Modeling and simulation of curing kinetics for the cardanol-based vinyl ester resin by means of non-isothermal DSC measurements. Mater. Chem. Phys. 2012, 132, 180–186. [Google Scholar] [CrossRef]
- Qiao, H.; Chen, M.; Chen, B.; Zhang, H.; Zheng, B. Understanding the curing kinetics of boron-based hyperbranched polysiloxane reinforced and toughened epoxy resin by rheology. Chem. Eng. J. 2023, 467, 143542. [Google Scholar] [CrossRef]
- Kamal, M.R.; Sourour, S. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 1973, 13, 59–64. [Google Scholar] [CrossRef]
- Ran, Z.; Liu, X.; Jiang, X.; Wu, Y.; Liao, H. Study on curing kinetics of epoxy-amine to reduce temperature caused by the exothermic reaction. Thermochim. Acta 2020, 692, 178735. [Google Scholar] [CrossRef]
- Keller, A.; Chong, H.M.; Taylor, A.C.; Dransfeld, C.; Masania, K. Core-shell rubber nanoparticle reinforcement and processing of high toughness fast-curing epoxy composites. Compos. Sci. Technol. 2017, 147, 78–88. [Google Scholar] [CrossRef]
- Keller, A.; Masania, K.; Taylor, A.C.; Dransfeld, C. Fast-curing epoxy polymers with silica nanoparticles: Properties and rheo-kinetic modelling. J. Mater. Sci. 2016, 51, 236–251. [Google Scholar] [CrossRef]
- Ozawa, T. A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, H.; Feng, G.; Liu, R.; Yang, K.; Feng, W.; Zhang, S.; He, C. Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature. Compos. Part B 2021, 222, 109043. [Google Scholar]
- Liu, R.; Yan, H.; Zhang, Y.; Yang, K.; Du, S. Cyanate ester resins containing Si-OC hyperbranched polysiloxane with favorable curing processability and toughness for electronic packaging. Chem. Eng. J. 2022, 433, 133827. [Google Scholar] [CrossRef]
- Mora, A.-S.; Tayouo, R.; Boutevin, B.; David, G.; Caillol, S. A perspective approach on the amine reactivity and the hydrogen bonds effect on epoxy-amine systems. Eur. Polym. J. 2020, 123, 109460. [Google Scholar] [CrossRef]
- Ma, T.; Ma, J.; Yang, C.; Zhang, J.; Cheng, J. Robust, multiresponsive, superhydrophobic, and oleophobic nanocomposites via a highly efficient multifluorination strategy. ACS Appl. Mater. Interfaces 2021, 13, 28949–28961. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cai, Y.; Hu, Y.; Zhu, J.; Wei, J.; Ma, Y.; Wan, J.; Fan, H. Bio-based epoxy functionalized MQ silicone resins: From synthesis to toughened epoxy composites with good mechanical properties, thermal resistance and transparency. Polym. Chem. 2022, 13, 5325–5336. [Google Scholar] [CrossRef]
- Pourchet, S.; Sonnier, R.; Ben-Abdelkader, M.; Gaillard, Y.; Ruiz, Q.; Placet, V.; Plasseraud, L.; Boni, G. New reactive isoeugenol based phosphate flame retardant: Toward green epoxy resins. ACS Sustain. Chem. Eng. 2019, 7, 14074–14088. [Google Scholar] [CrossRef]
- Ma, T.; Ma, J.; Yang, C.; Zhang, J.; Cheng, J. High-performance, multi-functional and well-dispersed graphene/epoxy nanocomposites via internal antiplasticization and π-πF interactions. Compos. Sci. Technol. 2021, 215, 109008. [Google Scholar] [CrossRef]
- Xu, Z.; Song, P.; Zhang, J.; Guo, Q.; Mai, Y.-W. Epoxy nanocomposites simultaneously strengthened and toughened by hybridization with graphene oxide and block ionomer. Compos. Sci. Technol. 2018, 168, 363–370. [Google Scholar] [CrossRef]
- Sue, H.J.; Gam, K.T.; Bestaoui, N.; Clearfield, A.; Miyamoto, M.; Miyatake, N. Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites. Acta Mater. 2004, 52, 2239–2250. [Google Scholar] [CrossRef]
- Yi, X.F.; Mishra, A.K.; Kim, N.H.; Ku, B.-C.; Lee, J.H. Synergistic effects of oxidized CNTs and reactive oligomer on the fracture toughness and mechanical properties of epoxy. Compos. Part A 2013, 49, 58–67. [Google Scholar] [CrossRef]
- Ma, H.; Aravand, M.A.; Falzon, B.G. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes. Compos. Sci. Technol. 2021, 201, 108523. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, B.; Zheng, Y.; Yang, J.; Duan, Z.; Hu, Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J. Colloid Interface Sci. 2018, 521, 160–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Yu, R.; Yang, K.; Guo, L.; Yan, H. Phosphorus-free hyperbranched polyborate flame retardant: Ultra-high strength and toughness, reduced fire hazards and unexpected transparency for epoxy resin. Compos. Part B 2022, 242, 110101. [Google Scholar] [CrossRef]
- Constantin, F.; Gârea, S.A.; Iovu, H. The influence of organic substituents of polyhedral oligomeric silsesquioxane on the properties of epoxy-based hybrid nanomaterials. Compos. Part B 2013, 44, 558–564. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sloan, R.; Wiggins, J.S. Epoxy hybrid networks with high mass fraction molecular-level dispersion of pendant polyhedral oligomeric silsesquioxane (POSS). Polymer 2017, 114, 298–310. [Google Scholar] [CrossRef]
- Dittanet, P.; Pearson, R.A. Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 2012, 53, 1890–1905. [Google Scholar] [CrossRef]











| Samples | C1s (mol%) | O1s (mol%) | Si2p (mol%) | N1s (mol%) |
|---|---|---|---|---|
| EP-POSS | 57.41 | 33.46 | 9.13 | / |
| FPOSS | 62.92 | 25.47 | 7.35 | 4.26 |
| Samples | k1 (min−1) | k2 (min−1) | m | n | m + n | R2 |
|---|---|---|---|---|---|---|
| EP | 0.0021 | 0.6599 | 0.7003 | 0.8801 | 1.5804 | 0.9978 |
| E/P | 0.0001 | 0.5927 | 0.7427 | 0.7839 | 1.5266 | 0.9964 |
| E/P/F | 0.0040 | 0.5117 | 0.6276 | 0.6884 | 1.3160 | 0.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yuan, X.; Tan, Z.; Liu, S.; Luo, H.; Chen, Z.; Zhang, D. Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber. Polymers 2026, 18, 184. https://doi.org/10.3390/polym18020184
Yuan X, Tan Z, Liu S, Luo H, Chen Z, Zhang D. Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber. Polymers. 2026; 18(2):184. https://doi.org/10.3390/polym18020184
Chicago/Turabian StyleYuan, Xi, Zhineng Tan, Shengwen Liu, Hang Luo, Zhuo Chen, and Dou Zhang. 2026. "Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber" Polymers 18, no. 2: 184. https://doi.org/10.3390/polym18020184
APA StyleYuan, X., Tan, Z., Liu, S., Luo, H., Chen, Z., & Zhang, D. (2026). Enhanced Mechanical and Thermal Properties of Epoxy Resins Through Hard–Soft Biphasic Synergistic Toughening with Modified POSS/Polysulfide Rubber. Polymers, 18(2), 184. https://doi.org/10.3390/polym18020184
