Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (177)

Search Parameters:
Keywords = interactive pads

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2108 KiB  
Article
Designing for Dyads: A Comparative User Experience Study of Remote and Face-to-Face Multi-User Interfaces
by Mengcai Zhou, Jingxuan Wang, Ono Kenta, Makoto Watanabe and Chacon Quintero Juan Carlos
Electronics 2025, 14(14), 2806; https://doi.org/10.3390/electronics14142806 - 12 Jul 2025
Viewed by 311
Abstract
Collaborative digital games and interfaces are increasingly used in both research and commercial contexts, yet little is known about how the spatial arrangement and interface sharing affect the user experience in dyadic settings. Using a two-player iPad pong game, this study compared user [...] Read more.
Collaborative digital games and interfaces are increasingly used in both research and commercial contexts, yet little is known about how the spatial arrangement and interface sharing affect the user experience in dyadic settings. Using a two-player iPad pong game, this study compared user experiences across three collaborative gaming scenarios: face-to-face single-screen (F2F-OneS), face-to-face dual-screen (F2F-DualS), and remote dual-screen (Rmt-DualS) scenarios. Eleven dyads participated in all conditions using a within-subject design. After each session, the participants completed a 21-item user experience questionnaire and took part in brief interviews. The results from a repeated-measure ANOVA and post hoc paired t-tests showed significant scenario effects for several experience items, with F2F-OneS yielding higher engagement, novelty, and accomplishment than remote play, and qualitative interviews supported the quantitative findings, revealing themes of social presence and interaction. These results highlight the importance of spatial and interface design in collaborative settings, suggesting that both technical and social factors should be considered in multi-user interface development. Full article
(This article belongs to the Special Issue Innovative Designs in Human–Computer Interaction)
Show Figures

Figure 1

19 pages, 2084 KiB  
Article
Assessment of Uneven Wear of Freight Wagon Brake Pads
by Sergii Panchenko, Juraj Gerlici, Alyona Lovska and Vasyl Ravlyuk
Appl. Sci. 2025, 15(12), 6860; https://doi.org/10.3390/app15126860 - 18 Jun 2025
Viewed by 339
Abstract
This study deals with the problem of uneven wear of brake pads of wagons caused by a set of structural, dynamic, technological and operational factors. It has been found that an uneven distribution of the brake pad pressure force leads to higher maintenance [...] Read more.
This study deals with the problem of uneven wear of brake pads of wagons caused by a set of structural, dynamic, technological and operational factors. It has been found that an uneven distribution of the brake pad pressure force leads to higher maintenance costs and lower braking efficiency. The main causes of uneven wear are worn kinetostatic units, differences in the geometric parameters of pads, and imperfections in the lever transmission design. A method for optimizing the distribution of the pressure force using weight coefficients and the Lagrange function has been developed; it reduces the uneven wear of brake pads to 8–10% compared to that of a typical wagon bogie brake system, which is 20–35%. The experiments conducted have shown that for a mileage of 74,400 km and with the air distributor in empty mode, the wear of the pads is 19.6–28 mm, while in the loaded mode it amounts to 27.53–38.04 mm. The stress state of brake pads was determined with consideration of the weight coefficients. It was found that for abnormal wear of brake pads, their strength is not observed. The strength of the wheel when interacting with an abnormally worn pad has also been assessed. The resulting stresses are 1.5% higher than those that occur when the wheel interacts with the pad with nominal dimensions. The results of the research will contribute to the database of developments to be used for designing of modern structures of tribotechnical pairs of rolling stock and increasing the efficiency of railway transport. Full article
Show Figures

Figure 1

20 pages, 13952 KiB  
Article
MSO-DETR: A Lightweight Detection Transformer Model for Small Object Detection in Maritime Search and Rescue
by Jing Li, Yun Hua and Mei Xue
Electronics 2025, 14(12), 2327; https://doi.org/10.3390/electronics14122327 - 6 Jun 2025
Viewed by 647
Abstract
In maritime search and rescue small object detection, existing high-accuracy detection models face deployment challenges on UAV platforms due to limited computational capabilities, while existing lightweight models often fail to meet performance requirements, reducing the overall effectiveness of rescue operations. To overcome the [...] Read more.
In maritime search and rescue small object detection, existing high-accuracy detection models face deployment challenges on UAV platforms due to limited computational capabilities, while existing lightweight models often fail to meet performance requirements, reducing the overall effectiveness of rescue operations. To overcome the difficulty of balancing lightweight design and detection accuracy, we propose Maritime Small Object Detection Transformer (MSO-DETR), a lightweight detection transformer model for small object detection in maritime search and rescue, based on an improved Real-Time Detection Transformer (RT-DETR) architecture. MSO-DETR employs StarNet as its backbone to reduce the computational cost with a slight drop in detection accuracy. In addition, the Dynamic-range Histogram Self-Attention (DHSA) mechanism is integrated with the Attention-based Intra-scale Feature Interaction (AIFI) module to construct DHAIFI, which enhances the model’s ability to perceive object features under challenging conditions such as sea surface reflections and wave interference. During the feature fusion phase, we propose the Scale-Tuned Enhanced Feature Fusion (STEFF) module, which integrates the improved Attentional Scale Sequence Fusion (ASF) structure with the newly designed Multi-Dilated Convolution Cross-Stage Partial (MDC_CSP) and Parallel Aggregation Downsampling (PAD) to enhance multi-scale aggregation and small object recognition while maintaining computational efficiency. Experimental results demonstrate that, in contrast to the baseline, MSO-DETR achieves significant model lightweighting, reducing parameters by 67.3% and GFLOPs by 46.5%, while maintaining detection accuracy on the SeaDronesSee dataset, with only a 0.1% decrease in mAP50 and a 0.5% improvement in mAP50:95. It also delivers comparable performance to the baseline on the AFO dataset. Full article
Show Figures

Figure 1

24 pages, 7475 KiB  
Article
Application of a Dual-Stream Network Collaboratively Based on Wavelet and Spatial-Channel Convolution in the Inpainting of Blank Strips in Marine Electrical Imaging Logging Images: A Case Study in the South China Sea
by Guilan Lin, Sinan Fang, Manxin Li, Hongtao Wu, Chenxi Xue and Zeyu Zhang
J. Mar. Sci. Eng. 2025, 13(5), 997; https://doi.org/10.3390/jmse13050997 - 21 May 2025
Cited by 1 | Viewed by 478
Abstract
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture [...] Read more.
Electrical imaging logging technology precisely characterizes the features of the formation on the borehole wall through high-resolution resistivity images. However, the problem of blank strips caused by the mismatch between the instrument pads and the borehole diameter seriously affects the accuracy of fracture identification and formation continuity interpretation in marine oil and gas reservoirs. Existing inpainting methods struggle to reconstruct complex geological textures while maintaining structural continuity, particularly in balancing low-frequency formation morphology with high-frequency fracture details. To address this issue, this paper proposes an inpainting method using a dual-stream network based on the collaborative optimization of wavelet and spatial-channel convolution. By designing a texture-aware data prior algorithm, a high-quality training dataset with geological rationality is generated. A dual-stream encoder–decoder network architecture is adopted, and the wavelet transform convolution (WTConv) module is utilized to enhance the multi-scale perception ability of the generator, achieving a collaborative analysis of the low-frequency formation structure and high-frequency fracture details. Combined with the spatial channel convolution (SCConv) to enhance the feature fusion module, the cross-modal interaction between texture and structural features is optimized through a dynamic gating mechanism. Furthermore, a multi-objective loss function is introduced to constrain the semantic coherence and visual authenticity of image reconstruction. Experiments show that, in the inpainting indexes for Block X in the South China Sea, the mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR) of this method are 6.893, 0.779, and 19.087, respectively, which are significantly better than the improved filtersim, U-Net, and AOT-GAN methods. The correlation degree of the pixel distribution between the inpainted area and the original image reaches 0.921~0.997, verifying the precise matching of the low-frequency morphology and high-frequency details. In the inpainting of electrical imaging logging images across blocks, the applicability of the method is confirmed, effectively solving the interference of blank strips on the interpretation accuracy of marine oil and gas reservoirs. It provides an intelligent inpainting tool with geological interpretability for the electrical imaging logging interpretation of complex reservoirs, and has important engineering value for improving the efficiency of oil and gas exploration and development. Full article
(This article belongs to the Special Issue Research on Offshore Oil and Gas Numerical Simulation)
Show Figures

Figure 1

14 pages, 3513 KiB  
Article
Investigating the Impact of Maternal Obesity on Disease Severity in a Mouse Model of Preeclampsia
by Natalie K. Binder, Natasha de Alwis, Bianca R. Fato, Sally Beard, Yeukai T. M. Mangwiro, Elif Kadife, Fiona Brownfoot and Natalie J. Hannan
Nutrients 2025, 17(9), 1586; https://doi.org/10.3390/nu17091586 - 5 May 2025
Viewed by 570
Abstract
Background: Preeclampsia is a leading cause of maternal and fetal morbidity and mortality, with obesity recognised as a significant risk factor. However, the direct contribution of obesity to the pathophysiology underpinning preeclampsia remains unclear. Objectives: This study aimed to develop and characterise a [...] Read more.
Background: Preeclampsia is a leading cause of maternal and fetal morbidity and mortality, with obesity recognised as a significant risk factor. However, the direct contribution of obesity to the pathophysiology underpinning preeclampsia remains unclear. Objectives: This study aimed to develop and characterise a diet-induced obese mouse model with superimposed preeclampsia to better understand the impact of obesity on disease pathogenesis. Methods: Female mice were fed either standard rodent chow or a high-fat diet from weaning. At 8 weeks of age, mice were mated. Pregnant mice were treated with L-NG-Nitro arginine methyl ester (L-NAME; to block nitric oxide production) from gestational day (D)7.5 to D17.5 to induce a preeclampsia-like phenotype. Blood pressure was measured on D14.5 and D17.5, followed by the collection of maternal and fetal tissues for histological, biochemical, and molecular analyses. Results: Obese dams exhibited significantly increased body, fat pad, and liver weights compared to lean controls. While L-NAME induced hypertension in the control mice, contrary to expectations, the L-NAME-induced hypertension was partially attenuated in obese dams, with significantly lower systolic and diastolic blood pressures at D14.5 and reduced systolic pressure at D17.5. Fetal weights were comparable between groups, however, placentas were significantly heavier with obesity. Endothelial function, inflammatory markers, and renal gene expression patterns suggested distinct physiological adaptations in obese preeclamptic-like mice. Conclusions: These findings challenge the prevailing assumption that obesity drives hypertension, endothelial dysfunction, and inflammatory markers. The differential vascular and physiological responses observed in the obese dams highlight the complexity of obesity–preeclampsia interactions and underscore the need for refined preclinical models to disentangle mechanistic contributions. This work has implications for personalised management strategies and targeted therapeutic interventions in obese pregnancies at risk of preeclampsia. Full article
(This article belongs to the Special Issue Nutrition, Diet and Metabolism in Pregnancy)
Show Figures

Figure 1

17 pages, 4106 KiB  
Review
Molecular Alignment Under Strong Laser Pulses: Progress and Applications
by Ming Wang, Enliang Zhang, Qingqing Liang and Yi Liu
Photonics 2025, 12(5), 422; https://doi.org/10.3390/photonics12050422 - 28 Apr 2025
Viewed by 831
Abstract
Molecular alignment under strong laser pulses is an important tool for manipulating quantum states and investigating ultrafast phenomena. This review summarizes two decades of advancement in laser-driven alignment techniques, such as cross-polarized double pulses, optical centrifuges, and elliptically truncated fields. Given the prominent [...] Read more.
Molecular alignment under strong laser pulses is an important tool for manipulating quantum states and investigating ultrafast phenomena. This review summarizes two decades of advancement in laser-driven alignment techniques, such as cross-polarized double pulses, optical centrifuges, and elliptically truncated fields. Given the prominent emphasis on transformational applications in current alignment research, we outline its importance in cutting-edge applications under strong laser pulses, such as chiral discrimination, high-harmonic generation (HHG), photoelectron angular distributions (PADs) and ionization yields in photoionization, and Terahertz (THz) manipulation. These interdisciplinary developments provide fundamental insights into ultrafast molecular dynamics. They also establish frameworks for advanced light–matter interaction control. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

34 pages, 13428 KiB  
Review
Materials and Structures Inspired by Human Heel Pads for Advanced Biomechanical Function
by Zhiqiang Zhuang, Congtian Gu, Shunlin Li, Hu Shen, Ning Liu, Ziwei Li, Dakai Wang, Cong Wang, Linpeng Liu, Kaixian Ba, Bin Yu and Guoliang Ma
Biomimetics 2025, 10(5), 267; https://doi.org/10.3390/biomimetics10050267 - 27 Apr 2025
Cited by 1 | Viewed by 582
Abstract
The heel pad, located under the calcaneus of the human foot, is a hidden treasure that has been subjected to harsh mechanical conditions such as impact, vibration, and cyclic loading. This has resulted in a unique compartment structure and material composition, endowed with [...] Read more.
The heel pad, located under the calcaneus of the human foot, is a hidden treasure that has been subjected to harsh mechanical conditions such as impact, vibration, and cyclic loading. This has resulted in a unique compartment structure and material composition, endowed with advanced biomechanical functions including cushioning, vibration reduction, fatigue resistance, and touchdown stability, making it an ideal natural bionic prototype in the field of bionic materials. It has been shown that the highly specialized structure and material composition of the heel pad endows it with biomechanical properties such as hyperelasticity, viscoelasticity, and mechanical anisotropy. These complex biomechanical properties underpin its advanced functions. Although it is known that these properties interact with each other, the detailed influence mechanism remains unclear, which restricts its application as a bionic prototype in the field of bionic materials. Therefore, this study provides a comprehensive review of the structure, materials, biomechanical properties, and functions of the heel pad. It focuses on elucidating the relationships between the structure, materials, biomechanical properties, and functions of heel pads and proposes insights for the study of bionic materials using the heel pad as a bionic prototype. Finally, a research idea to analyze the advanced mechanical properties of heel pads by integrating sophisticated technologies is proposed, aiming to provide directions for further in-depth research on heel pads and inspiration for the innovative design of advanced bionic materials. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Graphical abstract

16 pages, 3670 KiB  
Article
Multi-Field Characterisation of Material Removal Processes in Ultrasonic Magnetorheological Chemical Compound Polishing of GaN Wafers
by Huazhuo Liang, Wenjie Chen, Youzhi Fu, Wenjie Zhou, Ling Mo, Qi Wen, Dawei Liu and Junfeng He
Micromachines 2025, 16(5), 502; https://doi.org/10.3390/mi16050502 - 25 Apr 2025
Viewed by 351
Abstract
Gallium nitride (GaN), as the core material of third-generation semiconductors, has important applications in high-temperature, high-frequency, and high-power devices, but its polishing process faces many challenges. In this work, a multifield synergistic material removal model is established to study the material removal behaviour [...] Read more.
Gallium nitride (GaN), as the core material of third-generation semiconductors, has important applications in high-temperature, high-frequency, and high-power devices, but its polishing process faces many challenges. In this work, a multifield synergistic material removal model is established to study the material removal behaviour by ultrasonic magnetorheological chemical compound polishing (UMCP) of gallium nitride wafers, and the polishing processing under different polishing solution compositions and processing conditions is used to examine the effects of the ultrasonic, chemical, and mechanical effects on the material removal rate. The results show that mechanical removal dominates during UMCP, the chemical enhancement is slightly greater than the ultrasonic action, and the synergistic interaction between the range of factors promotes better removal of the GaN materials. The percentage of mechanical removal by abrasives is about 25% to 44.63%, the mechanical removal by magnetorheological effect polishing pads is about 14.66% to 23.94%, the removal due to chemical action is about 15.52% to 23.41%, the removal due to ultrasonic action is about 11.73% to 14.66%, and the percentage of interactive removal is 6.47% to 14.36%. The abrasive composition significantly enhances the mechanical removal effect, and a higher abrasive concentration correlates to a stronger mechanical removal effect. The concentration of hydrogen peroxide has a superior effect on the chemical reaction, and too high or too low a concentration of hydrogen peroxide weakens the chemical action effect. The results of the study can provide a basis for further research on the material removal mechanism of the GaN UMCP process. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

22 pages, 7564 KiB  
Article
Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients
by Alexander N. Chernov, Sofia S. Skliar, Mikalai M. Yatskou, Victor V. Skakun, Sarng S. Pyurveev, Ekaterina G. Batotsyrenova, Sergey N. Zheregelya, Guodong Liu, Vadim A. Kashuro, Dmitry O. Ivanov and Sergey D. Ivanov
Biomedicines 2025, 13(5), 1040; https://doi.org/10.3390/biomedicines13051040 - 25 Apr 2025
Viewed by 670
Abstract
Background: Glioblastoma multiforme (GBM) is a very malignant brain tumor. GBM exhibits cellular and molecular heterogeneity that can be exploited to improve patient outcomes by individually tailoring chemotherapy regimens. Objective: Our objective was to develop a predictive model of the life expectancy of [...] Read more.
Background: Glioblastoma multiforme (GBM) is a very malignant brain tumor. GBM exhibits cellular and molecular heterogeneity that can be exploited to improve patient outcomes by individually tailoring chemotherapy regimens. Objective: Our objective was to develop a predictive model of the life expectancy of GBM patients using data on tumor cells’ sensitivity to chemotherapy drugs, as well as the levels of blood cells and proteins forming the tumor microenvironment. Methods: The investigation included 31 GBM patients from the Almazov Medical Research Centre (Saint Petersburg, Russia). The cytotoxic effects of chemotherapy drugs on GBM cells were studied by an MTT test using a 50% inhibitory concentration (IC50). We analyzed the data with life expectancy by a one-way ANOVA, principal component analysis (PCA), ROC, and Kaplan–Meier survival tests using GraphPad Prism and Statistica 10 software. Results: We determined in vitro the IC50 of six chemotherapy drugs for GBM and 32 clinical and biochemical blood indicators for these patients. This model includes an assessment of only three parameters: IC50 of tumor cells to carboplatin (CARB) higher than 4.115 μg/mL, as well as levels of band neutrophils (NEUT-B) below 2.5% and total protein (TP) above 64.5 g/L in the blood analysis, which allows predicting with 83.3% probability (sensitivity) the life expectancy of patients for 15 months or more. In opposite, a change in these parameters—CARB above 4115 μg/mL, NEUT-B below 2.5%, and TP above 64.5 g/L—predict with 83.3% probability (specificity) no survival rate of GBM patients for more than 15 months. The relative risk for CARB was 6.41 (95 CI: 4.37–8.47, p = 0.01); for NEUT-B, the RR was 0.40 (95 CI: 0.26–0.87, p = 0.09); and for TP, it was 2.88 (95 CI: 1.57–4.19, p = 0.09). Overall, the model predicted the risk of developing a positive event (an outcome with a life expectancy more than 10 months) eight times (95 CI 6.34–9.66, p < 0.01). Cross k-means validation on three clusters (n = 10) of the model showed that its average accuracy (sensitivity and specificity) for cluster 1 was 74.98%; for cluster 2, it was 66.7%; and for cluster 3, it was 60.0%. At the same time, the differences between clusters 1, 2, and 3 were not significant. The results of the Sobel test show that there are no interactions between the components of the model, and each component is an independent factor influencing the event (life expectancy, survival) of GBM patients. Conclusions: A simple predictive model for GBM patients’ life expectancy has been developed using statistical analysis methods. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

27 pages, 10127 KiB  
Article
Research on the Trajectory and Relative Speed of a Single-Sided Chemical Mechanical Polishing Machine
by Guoqing Ye and Zhenqiang Yao
Micromachines 2025, 16(4), 450; https://doi.org/10.3390/mi16040450 - 10 Apr 2025
Viewed by 738
Abstract
This study establishes a bidirectional kinematic analysis framework for single-sided chemical mechanical polishing systems through innovative coordinate transformation synergies (rotational and translational). To address three critical gaps in existing research, interaction dynamics for both pad–wafer and abrasive–wafer interfaces are systematically derived via 5-inch [...] Read more.
This study establishes a bidirectional kinematic analysis framework for single-sided chemical mechanical polishing systems through innovative coordinate transformation synergies (rotational and translational). To address three critical gaps in existing research, interaction dynamics for both pad–wafer and abrasive–wafer interfaces are systematically derived via 5-inch silicon wafers. Key advancements include (1) the development of closed-form trajectory equations for resolving multibody tribological interactions, (2) vector-based relative velocity quantification with 17 × 17 grid 3D visualization, and (3) first-principle parametric mapping of velocity nonuniformity (NUV = 0–0.42) across 0–80 rpm operational regimes. Numerical simulations reveal two fundamental regimes: near-unity rotational speed ratios (ωPC = [0.95, 1) and (1, 1.05]) generate optimal spiral trajectories that achieve 95% surface coverage, whereas integer multiples produce stable relative velocities (1.75 m/s at 60 rpm). Experimental validation demonstrated 0.3 μm/min removal rates with <1 μm nonuniformity under optimized conditions, which was attributable to velocity stabilization effects. The methodology exhibits inherent extensibility to high-speed operations (>80 rpm) and alternative polishing configurations through coordinate transformation adaptability. This work provides a systematic derivation protocol for abrasive trajectory analysis, a visualization paradigm for velocity optimization, and quantitative guidelines for precision process control—advancing beyond current empirical approaches in surface finishing technology. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

18 pages, 8893 KiB  
Article
Optimization of Innovative Hybrid Polylactic Acid+ and Glass Fiber Composites: Mechanical, Physical, and Thermal Evaluation of Woven Glass Fiber Reinforcement in Fused Filament Fabrication 3D Printing
by Ardi Jati Nugroho Putro, Galang Bagaskara, Ibnu Adnan Prasetya, Jamasri, Ardi Wiranata, Yi-Chieh Wu and Muhammad Akhsin Muflikhun
J. Compos. Sci. 2025, 9(4), 164; https://doi.org/10.3390/jcs9040164 - 29 Mar 2025
Cited by 1 | Viewed by 947
Abstract
The growing demand for complex structures, energy absorption, and mechanically strong materials has led to the exploration of innovative composites. This study focuses on the manufacture, characterization, and evaluation of PLA+ reinforced with woven glass fiber. Using Fused Filament Fabrication (FFF) 3D Printer [...] Read more.
The growing demand for complex structures, energy absorption, and mechanically strong materials has led to the exploration of innovative composites. This study focuses on the manufacture, characterization, and evaluation of PLA+ reinforced with woven glass fiber. Using Fused Filament Fabrication (FFF) 3D Printer technology, the effects of adding woven glass fiber were examined through a tensile test with Digital Image Correlation (DIC)-induced, flexural, Charpy impact resistance, Shore D hardness, Differential Scanning Calorimetry (DSC) thermal tester, and SEM morphological tests. Results showed that adding four layers of glass fiber significantly improved mechanical properties: tensile strength increased by 85% to 95.44 MPa, flexural strength by 13% to 91.51 MPa, and impact resistance by 450% to 15.12 kJ/m2. However, a reduction in hardness and thermal resistance was noted due to chemical interactions. These findings suggest potential applications of PLA+ composites in high-strength products for vehicle bumpers in the automotive industry and shin pads in the sports industry. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

17 pages, 3404 KiB  
Article
Proteomic Analysis of the Fusarium graminearum Secretory Proteins in Wheat Apoplast Reveals a Cell-Death-Inducing M43 Peptidase
by Pengfeng Li, Ruihua Zhao, Ying Fang, Yujin Fan, Qianyong Hu, Wei Huang, Wujun Ma and Cuijun Zhang
J. Fungi 2025, 11(4), 240; https://doi.org/10.3390/jof11040240 - 21 Mar 2025
Viewed by 1144
Abstract
Fusarium graminearum, a highly destructive fungal pathogen, poses a major threat to wheat production. The apoplast is an important space for plant–pathogen interactions. However, no studies have been reported on the secretory proteins of F. graminearum in the wheat apoplast. In this [...] Read more.
Fusarium graminearum, a highly destructive fungal pathogen, poses a major threat to wheat production. The apoplast is an important space for plant–pathogen interactions. However, no studies have been reported on the secretory proteins of F. graminearum in the wheat apoplast. In this study, we performed mass spectrometry analysis of F. graminearum secretory proteins in wheat apoplast and identified 79 potential secretory proteins. We identified a metalloprotease (referred to as Fg28) and demonstrated its capacity to induce cell death and reactive oxygen species (ROS) accumulation in Nicotiana benthamiana. Fg28 is strongly up-regulated in the early stages of infection and is secreted into the intercellular space of wheat cells. Full-length Fg28 is required to induce cell death in N. benthamiana. In addition, Fg28 induces an immune response that is independent of BAK1/SOBIR1 and EDS1/PAD4. Furthermore, knocking out Fg28 had no effect on morphology or pathogenicity. In conclusion, we have identified a set of F. graminearum secreted proteins in the wheat apoplast and a metalloproteinase that triggers immune response, providing new insights into understanding the interaction between F. graminearum and wheat. Full article
(This article belongs to the Special Issue Morphology, Phylogeny and Pathogenicity of Fusarium)
Show Figures

Figure 1

21 pages, 4267 KiB  
Article
Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study
by Amparo Guillén, Fernando Moreno-Navarro, Miguel Sol-Sánchez and Guillermo R. Iglesias
Sensors 2025, 25(6), 1933; https://doi.org/10.3390/s25061933 - 20 Mar 2025
Viewed by 423
Abstract
The development of cost-effective and reliable railway monitoring technologies is crucial for the maintenance of modern infrastructure. Embedding sensors into rail pads has emerged as a promising approach for monitoring wheel–track interactions, but the successful implementation of these systems requires a robust framework [...] Read more.
The development of cost-effective and reliable railway monitoring technologies is crucial for the maintenance of modern infrastructure. Embedding sensors into rail pads has emerged as a promising approach for monitoring wheel–track interactions, but the successful implementation of these systems requires a robust framework for signal data acquisition and analysis. This study validates a custom-designed External Signal Acquisition Device (ESAD) for use with smart rail pads, comparing its performance against a high-precision commercial analog module. While the commercial module delivers exceptional accuracy, its high cost, bulky size, and complex installation requirements limit its practicality for large-scale railway applications. Laboratory-scale and full-scale experiments simulating real-world railway conditions demonstrated that the custom ESAD performs comparably to the commercial module. During simulated train passages, the ESAD showed reduced signal dispersion as load and train speed increased, confirming its ability to provide reliable calibration data. Moreover, the device maintained over 95% reliability in analyzing load-to-signal linearity, ensuring consistent and dependable performance in both laboratory and field settings. However, the ESAD does have limitations, including slightly lower resolution for low frequencies and potential sensitivity to extreme environmental conditions, which may affect its performance in specific scenarios. These findings highlight the ESAD’s potential to strike a balance between cost and functionality, making it a viable solution for widespread railway monitoring applications. This research contributes to the advancement of affordable and efficient railway monitoring technologies, fostering the adoption of preventive maintenance practices and enhancing overall infrastructure performance. Full article
Show Figures

Figure 1

22 pages, 10869 KiB  
Article
Mechanical and Thermo-Regulative Investigations on Additively Manufactured Backpack Pads
by Niko Nagengast, Yehuda Weizman, Michael Frisch, Tizian Scharl and Franz Konstantin Fuss
Polymers 2025, 17(6), 738; https://doi.org/10.3390/polym17060738 - 11 Mar 2025
Viewed by 716
Abstract
Backpacks play a pivotal role in facilitating the transportation of essential items, particularly within the realm of physical activities. In demanding physical environments such as mountain sports, effective thermoregulation, pressure absorption, and distribution become paramount due to the repetitive interaction between the athlete’s [...] Read more.
Backpacks play a pivotal role in facilitating the transportation of essential items, particularly within the realm of physical activities. In demanding physical environments such as mountain sports, effective thermoregulation, pressure absorption, and distribution become paramount due to the repetitive interaction between the athlete’s back and the corresponding area of the backpack. Given that the backpack pads serve as a crucial component of this system, acting as the intermediary layer between the human body and the backpack itself, this study delves into the mechanical and thermoregulatory properties of these components. Specifically, it compares a commercially available pad configuration with five lattice structures manufactured using additive manufacturing techniques. These methods include Large-Volume Filament printing, Multi-Jet Fusion, High-Speed Laser Sintering, and Laser Sintering, with an additional post-processing step—smoothening—for the Multi-Jet Fusion pads. All pads are evaluated on both standardized test protocols regarding mechanics, surface roughness, and humidity as well as a biomechanical setup. For continuous measurement during biomechanical testing, a sensor system including pressure, humidity, and temperature sensors is developed. In addition, a thermal camera was used to measure surface temperature at the back. Throughout the biomechanical testing, 20 male athletes performed a 15 min treadmill walk at 5 km/h and an incline of 6° with all pad configurations, wearing a commercially available backpack with an additional 8 kg of mass. The results revealed significant preferences regarding temperature and humidity uptake, backed up by the standardized test procedures. Furthermore, investigations with the customized sensor system show the irrelevance of the damping-improved back plate design. Overall, additively manufactured backpack pads can play a pivotal role in the thermoregulation and personalized design of backpack configurations. Full article
(This article belongs to the Special Issue Polymers Additive Manufacturing in Sports and Protective Equipment)
Show Figures

Figure 1

23 pages, 25297 KiB  
Article
Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage
by René Riedel, Garima Rani and Anupam Sengupta
Microorganisms 2025, 13(3), 637; https://doi.org/10.3390/microorganisms13030637 - 11 Mar 2025
Cited by 1 | Viewed by 1687
Abstract
The surface adhesion and stiffness of underlying substrates mediate the geometry, mechanics, and self-organization of expanding bacterial colonies. Recent studies have qualitatively indicted that stiffness may impact bacterial attachment and accumulation, yet the variation in the cell-to-surface adhesion with substrate stiffness remains to [...] Read more.
The surface adhesion and stiffness of underlying substrates mediate the geometry, mechanics, and self-organization of expanding bacterial colonies. Recent studies have qualitatively indicted that stiffness may impact bacterial attachment and accumulation, yet the variation in the cell-to-surface adhesion with substrate stiffness remains to be quantified. Here, by developing a cell-level force–distance spectroscopy (FDS) technique based on atomic force microscopy (AFM), we simultaneously quantify the cell–surface adhesion and stiffness of the underlying substrates to reveal the stiffness-dependent adhesion of the phototrophic bacterium Chromatium okenii. As the stiffness of the soft substrate, modeled using a low-melting-point (LMP) agarose pad, was varied between 20 kPa and 120 kPa by changing the agarose concentrations, we observed a progressive increase in the mean adhesion force by over an order of magnitude, from 0.21±0.10 nN to 2.42±1.16 nN. In contrast, passive polystyrene (PS) microparticles of comparable dimensions showed no perceptible change in their surface adhesion, confirming that the stiffness-dependent adhesive interaction of C. okenii is of a biological origin. Furthermore, for Escherichia coli, the cell–surface adhesion varied between 0.29±0.17 nN and 0.39±0.20 nN, showing a weak dependence on the substrate stiffness, thus suggesting that stiffness-modulated adhesion is a species-specific trait. Finally, by quantifying the adhesion of the C. okenii population across different timescales, we reported the emergent co-existence of weak and strongly adherent sub-populations, demonstrating diversification of the adherent phenotypes over the growth stages. Taken together, these findings suggest that bacteria, depending on the species and their physiological stage, may actively modulate cell-to-surface adhesion in response to the stiffness of soft surfaces. While the surface properties, for instance, hydrophobicity (or hydrophilicity), play a key role in mediating bacterial attachment, this work introduces substrate stiffness as a biophysical parameter that could reinforce or suppress effective surface interactions. Our results suggest how bacteria could leverage stiffness-dependent adhesion and the diversity therein as functional traits to modulate their initial attachment to, colonization of, and proliferation on soft substrates during the early stages of biofilm development. Full article
Show Figures

Graphical abstract

Back to TopTop